1
|
Tang X, Xia X, Liu Y, Hong X, Huang Y, Li G, Liang Y, Wang X, Pang H, Yang Y. Alternative splicing fine-tunes prey shift of Coccinellini lady beetles to non-target insect. BMC Genomics 2025; 26:472. [PMID: 40355858 PMCID: PMC12067713 DOI: 10.1186/s12864-025-11641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Coccinellini lady beetles have been applied as biological control agent of aphids, however, not all of these species are obligately aphidophagous. Thus, a comprehensive understanding of the molecular mechanisms behind predaceous specificity of Coccinellini lady beetles can provide important clues for evaluating their performance and ecological risk assessment in biological control. Post-transcriptional regulations act a key role in shaping organisms' rapid adaptation to changing environment, yet, little is known about their role in the acclimation of Coccinellini lady beetles to non-target preys. RESULTS In this study, we conducted a genome-wide investigation to alternative splicing (AS) dynamics in three Coccinellini species Propylea japonica, Coccinella septempunctata and Harmonia axyridis in response to feeding shift from natural prey bean aphids (Megoura japonica) to non-target insect citrus mealybugs (Planococcus citri). Compared to aphid-feeding, all three lady beetles were subject to substantial splicing changes when preying on mealybugs. Most of these differentially spliced genes (DSGs) were not differentially expressed, and regulated different pathways from differentially expressed genes, indicating the functionally nonredundant role of AS. The DSGs were primarily associated with energy derivation, organ formation and development, chemosensation and immune responses, which may promote tolerance of lady beetles to nutrient deprivation and pathogen challenges induced by prey shift. The lady beetles feeding on mealybugs moreover downregulated the generation of splicing products containing premature termination codons (PTCs) for the genes involved in energy derivation and stimulus responses, to fine-tune their protein expression and rationalize energy allocation. CONCLUSION These findings unraveled the functional significance of AS reprogramming in modulating acclimation of Coccinellini lady beetles to prey shift from aphids to non-target insects and provided new genetic clues for evaluating their ecological safety as biological control agents.
Collapse
Affiliation(s)
- Xuefei Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xinhui Xia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuqi Liu
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiyao Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuhao Huang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guannan Li
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuansen Liang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xueqing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Pang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yuchen Yang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Ciccolella S, Cozzi D, Della Vedova G, Kuria SN, Bonizzoni P, Denti L. Differential quantification of alternative splicing events on spliced pangenome graphs. PLoS Comput Biol 2024; 20:e1012665. [PMID: 39652592 DOI: 10.1371/journal.pcbi.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Pangenomes are becoming a powerful framework to perform many bioinformatics analyses taking into account the genetic variability of a population, thus reducing the bias introduced by a single reference genome. With the wider diffusion of pangenomes, integrating genetic variability with transcriptome diversity is becoming a natural extension that demands specific methods for its exploration. In this work, we extend the notion of spliced pangenomes to that of annotated spliced pangenomes; this allows us to introduce a formal definition of Alternative Splicing (AS) events on a graph structure. To investigate the usage of graph pangenomes for the quantification of AS events across conditions, we developed pantas, the first pangenomic method for the detection and differential analysis of AS events from short RNA-Seq reads. A comparison with state-of-the-art linear reference-based approaches proves that pantas achieves competitive accuracy, making spliced pangenomes effective for conducting AS events quantification and opening future directions for the analysis of population-based transcriptomes.
Collapse
Affiliation(s)
- Simone Ciccolella
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Davide Cozzi
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | | | | | - Paola Bonizzoni
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Luca Denti
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Eich T, O’Leary C, Moss W. Intronic RNA secondary structural information captured for the human MYC pre-mRNA. NAR Genom Bioinform 2024; 6:lqae143. [PMID: 39450312 PMCID: PMC11500451 DOI: 10.1093/nargab/lqae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
To address the lack of intronic reads in secondary structure probing data for the human MYC pre-mRNA, we developed a method that combines spliceosomal inhibition with RNA probing and sequencing. Here, the SIRP-seq method was applied to study the secondary structure of human MYC RNAs by chemically probing HeLa cells with dimethyl sulfate in the presence of the small molecule spliceosome inhibitor pladienolide B. Pladienolide B binds to the SF3B complex of the spliceosome to inhibit intron removal during splicing, resulting in retained intronic sequences. This method was used to increase the read coverage over intronic regions of MYC. The purpose for increasing coverage across introns was to generate complete reactivity profiles for intronic sequences via the DMS-MaPseq approach. Notably, depth was sufficient for analysis by the program DRACO, which was able to deduce distinct reactivity profiles and predict multiple secondary structural conformations as well as their suggested stoichiometric abundances. The results presented here provide a new method for intronic RNA secondary structural analyses, as well as specific structural insights relevant to MYC RNA splicing regulation and therapeutic targeting.
Collapse
Affiliation(s)
- Taylor O Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Lang F, Sorn P, Suchan M, Henrich A, Albrecht C, Köhl N, Beicht A, Riesgo-Ferreiro P, Holtsträter C, Schrörs B, Weber D, Löwer M, Sahin U, Ibn-Salem J. Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates. BIOINFORMATICS ADVANCES 2024; 4:vbae080. [PMID: 38863673 PMCID: PMC11165244 DOI: 10.1093/bioadv/vbae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Motivation Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To increase tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients. Results We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoepitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corresponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to additional neoantigen candidates to expand the target repertoire for cancer immunotherapies. Availability and implementation The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON-Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.
Collapse
Affiliation(s)
- Franziska Lang
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Patrick Sorn
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Suchan
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Alina Henrich
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christian Albrecht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Nina Köhl
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Aline Beicht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Pablo Riesgo-Ferreiro
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christoph Holtsträter
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - David Weber
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Löwer
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- BioNTech SE, Mainz 55131, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz 55131, Germany
| | - Jonas Ibn-Salem
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| |
Collapse
|
5
|
Scott HM, Smith MH, Coleman AK, Armijo KS, Chapman MJ, Apostalo SL, Wagner AR, Watson RO, Patrick KL. Serine/arginine-rich splicing factor 7 promotes the type I interferon response by activating Irf7 transcription. Cell Rep 2024; 43:113816. [PMID: 38393946 PMCID: PMC11056844 DOI: 10.1016/j.celrep.2024.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA-binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis reveals that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon-stimulated genes in macrophages. Using genetic and biochemical assays, we discover that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define a role for an SR protein in activating transcription and reveal an RBP-chromatin network that orchestrates macrophage antiviral gene expression.
Collapse
Affiliation(s)
- Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Mackenzie H Smith
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kaitlyn S Armijo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Morgan J Chapman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Summer L Apostalo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
6
|
Wang R, Helbig I, Edmondson AC, Lin L, Xing Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform 2023; 24:bbad284. [PMID: 37580177 PMCID: PMC10516351 DOI: 10.1093/bib/bbad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.
Collapse
Affiliation(s)
- Robert Wang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Su T, Hollas MAR, Fellers RT, Kelleher NL. Identification of Splice Variants and Isoforms in Transcriptomics and Proteomics. Annu Rev Biomed Data Sci 2023; 6:357-376. [PMID: 37561601 PMCID: PMC10840079 DOI: 10.1146/annurev-biodatasci-020722-044021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Alternative splicing is pivotal to the regulation of gene expression and protein diversity in eukaryotic cells. The detection of alternative splicing events requires specific omics technologies. Although short-read RNA sequencing has successfully supported a plethora of investigations on alternative splicing, the emerging technologies of long-read RNA sequencing and top-down mass spectrometry open new opportunities to identify alternative splicing and protein isoforms with less ambiguity. Here, we summarize improvements in short-read RNA sequencing for alternative splicing analysis, including percent splicing index estimation and differential analysis. We also review the computational methods used in top-down proteomics analysis regarding proteoform identification, including the construction of databases of protein isoforms and statistical analyses of search results. While many improvements in sequencing and computational methods will result from emerging technologies, there should be future endeavors to increase the effectiveness, integration, and proteome coverage of alternative splicing events.
Collapse
Affiliation(s)
- Taojunfeng Su
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA;
| | - Michael A R Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA;
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Wen W, Mead AJ, Thongjuea S. MARVEL: an integrated alternative splicing analysis platform for single-cell RNA sequencing data. Nucleic Acids Res 2023; 51:e29. [PMID: 36631981 PMCID: PMC10018366 DOI: 10.1093/nar/gkac1260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing is an important source of heterogeneity underlying gene expression between individual cells but remains an understudied area due to the paucity of computational tools to analyze splicing dynamics at single-cell resolution. Here, we present MARVEL, a comprehensive R package for single-cell splicing analysis applicable to RNA sequencing generated from the plate- and droplet-based methods. We performed extensive benchmarking of MARVEL against available tools and demonstrated its utility by analyzing multiple publicly available datasets in diverse cell types, including in disease. MARVEL enables systematic and integrated splicing and gene expression analysis of single cells to characterize the splicing landscape and reveal biological insights.
Collapse
Affiliation(s)
- Wei Xiong Wen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Supat Thongjuea
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| |
Collapse
|
9
|
Cheng S, Fahmi NA, Park M, Sun J, Thao K, Yeh HS, Zhang W, Yong J. mTOR Contributes to the Proteome Diversity through Transcriptome-Wide Alternative Splicing. Int J Mol Sci 2022; 23:ijms232012416. [PMID: 36293270 PMCID: PMC9604279 DOI: 10.3390/ijms232012416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is crucial in energy metabolism and cell proliferation. Previously, we reported transcriptome-wide 3′-untranslated region (UTR) shortening by alternative polyadenylation upon mTOR activation and its impact on the proteome. Here, we further interrogated the mTOR-activated transcriptome and found that hyperactivation of mTOR promotes transcriptome-wide exon skipping/exclusion, producing short isoform transcripts from genes. This widespread exon skipping confers multifarious regulations in the mTOR-controlled functional proteomics: AS in coding regions widely affects the protein length and functional domains. They also alter the half-life of proteins and affect the regulatory post-translational modifications. Among the RNA processing factors differentially regulated by mTOR signaling, we found that SRSF3 mechanistically facilitates exon skipping in the mTOR-activated transcriptome. This study reveals a role of mTOR in AS regulation and demonstrates that widespread AS is a multifaceted modulator of the mTOR-regulated functional proteome.
Collapse
Affiliation(s)
- Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Kaitlyn Thao
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| |
Collapse
|
10
|
Li HD, Lin CX, Zheng J. GTFtools: a software package for analyzing various features of gene models. Bioinformatics 2022; 38:4806-4808. [PMID: 36000853 DOI: 10.1093/bioinformatics/btac561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Gene-centric bioinformatics studies frequently involve calculation or extraction of various features of genes such as splice sites, promoters, independent introns, and untranslated regions (UTRs) through manipulation of gene models. Gene models are often annotated in gene transfer format (GTF) files. The features are essential for subsequent analysis such as intron retention detection, DNA-binding site identification, and computing splicing strength of splice sites. Some features such as independent introns and splice sites are not provided in existing resources including the commonly used BioMart database. A package that implements and integrates functions to analyze various features of genes will greatly ease routine analysis for related bioinformatics studies. However, to the best of our knowledge, such a package is not available yet. RESULTS In this work, we introduce GTFtools, a stand-alone command-line software that provides a set of functions to calculate various gene features, including splice sites, independent introns, transcription start sites (TSS)-flanking regions, UTRs, isoform coordination and length, different types of gene lengths, etc. It takes the ENSEMBL or GENCODE GTF files as input, and can be applied to both human and non-human gene models like the lab mouse. We compare the utilities of GTFtools with those of two related tools: Bedtools and BioMart. GTFtools is implemented in Python and not dependent on any third-party software, making it very easy to install and use. AVAILABILITY GTFtools is freely available at www.genemine.org/gtftools.php as well as pyPI and Bioconda.
Collapse
Affiliation(s)
- Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
| | - Cui-Xiang Lin
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jiantao Zheng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
11
|
Abstract
The single-cell revolution in the field of genomics is in full bloom, with clever new molecular biology tricks appearing regularly that allow researchers to explore new modalities or scale up their projects to millions of cells and beyond. Techniques abound to measure RNA expression, DNA alterations, protein abundance, chromatin accessibility, and more, all with single-cell resolution and often in combination. Despite such a rapidly changing technology landscape, there are several fundamental principles that are applicable to the majority of experimental workflows to help users avoid pitfalls and exploit the advantages of the chosen platform. In this overview article, we describe a variety of popular single-cell genomics technologies and address some common questions pertaining to study design, sample preparation, quality control, and sequencing strategy. As the majority of relevant publications currently revolve around single-cell RNA-seq, we will prioritize this genomics modality in our discussion. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Claire Regan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
12
|
Kumari A, Sedehizadeh S, Brook JD, Kozlowski P, Wojciechowska M. Differential fates of introns in gene expression due to global alternative splicing. Hum Genet 2022; 141:31-47. [PMID: 34907472 PMCID: PMC8758631 DOI: 10.1007/s00439-021-02409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
The discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.
Collapse
Affiliation(s)
- Anjani Kumari
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Saam Sedehizadeh
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - John David Brook
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
- Department of Rare Human Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
13
|
Lorenzi C, Barriere S, Arnold K, Luco RF, Oldfield AJ, Ritchie W. IRFinder-S: a comprehensive suite to discover and explore intron retention. Genome Biol 2021; 22:307. [PMID: 34749764 PMCID: PMC8573998 DOI: 10.1186/s13059-021-02515-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate quantification and detection of intron retention levels require specialized software. Building on our previous software, we create a suite of tools called IRFinder-S, to analyze and explore intron retention events in multiple samples. Specifically, IRFinder-S allows a better identification of true intron retention events using a convolutional neural network, allows the sharing of intron retention results between labs, integrates a dynamic database to explore and contrast available samples, and provides a tested method to detect differential levels of intron retention.
Collapse
Affiliation(s)
- Claudio Lorenzi
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Sylvain Barriere
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Katharina Arnold
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Reini F Luco
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Andrew J Oldfield
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France.
| |
Collapse
|
14
|
Implications of Antigen Selection on T Cell-Based Immunotherapy. Pharmaceuticals (Basel) 2021; 14:ph14100993. [PMID: 34681217 PMCID: PMC8537967 DOI: 10.3390/ph14100993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Many immunotherapies rely on CD8+ effector T cells to recognize and kill cognate tumor cells. These T cell-based immunotherapies include adoptive cell therapy, such as CAR T cells or transgenic TCR T cells, and anti-cancer vaccines which expand endogenous T cell populations. Tumor mutation burden and the choice of antigen are among the most important aspects of T cell-based immunotherapies. Here, we highlight various classes of cancer antigens, including self, neojunction-derived, human endogenous retrovirus (HERV)-derived, and somatic nucleotide variant (SNV)-derived antigens, and consider their utility in T cell-based immunotherapies. We further discuss the respective anti-tumor/anti-self-properties that influence both the degree of immunotolerance and potential off-target effects associated with each antigen class.
Collapse
|
15
|
A second hit somatic (p.R905W) and a novel germline intron-mutation of TSC2 gene is found in intestinal lymphangioleiomyomatosis: a case report with literature review. Diagn Pathol 2021; 16:83. [PMID: 34465349 PMCID: PMC8406734 DOI: 10.1186/s13000-021-01138-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in multiple organs associated with germline mutations in TSC1 and TSC2, including exonic, intronic, or mosaic mutations. Gastrointestinal (GI) tract Lymphangioleiomyomatosis (LAM) is an extremely rare manifestation of TSC, with few reported cases. Herein, we aimed to determine the driver mutation, pathogenesis, and relationship of germline and somatic mutations of LAM through whole-genome sequencing (WGS) of the tumor and blood samples and whole transcriptome sequencing (WTS) analysis. CASE PRESENTATION A nine-year-old girl with a full-blown TSC presented with abdominal masses detected during a routine check-up. Resected intestinal masses were diagnosed as LAM by thorough pathological examination. Interestingly, the LAM presented a somatic TSC2 gene mutation in exon 24 (p.R905W, c.C2713T), and the patient had intron retention by a novel germline mutation in the intron region of TSC2 (chr16:2126489, C > G). CONCLUSION Our case suggests that intron retention by a single nucleotide intronic mutation of TSC2 is sufficient to develop severe manifestations of TSC, but the development of LAM requires an additional somatic oncogenic mutation of TSC2.
Collapse
|
16
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
17
|
Yeom KH, Pan Z, Lin CH, Lim HY, Xiao W, Xing Y, Black DL. Tracking pre-mRNA maturation across subcellular compartments identifies developmental gene regulation through intron retention and nuclear anchoring. Genome Res 2021; 31:1106-1119. [PMID: 33832989 PMCID: PMC8168582 DOI: 10.1101/gr.273904.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
Steps of mRNA maturation are important gene regulatory events that occur in distinct cellular locations. However, transcriptomic analyses often lose information on the subcellular distribution of processed and unprocessed transcripts. We generated extensive RNA-seq data sets to track mRNA maturation across subcellular locations in mouse embryonic stem cells, neuronal progenitor cells, and postmitotic neurons. We find disparate patterns of RNA enrichment between the cytoplasmic, nucleoplasmic, and chromatin fractions, with some genes maintaining more polyadenylated RNA in chromatin than in the cytoplasm. We bioinformatically defined four regulatory groups for intron retention, including complete cotranscriptional splicing, complete intron retention in the cytoplasmic RNA, and two intron groups present in nuclear and chromatin transcripts but fully excised in cytoplasm. We found that introns switch their regulatory group between cell types, including neuronally excised introns repressed by polypyrimidine track binding protein 1 (PTBP1). Transcripts for the neuronal gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1) are highly expressed in mESCs but are absent from the cytoplasm. Instead, incompletely spliced Gabbr1 RNA remains sequestered on chromatin, where it is bound by PTBP1, similar to certain long noncoding RNAs. Upon neuronal differentiation, Gabbr1 RNA becomes fully processed and exported for translation. Thus, splicing repression and chromatin anchoring of RNA combine to allow posttranscriptional regulation of Gabbr1 over development. For this and other genes, polyadenylated RNA abundance does not indicate functional gene expression. Our data sets provide a rich resource for analyzing many other aspects of mRNA maturation in subcellular locations and across development.
Collapse
Affiliation(s)
- Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA.,Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Han Young Lim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Broseus L, Thomas A, Oldfield AJ, Severac D, Dubois E, Ritchie W. TALC: Transcript-level Aware Long-read Correction. Bioinformatics 2021; 36:5000-5006. [PMID: 32910174 DOI: 10.1093/bioinformatics/btaa634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Long-read sequencing technologies are invaluable for determining complex RNA transcript architectures but are error-prone. Numerous 'hybrid correction' algorithms have been developed for genomic data that correct long reads by exploiting the accuracy and depth of short reads sequenced from the same sample. These algorithms are not suited for correcting more complex transcriptome sequencing data. RESULTS We have created a novel reference-free algorithm called Transcript-level Aware Long-Read Correction (TALC) which models changes in RNA expression and isoform representation in a weighted De Bruijn graph to correct long reads from transcriptome studies. We show that transcript-level aware correction by TALC improves the accuracy of the whole spectrum of downstream RNA-seq applications and is thus necessary for transcriptome analyses that use long read technology. AVAILABILITY AND IMPLEMENTATION TALC is implemented in C++ and available at https://github.com/lbroseus/TALC. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lucile Broseus
- Department of Genome Dynamics, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier 34396, France
| | - Aubin Thomas
- Department of Genome Dynamics, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier 34396, France
| | - Andrew J Oldfield
- Department of Genome Dynamics, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier 34396, France
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5 34094, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5 34094, France
| | - William Ritchie
- Department of Genome Dynamics, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier 34396, France
| |
Collapse
|
20
|
Grabski DF, Broseus L, Kumari B, Rekosh D, Hammarskjold ML, Ritchie W. Intron retention and its impact on gene expression and protein diversity: A review and a practical guide. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1631. [PMID: 33073477 DOI: 10.1002/wrna.1631] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) occurs when a complete and unspliced intron remains in mature mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions, including several that impact human health and disease. Although experimental technologies used to study other forms of mRNA splicing can also be used to investigate IR, a specialized downstream computational analysis is optimal for IR discovery and analysis. Here we provide a review of IR and its biological implications, as well as a practical guide for how to detect and analyze it. Several methods, including long read third generation direct RNA sequencing, are described. We have developed an R package, FakIR, to facilitate the execution of the bioinformatic tasks recommended in this review and a tutorial on how to fit them to users aims. Additionally, we provide guidelines and experimental protocols to validate IR discovery and to evaluate the potential impact of IR on gene expression and protein output. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Regulation/Alternative Splicing RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- David F Grabski
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lucile Broseus
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bandana Kumari
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Ritchie
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Patsali P, Papasavva P, Christou S, Sitarou M, Antoniou MN, Lederer CW, Kleanthous M. Relative and Absolute Quantification of Aberrant and Normal Splice Variants in HBBIVSI-110 (G > A) β-Thalassemia. Int J Mol Sci 2020; 21:E6671. [PMID: 32933098 PMCID: PMC7555009 DOI: 10.3390/ijms21186671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The β-thalassemias are an increasing challenge to health systems worldwide, caused by absent or reduced β-globin (HBB) production. Of particular frequency in many Western countries is HBBIVSI-110(G > A) β-thalassemia (HGVS name: HBB:c.93-21G > A). Its underlying mutation creates an abnormal splice acceptor site in the HBB gene, and while partially retaining normal splicing of HBB, it severely reduces HBB protein expression from the mutant locus and HBB loci in trans. For the assessment of the underlying mechanisms and of therapies targeting β-thalassemia, accurate quantification of aberrant and normal HBB mRNA is essential, but to date, has only been performed by approximate methods. To address this shortcoming, we have developed an accurate, duplex reverse-transcription quantitative PCR assay for the assessment of the ratio and absolute quantities of normal and aberrant mRNA species as a tool for basic and translational research of HBBIVSI-110(G > A) β-thalassemia. The method was employed here to determine mRNA ratios and quantities in blood and primary cell culture samples and correlate them with HBB protein levels. Moreover, with its immediate utility for β-thalassemia and the mutation in hand, the approach can readily be adopted for analysis of alternative splicing or for quantitative assays of any disease-causing mutation that interferes with normal splicing.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; (P.P.); (P.P.); (M.K.)
| | - Panayiota Papasavva
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; (P.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus
| | | | - Maria Sitarou
- Thalassaemia Clinic Larnaca, Ministry of Health, Larnaca 6301, Cyprus;
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK;
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; (P.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; (P.P.); (P.P.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus
| |
Collapse
|
22
|
Cherry S, Lynch KW. Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev 2020; 34:1005-1016. [PMID: 32747477 PMCID: PMC7397854 DOI: 10.1101/gad.338962.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decade there has been increased awareness of the potential role of alternative splicing in the etiology of cancer. In particular, advances in RNA-Sequencing technology and analysis has led to a wave of discoveries in the last few years regarding the causes and functional relevance of alternative splicing in cancer. Here we discuss the current understanding of the connections between splicing and cancer, with a focus on the most recent findings. We also discuss remaining questions and challenges that must be addressed in order to use our knowledge of splicing to guide the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Sara Cherry
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Zheng JT, Lin CX, Fang ZY, Li HD. Intron Retention as a Mode for RNA-Seq Data Analysis. Front Genet 2020; 11:586. [PMID: 32733531 PMCID: PMC7358572 DOI: 10.3389/fgene.2020.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Intron retention (IR) is an alternative splicing mode whereby introns, rather than being spliced out as usual, are retained in mature mRNAs. It was previously considered a consequence of mis-splicing and received very limited attention. Only recently has IR become of interest for transcriptomic data analysis owing to its recognized roles in gene expression regulation and associations with complex diseases. In this article, we first review the function of IR in regulating gene expression in a number of biological processes, such as neuron differentiation and activation of CD4+ T cells. Next, we briefly review its association with diseases, such as Alzheimer's disease and cancers. Then, we describe state-of-the-art methods for IR detection, including RNA-seq analysis tools IRFinder and iREAD, highlighting their underlying principles and discussing their advantages and limitations. Finally, we discuss the challenges for IR detection and potential ways in which IR detection methods could be improved.
Collapse
Affiliation(s)
- Jian-Tao Zheng
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Cui-Xiang Lin
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhao-Yu Fang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|