1
|
Yang C, Mao L, Chen Y, Zhou Y, Zhang R, Yi Z, Zhang D, Zhang G. Ancestral carbonic anhydrase with significantly enhanced stability and activity for CO 2 capture and utilization. BIORESOURCE TECHNOLOGY 2025; 419:132054. [PMID: 39798812 DOI: 10.1016/j.biortech.2025.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method. After prescreening, the ancestor AncCA19 was obtained and successfully expressed. The hydration activity of AncCA19 was as high as 58,859 WAU/mg, with the optimum temperature and pH obtained by esterase assay at 100 ℃ and 9, respectively. AncCA19 had the longest half-life (1.7 h) at 95 ℃ compared with existing CAs. After 2 weeks' incubation in artificial seawater at 30 ℃ or 25.0 % N-methyldiethanolamine (MDEA) at 60 ℃, the activities remained above 47,370 WAU/mg and 6,596 WAU/mg, respectively. Thus, AncCA19, as a novel benchmark of CAs, exhibits exceptional stability in a variety CCUS applications, establishing a versatile candidate for effective CO2 capture.
Collapse
Affiliation(s)
- Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhiwei Yi
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian Province, PR China
| | - Dechao Zhang
- Guangzhou Lintop Information Technology Co., Ltd, Guangzhou 510000, Guangdong Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
2
|
Gholampour-Faroji N, Hemmat J, Haddad-Mashadrizeh A, Asoodeh A. Characterization, structural, and evolutionary analysis of an extremophilic GH5 endoglucanase from Bacillus sp. G131: Insights from ancestral sequence reconstruction. Int J Biol Macromol 2024; 277:134311. [PMID: 39094869 DOI: 10.1016/j.ijbiomac.2024.134311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Nature has developed extremozymes that catalyze complex reaction processes in extreme environmental conditions. Accordingly, a combined approach consisting of extremozyme screening, ancestral sequence resurrection (ASR), and molecular dynamic simulation was utilized to construct a developed endoglucanase. The primary experimental and in-silico data led to the prediction of a hypothetical sequence of endoglucanase (EG5-G131) using Bacillus sp. G131 confirmed by amplification and sequencing. EG5-G131 exhibited noticeable stability in a broad-pH range, several detergents, organic solvents, and temperatures up to 80 °C. The molecular weight, Vmax, and Km of the purified endoglucanase were estimated to be 36 kDa, 4.32 μmol/min, and 23.62 mg/ml, respectively. The calculated thermodynamic parameters for EG5-G131 confirmed its intrinsic thermostability. Computational analysis revealed Glu142 and Glu230 as active-site residues of the enzyme. Furthermore, the enzyme remained bound to cellotetraose at 298 K, 333 K, 343 K, and 353 K for 300 ns, consistent with our experimental data. ASR of EG5-G131 led to the introduction of ancestral ANC204 and ANC205, which show similar thermodynamic characteristics with the last Firmicute common ancestor. Finally, truncating loops from the N-terminal of two sequences created two variants with desirable thermal stability, suggesting the evolutionary deciphering of the functional domain of the GH5 family in Bacillus sp. G131.
Collapse
Affiliation(s)
- Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Jafar Hemmat
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Asoodeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Slanska M, Stackova L, Marques SM, Stacko P, Martínek M, Jílek L, Toul M, Damborsky J, Bednar D, Klán P, Prokop Z. Azobenzene-Based Photoswitchable Substrates for Advanced Mechanistic Studies of Model Haloalkane Dehalogenase Enzyme Family. ACS Catal 2024; 14:11635-11645. [PMID: 39114093 PMCID: PMC11301625 DOI: 10.1021/acscatal.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The engineering of efficient enzymes for large-scale production of industrially relevant compounds is a challenging task. Utilizing rational protein design, which relies on a comprehensive understanding of mechanistic information, holds significant promise for achieving success in this endeavor. Pre-steady-state kinetic measurements, obtained either through fast-mixing techniques or photoswitchable substrates, provide crucial mechanistic insights. The latter approach not only furnishes mechanistic clarity but also affords real-time structural elucidation of reaction intermediates via time-resolved femtosecond crystallography. Unfortunately, only a limited number of such valuable mechanistic probes are available. To address this gap, we applied a multidisciplinary approach, including computational analysis, chemical synthesis, physicochemical property screening, and enzyme kinetics to identify promising candidates for photoswitchable probes. We demonstrate the approach by designing an azobenzene-based photoswitchable substrate tailored for haloalkane dehalogenases, a prototypic class of enzymes pivotal in developing computational tools for rational protein design. The probe was subjected to steady-state and pre-steady-state kinetic analysis, which revealed new insights about the catalytic behavior of the model biocatalysts. We employed laser-triggered Z-to-E azobenzene photoswitching to generate the productive isomer in situ, opening avenues for advanced mechanistic studies using time-resolved femtosecond crystallography. Our results not only pave the way for the mechanistic understanding of this model enzyme family, incorporating both kinetic and structural dimensions, but also propose a systematic approach to the rational design of photoswitchable enzymatic substrates.
Collapse
Affiliation(s)
- Michaela Slanska
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Lenka Stackova
- RECETOX,
Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Sergio M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Centre, St. Ann’s Hospital, Brno 625 00, Czech Republic
| | - Peter Stacko
- RECETOX,
Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Marek Martínek
- RECETOX,
Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Luboš Jílek
- RECETOX,
Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Martin Toul
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Centre, St. Ann’s Hospital, Brno 625 00, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Centre, St. Ann’s Hospital, Brno 625 00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Centre, St. Ann’s Hospital, Brno 625 00, Czech Republic
| | - Petr Klán
- RECETOX,
Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Centre, St. Ann’s Hospital, Brno 625 00, Czech Republic
| |
Collapse
|
4
|
Zhou L, Tao C, Shen X, Sun X, Wang J, Yuan Q. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnol Adv 2024; 73:108376. [PMID: 38740355 DOI: 10.1016/j.biotechadv.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more targeted and less labor-intensive approach. There has been notable advancement in employing rational computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed so far. This article reviews recent developments in rational computational enzyme design, categorizing them into three types: structure-based, sequence-based, and data-driven machine learning computational design. Case studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and potential solutions, and offers insights into future development directions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunmeng Tao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Myrtollari K, Calderini E, Kracher D, Schöngaßner T, Galušić S, Slavica A, Taden A, Mokos D, Schrüfer A, Wirnsberger G, Gruber K, Daniel B, Kourist R. Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:3575-3584. [PMID: 38456190 PMCID: PMC10915792 DOI: 10.1021/acssuschemeng.3c06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Elia Calderini
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| | - Tobias Schöngaßner
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Stela Galušić
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
| | - Anita Slavica
- Faculty
of Food Technology and Biotechnology, Department of Biochemical Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Andreas Taden
- Adhesive
Technologies, Henkel AG & Co. KGaA, Henkelstr. 67, 40191 Düsseldorf, Germany
| | - Daniel Mokos
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Anna Schrüfer
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Gregor Wirnsberger
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Karl Gruber
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Bastian Daniel
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, Humboldtstraße
50/3, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, 8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse
12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
Preparation and Characterization of an Ancient Aminopeptidase Obtained from Ancestral Sequence Reconstruction for L-Carnosine Synthesis. Molecules 2022; 27:molecules27196620. [PMID: 36235157 PMCID: PMC9570944 DOI: 10.3390/molecules27196620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
As a biologically active peptide, L-carnosine has been widely used in the pharmaceutical, cosmetic and health care industries due to its various physiological properties. However, relatively little research is available regarding L-carnosine's enzymatic synthesis function. In this study, a potential enzyme sequence with the function of carnosine synthesizing was screened out using the ancestral sequence reconstruction (ASR) technique. Identified with L-carnosine synthesis activity, this enzyme was further confirmed using autoproteolytic phenomenon via Western blot and N-terminal sequencing. After purification, the enzymatic properties of LUCA-DmpA were characterized. The melting temperature (Tm) and denaturation enthalpy (ΔH) of LUCA-DmpA were 60.27 ± 1.24 °C and 1306.00 ± 26.73 kJ·mol-1, respectively. Circular dichroism (CD) spectroscopy results showed that this ancestral enzyme was composed of α-helix (35.23 ± 0.06%), β-sheet (11.06 ± 0.06%), β-turn (23.67 ± 0.06%) and random coil (32.03 ± 0.06%). The enzyme was characterized with the optimal temperature and pH of 45 °C and 9.0, respectively. Notably, LUCA-DmpA was also characterized with remarkable pH tolerance based on the observation of more than 85% remaining enzymatic activity after incubation at different pH buffers (pH = 6-11) for 12 h. Additionally, rather than being improved or inhibited by metal ions, its enzymatic activity was found to be promoted by introducing organic solvent with a larger log P value. Based on these homology modeling results, the screened LUCA-DmpA is suggested to have further optimization potential, and thereafter to be offered as a promising candidate for real industrial applications.
Collapse
|
7
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
8
|
Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL, Orahood OM, Loesch AE, Hatfield DC, Sitko JC, Almand EA, Steel JJ. Engineering and characterization of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synth Syst Biotechnol 2022; 7:671-676. [PMID: 35224235 PMCID: PMC8857417 DOI: 10.1016/j.synbio.2022.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Per- and Polyfluorinated alkyl substances (PFAS) are a broad class of synthetic compounds that have fluorine substituted for hydrogen in several or all locations and are globally categorized as PFCs (perfluorochemicals; commonly called fluorinated chemicals). These compounds have unique chemical and physical properties that enable their use in non-stick surfaces, fire-fighting efforts, and as slick coatings. However, recent concerns over the health effects of such compounds, specifically perfluorooctanoic acid and perfluorooctane sulfonic acid (PFOA, PFOS; PFOA/S), have led to increased attention and research by the global community into degradation methods. In this study, soil samples from PFAS-contamination sites were cultured and screened for microbes with PFOA/S degradation potential, which led to the identification of Delftia acidovorans. It was found that D. acidovorans isolated from PFAS-contaminated soils was capable of growth in minimal media with PFOA as a sole carbon resource, and an observable fluoride concentration increase was observed when cells were exposed to PFOA. This suggests potential activity of a dehalogenase enzyme that may be of use in PFOA or PFAS microbial remediation efforts. Several associated haloacid dehalogenases have been identified in the D. acidovorans genome and have been engineered for expression in Escherichia coli for rapid production and purification. These enzymes have shown potential for enzymatic defluorination, a significant step in biological degradation and removal of PFOA/S from the environment. We hypothesize that bioremediation of PFAS using naturally occurring microbial degradation pathways may represent a novel approach to remove PFAS contamination.
Collapse
Affiliation(s)
- Jackson D. Harris
- Department of Biochemistry, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Collin M. Coon
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Megan E. Doherty
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Eamon A. McHugh
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Margaret C. Warner
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Conley L. Walters
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Olivia M. Orahood
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Abigail E. Loesch
- Department of Civil Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - David C. Hatfield
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - John C. Sitko
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Erin A. Almand
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| | - J. Jordan Steel
- Department of Biology, United Stated Air Force Academy, Colorado Springs, CO, 80840, USA
| |
Collapse
|
9
|
Mazur A, Grinkevich P, Chaloupkova R, Havlickova P, Kascakova B, Kuty M, Damborsky J, Kuta Smatanova I, Prudnikova T. Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA. Int J Mol Sci 2021; 22:ijms222111992. [PMID: 34769421 PMCID: PMC8584953 DOI: 10.3390/ijms222111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 Å resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies.
Collapse
Affiliation(s)
- Andrii Mazur
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (R.C.); (J.D.)
- Enantis Ltd., Kamenice 771/34, 625 00 Brno, Czech Republic
| | - Petra Havlickova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
| | - Barbora Kascakova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
| | - Michal Kuty
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (R.C.); (J.D.)
- International Clinical Research Center, St Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
- Correspondence: (I.K.S.); (T.P.)
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic; (A.M.); (P.G.); (P.H.); (B.K.); (M.K.)
- Correspondence: (I.K.S.); (T.P.)
| |
Collapse
|
10
|
Wang Y, Xiang Q, Zhou Q, Xu J, Pei D. Mini Review: Advances in 2-Haloacid Dehalogenases. Front Microbiol 2021; 12:758886. [PMID: 34721367 PMCID: PMC8554231 DOI: 10.3389/fmicb.2021.758886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that catalyze the cleavage of carbon-halogen bonds in 2-haloalkanoic acids, releasing halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of particular interest in environmental remediation and environmentally friendly synthesis of optically pure chiral compounds due to their ability to degrade a wide range of halogenated compounds with astonishing efficiency for enantiomer resolution. The 2-haloacid dehalogenases have been extensively studied with regard to their biochemical characterization, protein crystal structures, and catalytic mechanisms. This paper comprehensively reviews the source of isolation, classification, protein structures, reaction mechanisms, biochemical properties, and application of 2-haloacid dehalogenases; current trends and avenues for further development have also been included.
Collapse
Affiliation(s)
- Yayue Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Xiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
11
|
Khan RT, Musil M, Stourac J, Damborsky J, Bednar D. Fully Automated Ancestral Sequence Reconstruction using FireProt ASR. Curr Protoc 2021; 1:e30. [PMID: 33524240 DOI: 10.1002/cpz1.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein evolution and protein engineering techniques are of great interest in basic science and industrial applications such as pharmacology, medicine, or biotechnology. Ancestral sequence reconstruction (ASR) is a powerful technique for probing evolutionary relationships and engineering robust proteins with good thermostability and broad substrate specificity. The following protocol describes the setting up and execution of an automated FireProtASR workflow using a dedicated web site. The service allows for inference of ancestral proteins automatically, from a single protein sequence. Once a protein sequence is submitted, the server will build a dataset of homology sequences, perform a multiple sequence alignment (MSA), build a phylogenetic tree, and reconstruct ancestral nodes. The protocol is also highly flexible and allows for multiple forms of input, advanced settings, and the ability to start jobs from: (i) a single sequence, (ii) a set of homologous sequences, (iii) an MSA, and (iv) a phylogenetic tree. This approach automates all necessary steps and offers a way for novices with limited exposure to ASR techniques to improve the properties of a protein of interest. The technique can even be used to introduce catalytic promiscuity into an enzyme. A web server for accessing the fully automated workflow is freely accessible at https://loschmidt.chemi.muni.cz/fireprotasr/. © 2021 Wiley Periodicals LLC. Basic Protocol: ASR using the Web Server FireProtASR.
Collapse
Affiliation(s)
- Rayyan Tariq Khan
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
12
|
Spence MA, Kaczmarski JA, Saunders JW, Jackson CJ. Ancestral sequence reconstruction for protein engineers. Curr Opin Struct Biol 2021; 69:131-141. [PMID: 34023793 DOI: 10.1016/j.sbi.2021.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
In addition to its value in the study of molecular evolution, ancestral sequence reconstruction (ASR) has emerged as a useful methodology for engineering proteins with enhanced properties. Proteins generated by ASR often exhibit unique or improved activity, stability, and/or promiscuity, all of which are properties that are valued by protein engineers. Comparison between extant proteins and evolutionary intermediates generated by ASR also allows protein engineers to identify substitutions that have contributed to functional innovation or diversification within protein families. As ASR becomes more widely adopted as a protein engineering approach, it is important to understand the applications, limitations, and recent developments of this technique. This review highlights recent exemplifications of ASR, as well as technical aspects of the reconstruction process that are relevant to protein engineering.
Collapse
Affiliation(s)
- Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jake W Saunders
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|