1
|
Lin C, Ye J, Xu C, Zheng Y, Xu Y, Chen Y, Chi L, Lin J, Li F, Lin Y, Wang Q. Evaluating lactate metabolism for prognostic assessment and therapy response prediction in gastric cancer with emphasis on the oncogenic role of SLC5A12. Biochim Biophys Acta Gen Subj 2025; 1869:130739. [PMID: 39672477 DOI: 10.1016/j.bbagen.2024.130739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Gastric cancer remains a common malignancy with poor prognosis. While lactate metabolism is recognized as a significant factor in tumor progression, its potential as a predictive tool for treatment response remains unexplored. This study introduces a novel Lactate-Related Gene Signature (LRGS) designed to predict both survival outcomes and therapy responses in gastric cancer patients. METHODS We comprehensively analyzed 335 lactate-related genes from 11 metabolic pathways using MSigDB, identifying 278 differentially expressed genes between gastric cancer and normal tissues. Employing the LASSO Cox regression model, we developed an innovative LRGS formula based on the expression of 16 key lactate-related genes. The impact of Solute Carrier Family 5 Member 12 (SLC5A12), a gene of particular interest, on gastric cancer cell functions was evaluated using in vitro assays and an in vivo zebrafish model. RESULTS Our newly established LRGS demonstrated robust capability in stratifying gastric cancer patients by survival risk. Notably, the LRGS-low subtype showed significantly improved overall and disease-free survival rates compared to the LRGS-high subtype. A key finding was LRGS's ability to predict patient responses to both adjuvant chemotherapy and immunotherapy. Random forest analysis identified SLC5A12 as the most significant gene differentiating gastric cancer from normal tissues. Functional experiments confirmed SLC5A12's role in promoting gastric cancer cell proliferation, invasion, and migration both in vitro and in vivo. CONCLUSION The LRGS is a dependable and efficient prognostic tool for assessing the survival outcomes in individuals with gastric cancer, as well as a predictor of patient response to adjuvant chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Chenyi Lin
- Department of Gastroenterology, Putian Hanjiang Hospital, Putian, Fujian Province 351100, China
| | - Jianjian Ye
- Interventional Vascular Surgery, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian Province 353000, China
| | - Chao Xu
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province 350000, China
| | - Ying Zheng
- Department of Obstetrics, Fuzhou Second Hospital, Fuzhou, Fujian Province 350000, China
| | - Yining Xu
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350000, China
| | - Yuluo Chen
- Fujian Normal University, Fuzhou, Fujian Province 350000, China
| | - Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province 350000, China.
| | - Jia Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350000, China.
| | - Feng Li
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province 350000, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350000, China.
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province 350000, China.
| |
Collapse
|
2
|
Su J, Chen S, Yang S, Deng Z. RNA-binding proteins regulate osteoarthritis via RNA metabolism regulation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1973-1982. [PMID: 40195670 PMCID: PMC11975523 DOI: 10.11817/j.issn.1672-7347.2024.240261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 04/09/2025]
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of the skeletal system and muscular system, and its pathogenesis remains unclear, leading to a lack of effective therapeutic strategies. Ribonucleic acid binding proteins (RBP), as key regulators of post-transcriptional processes, can specifically bind to targeted ribonucleic acids (RNA) and modulate their function and fate. By regulating various aspects of RNA metabolism, including transcription, splicing, modification, stabilization, and translation, RBPs influence the onset and progression of OA. Exploring the regulatory mechanisms of RBPs under physiological and pathological conditions, elucidating the role of RBPs in the occurrence and development of OA, and discussing current challenges and future directions in RBPs research, hold significant importance for the treatment of OA by targeting RBPs.
Collapse
Affiliation(s)
- Jingyue Su
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001.
- Department of Sports Medicine, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen Guangdong 518035, China.
| | - Siyu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001
| | - Shengwu Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang 325000
| | - Zhenhan Deng
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530001.
- Department of Orthopaedic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang 325000.
- Department of Sports Medicine, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen Guangdong 518035, China.
| |
Collapse
|
3
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
4
|
Ye Y, Zhang X, Wang C, Huang Y, Xu L, Liu H, Li K, Liu N, Wang Q, Zhang T, Assaraf YG, Lin Y. DAPK enhances DDX20 protein stability via suppression of TRIM25-mediated ubiquitination-based DDX20 degradation. Cancer Cell Int 2024; 24:382. [PMID: 39558224 PMCID: PMC11575006 DOI: 10.1186/s12935-024-03567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
We have previously found that the DAPK-DDX20 signaling axis exerts an anti-cancer activity in hepatocellular carcinoma (HCC) by inhibiting the GTPase activity of CDC42, thereby reducing the invasive and migratory capabilities of cancer cells without affecting cell proliferation. DDX20 serves as an intermediate protein regulated by DAPK in the control of CDC42. Specifically, DAPK enhances DDX20 protein levels by suppressing DDX20 degradation. However, the mechanism underlying DAPK regulation of DDX20 remains unclear. In the current study, we discovered that DDX20 is degraded through the ubiquitin-proteasome pathway and identified TRIM25 as the E3 ubiquitin ligase of DDX20. TRIM25 mediates the proteasomal degradation of DDX20 by binding to, and ubiquitinating the 1-244 amino acid region of DDX20. Moreover, DAPK interacts with this 1-244 segment of DDX20, inhibiting its ubiquitination and enhancing its stability, despite the lack of direct physical interaction between DAPK and the 1-244 region of DDX20. Remarkably, DAPK, TRIM25, and DDX20 form a ternary protein complex in cells, and knockdown of TRIM25 leads to a reduction in the cellular levels of the binary DAPK-DDX20 complex, suggesting that TRIM25 acts as an important intermediate protein linking DAPK and DDX20. TRIM25 functions as an oncogene in liver cancer, as shRNA-mediated silencing of TRIM25 inhibits cell migration and invasion. Therefore, these novel findings of the interaction among these three proteins not only enhances our knowledge of the downstream molecular network of DAPK and its possible role in the development of HCC, but also provides potential druggable targets for the future development of novel anticancer drug therapeutics.
Collapse
Affiliation(s)
- Yan Ye
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China
- Ganzhou Key Laboratory of Molecular Medicine, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi, China
| | - Xiuli Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China
| | - Chenyi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yide Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Luyun Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Hongxia Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ke Li
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Nannan Liu
- Department of Central Laboratory, Fuzhou Second Hospital, Fuzhou, 350007, Fujian, China
| | - Qingshui Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China.
| | - Tao Zhang
- Department of Central Laboratory, Fuzhou Second Hospital, Fuzhou, 350007, Fujian, China.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Yao Lin
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
5
|
Zhang Y, Yang Y, Kuang S, Zhang Y, Qin H, Xie J. GPX3-Mediated Oxidative Stress Affects Pyrimidine Metabolism Levels in Stomach Adenocarcinoma via the AMPK/mTOR Pathway. Int J Clin Pract 2024; 2024:6875417. [PMID: 38322113 PMCID: PMC10846926 DOI: 10.1155/2024/6875417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Background Amino acid metabolism, including ATP production, nucleotide synthesis, and redox homeostatic processes, are associated with proliferation and differentiation of tumor cells. This study aimed to identify novel prognostic biomarkers and potential therapeutic targets of amino acid metabolism-related genes for stomach adenocarcinoma (STAD). Methods RNA sequencing transcriptome data in the TCGA-STAD (training set) and GTEx datasets (validation set) were used. The LIMMA R program enabled the differentially expressed amino acid metabolism-related genes (AAMRGs) to be found. A prognostic risk score model based on clinical phenotypic features was built using LASSO regression and step multi-Cox analyses. Gene set enrichment analysis (GSEA) was used to find potential molecular pathways associated with STAD. Hierarchical cluster analysis was used to evaluate pyrimidine metabolism. Cultured STAD cells assessed the proliferation of STAD and upregulation of GPX3 expression by CCK8 and flow cytometry. Transwell and wound healing assays assessed the impact of GPX3 on invasion and migration of STAD cells. Western blot and qRT-PCR were used to measure changes in pyrimidine metabolism-related markers and active molecules involved in the AMPK/mTOR signaling pathway. Results Three AAMRGs, DNMT1, F2R, and GPX3, could independently predict the course of STAD. Pyrimidine metabolism appeared to be significantly associated with these by GSEA and clustering analyses. Pyrimidine metabolism was negatively correlated with GPX3. Functional studies using an overexpressed GPX3 plasmid showed an enhanced migration and invasion of STAD cells as well as the expression of genes associated with pyrimidine metabolism and the AMPK/mTOR signaling pathway. By using a CAD siRNA, it was found that that GPX3 affected 5-fluorouracil resistance during de novo synthesis of pyrimidine through the CAD-UMPS signaling axis. Conclusions GPX3 which regulates the level of pyrimidine metabolism through the AMPK/mTOR pathway was found to be closely associated with STAD. Our findings demonstrate GPX3 is a reliable biomarker for the prognosis of amino acid metabolism and a probable target for STAD therapy.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Yixin Yang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Shanshan Kuang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Yang Zhang
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| | - Hancheng Qin
- Department of Pathophysiology, Youjiang Medical University for Nationalities, Baise, China
| | - Jisheng Xie
- Department of Histology and Embryology, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Zhang M, Shui X, Zheng X, Lee JE, Mei Y, Li R, Tian Y, Zheng X, Wang Q, Wang L, Chen D, Zhang T, Kim BM, Kim J, Lee TH. Death-associated protein kinase 1 phosphorylates MDM2 and inhibits its protein stability and function. Arch Pharm Res 2023; 46:882-896. [PMID: 37804415 DOI: 10.1007/s12272-023-01469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Breast cancer is one of the major malignancies in women, and most related deaths are due to recurrence, drug resistance, and metastasis. The expression of the mouse double minute 2 (MDM2) oncogene is upregulated in breast cancer; however, its regulatory mechanism has yet to be fully elucidated. Herein, we identified the tumor suppressor death-associated protein kinase 1 (DAPK1) as a novel MDM2 regulator by unbiased peptide library screening. DAPK1 is directly bound to MDM2 and phosphorylates it at Thr419. DAPK1-mediated MDM2 phosphorylation promoted its protein degradation via the ubiquitin-proteasome pathway, resulting in upregulated p53 expression. DAPK1 overexpression, but not its kinase activity-deficient form, decreased colony formation and increased doxorubicin-induced cell death; however, DAPK1 knockdown produced the opposite effects in human breast cancer cells. In a xenograft tumorigenesis assay, DAPK1 overexpression significantly reduced tumor formation, whereas inhibition of DAPK1 kinase activity reduced its antitumorigenic effect. Finally, DAPK1 expression was negatively correlated with MDM2 levels in human breast cancer tissues. Thus, these results suggest that DAPK1-mediated MDM2 phosphorylation and its protein degradation may contribute to its antitumorigenic function in breast cancer.
Collapse
Affiliation(s)
- Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xiaoqing Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Jong Eun Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Xiuzhi Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Quling Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., Uiwang-si, Republic of Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
7
|
He L, Yang J, Hao Y, Yang X, Shi X, Zhang D, Zhao D, Yan W, Bie X, Chen L, Chen G, Zhao S, Liu X, Zheng H, Zhang K. DDX20: A Multifunctional Complex Protein. Molecules 2023; 28:7198. [PMID: 37894677 PMCID: PMC10608988 DOI: 10.3390/molecules28207198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Siyue Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
8
|
Raque M, Raev SA, Guo Y, Kick MK, Saif LJ, Vlasova AN. Host Cell Response to Rotavirus Infection with Emphasis on Virus-Glycan Interactions, Cholesterol Metabolism, and Innate Immunity. Viruses 2023; 15:1406. [PMID: 37515094 PMCID: PMC10385841 DOI: 10.3390/v15071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.
Collapse
Affiliation(s)
- Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Yusheng Guo
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| |
Collapse
|
9
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
10
|
Wang Q, Weng S, Sun Y, Lin Y, Zhong W, Kwok HF, Lin Y. High DAPK1 Expression Promotes Tumor Metastasis of Gastric Cancer. BIOLOGY 2022; 11:biology11101488. [PMID: 36290392 PMCID: PMC9598723 DOI: 10.3390/biology11101488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Gastric cancer (GC) is a common upper gastrointestinal tumor. Death-associated protein kinase (DAPK1) was found to participate in the development of various malignant tumors. However, there are few reports on DAPK1 in gastric cancer. In this study, the TCGA and GEO datasets were used to explore the expression and role of DAPK1 in gastric cancer. The functions of DAPK1 in gastric cancer were determined by proliferation, migration and invasion assays. In addition, genes co-expressed with DAPK1 in gastric cancer were estimated through the WGCNA and correlation analysis. A DAPK1-related gene prognostic model was constructed using the Cox regression and lasso analyses. The expression of DAPK1 was significantly up-regulated in gastric cancer tissues. Kaplan-Meier analysis showed that low expression of DAPK1 was a favorable prognostic factor of overall survival and disease-free survival for gastric cancer patients. Functional experiments demonstrated that DAPK1 can promote the migration and invasion of gastric cancer cells. WGCNA, correlation analysis, Cox regression, and lasso analyses were applied to construct the DAPK1-related prognostic model. The prognostic value of this prognostic model of DAPK1-related genes was further successfully validated in an independent database. Our results indicated that DAPK1 can promote gastric cancer cell migration and invasion and established four DAPK1-related signature genes for gastric cancer that could independently predict the survival of GC patients.
Collapse
Affiliation(s)
- Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350001, China
| | - Shuyun Weng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350001, China
| | - Yuqin Sun
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350001, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350001, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
- Correspondence: (H.F.K.); (Y.L.)
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
- Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
- Correspondence: (H.F.K.); (Y.L.)
| |
Collapse
|
11
|
A Macrophage Differentiation-Mediated Gene: DDX20 as a Molecular Biomarker Encompassing the Tumor Microenvironment, Disease Staging, and Prognoses in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9971776. [PMID: 36246406 PMCID: PMC9556188 DOI: 10.1155/2022/9971776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Background DDX20 involves the mechanism of cell proliferate, mitogenic Ets transcriptional suppressor (METS), which can arrest the cell cycle of macrophages. However, little is known about DDX20 expression, clinical values, and the relationship with tumor microenvironment in HCC. Methods We mined the transcriptional, protein expression and survival data of DDX20 in HCC from online databases. The immunological effects of DDX20 were estimated by bioinformatic algorithms. The RNAi and CRISPR screening were used to assess the gene effect of DDX20 for the EGFR gene in liver tumor cell. Results We found that the DDX20 was highly expressed in HCC. The qRT-PCR result shows a significantly upregulated DDX20 expression in HCC samples from the West China Hospital. The high mRNA expression of DDX20 is associated with a poor survival. DDX20 expression is positively correlated with MDSCs in HCC tissues. Moreover, DDX20 has a high predicted ability for the response to immunotherapy. Furthermore, hsa-mir-324-5p could regulate the macrophage differentiation by interacting with DDX20. Meanwhile, the EGFR gene gets a high dependency score for DDX20. Conclusion In sum, DDX20 may serve as a prognostic marker for worse clinical outcomes with HCC and potentially enable more precise and personalized immunotherapeutic strategies in the future.
Collapse
|
12
|
Wang J, Wang Y, Wang J, Zhang S, Yu Z, Zheng K, Fu Z, Wang C, Huang W, Chen J. DEAD-box helicase 56 functions as an oncogene promote cell proliferation and invasion in gastric cancer via the FOXO1/p21 Cip1/c-Myc signaling pathway. Bioengineered 2022; 13:13970-13985. [PMID: 35723050 PMCID: PMC9275944 DOI: 10.1080/21655979.2022.2084235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
DEAD-box helicase (DDX) family exerts a critical effect on cancer initiation and progression through alternative splicing, transcription and ribosome biogenesis. Increasing evidence has demonstrated that DEAD-box helicase 56 (DDX56) is over-expressed in several cancers, which plays an oncogenic role. Till the present, the impact of DDX56 on gastric cancer (GC) remains unclear. We conducted high-throughput sequencing (RNA-seq) to demonstrate aberrant DDX56 levels within 10 GC and matched non-carcinoma tissue samples. DDX56 levels were detected through qRT-PCR, western blotting (WB) and immunochemical staining in GC patients. We conducted gain- and loss-of-function studies to examine DDX56's biological role in GC development. In vitro, we carried out 5‑Ethynyl‑2‑deoxyuridine (EdU), scratch, Transwell, and flow cytometry (FCM) assays for detecting GC cell growth, invasion, migration and apoptosis. Additionally, gene set enrichment analysis (GSEA), WB assay, and Encyclopedia of RNA Interactomes (ENCORI) were carried out for analyzing DDX56-regulated downstream genes and signaling pathways. In vivo, tumor xenograft experiment was performed for investigating how DDX56 affected GC development within BALB/c nude mice. Functionally, DDX56 knockdown arrested cell cycle at G1 phase, invasion and migration of AGS and MKN28 cells, and enhanced their apoptosis. Ectopic DDX56 expression enhanced the cell growth, migration and invasion, and inhibited apoptosis. Knockdown of DDX56 suppressed GC growth in the tumor models of BALB/c nude mice. Mechanistically, DDX56 post-transcriptionally suppressed FOXO1/p21 Cip1 protein expression, which could activate its downstream cyclin E1/CDK2/c-Myc signaling pathways. This sheds lights on the GC pathogenic mechanism and offers a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junfu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Congjun Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Zhuang H, Fan X, Ji D, Wang Y, Fan J, Li M, Ni D, Lu S, Li X, Chai Z. Elucidation of the conformational dynamics and assembly of Argonaute-RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Comput Struct Biotechnol J 2022; 20:1352-1365. [PMID: 35356544 PMCID: PMC8933676 DOI: 10.1016/j.csbj.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Argonaute (AGO) proteins, the core of RNA-induced silencing complex, are guided by microRNAs (miRNAs) to recognize target RNA for repression. The miRNA-target RNA recognition forms initially through pairing at the seed region while the additional supplementary pairing can enhance target recognition and compensate for seed mismatch. The extension of miRNA lengths can strengthen the target affinity when pairing both in the seed and supplementary regions. However, the mechanism underlying the effect of the supplementary pairing on the conformational dynamics and the assembly of AGO-RNA complex remains poorly understood. To address this, we performed large-scale molecular dynamics simulations of AGO-RNA complexes with different pairing patterns and miRNA lengths. The results reveal that the additional supplementary pairing can not only strengthen the interaction between miRNA and target RNA, but also induce the increased plasticity of the PAZ domain and enhance the domain connectivity among the PAZ, PIWI, N domains of the AGO protein. The strong community network between these domains tightens the mouth of the supplementary chamber of AGO protein, which prevents the escape of target RNA from the complex and shields it from solvent water attack. Importantly, the inner stronger matching pairs between the miRNA and target RNA can compensate for weaker mismatches at the edge of supplementary region. These findings provide guidance for the design of miRNA mimics and anti-miRNAs for both clinical and experimental use and open the way for further engineering of AGO proteins as a new tool in the field of gene regulation.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaohua Fan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yuanhao Wang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai 201104, China
| |
Collapse
|
14
|
Zhang J, Zhang H, Wang Y, Wang Q. MCM2-7 in Clear Cell Renal Cell Carcinoma: MCM7 Promotes Tumor Cell Proliferation. Front Oncol 2021; 11:782755. [PMID: 34993142 PMCID: PMC8724441 DOI: 10.3389/fonc.2021.782755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. Finding more therapeutic targets for advanced ccRCC is an urgent mission. The minichromosome maintenance proteins 2-7 (MCM2-7) protein forms a stable heterohexamer and plays an important role in DNA replication in eukaryotic cells. In the study, we provide a comprehensive study of MCM2-7 genes expression and their potential roles in ccRCC. Methods The expression and prognosis of the MCM2-7 genes in ccRCC were analyzed using data from TCGA, GEO and ArrayExpress. MCM2-7 related genes were identified by weighted co-expression network analysis (WGCNA) and Metascape. CancerSEA and GSEA were used to analyze the function of MCM2–7 genes in ccRCC. The gene effect scores (CERES) of MCM2-7, which reflects carcinogenic or tumor suppressor, were obtained from DepMap. We used clinical and expression data of MCM2-7 from the TCGA dataset and the LASSO Cox regression analysis to develop a risk score to predict survival of patients with ccRCC. The correlations between risk score and other clinical indicators such as gender, age and stage were also analyzed. Further validation of this risk score was engaged in another cohort, E-MTAB-1980 from the ArrayExpress dataset. Results The mRNA and protein expression of MCM2-7 were increased in ccRCC compared with normal tissues. High MCM2, MCM4, MCM6 and MCM7 expression were associated with a poor prognosis of ccRCC patients. Functional enrichment analysis revealed that MCM2-7 might influence the progress of ccRCC by regulating the cell cycle. Knockdown of MCM7 can inhibit the proliferation of ccRCC cells. A two-gene risk score including MCM4 and MCM6 can predict overall survival (OS) of ccRCC patients. The risk score was successfully verified by further using Arrayexpress cohort. Conclusion We analyze MCM2-7 mRNA and protein levels in ccRCC. MCM7 is determined to promote tumor proliferation. Meanwhile, our study has determined a risk score model composed of MCM2-7 can predict the prognosis of ccRCC patients, which may help future treatment strategies.
Collapse
Affiliation(s)
- Junneng Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| | - Huanzong Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yinghui Wang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Qingshui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| |
Collapse
|
15
|
Lin Y, Wang Q, Lin Y, Jiang M, Xiao H, Zhang J, Guo R, Kang S, Lin Y, Song C. An immunohistochemical panel of three small ubiquitin-like modifier genes predicts outcomes of patients with triple-negative breast cancer. Gland Surg 2021; 10:1067-1084. [PMID: 33842251 DOI: 10.21037/gs-21-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease. Developing new candidate biomarkers for chemotherapy response and possible therapeutic targets has become an urgent clinical need. Small ubiquitin-like modifiers (SUMOs) mediate post-translational modifications (SUMOylation) has been shown to be involved in numerous biological processes. However, the role of SUMOylation in TNBC has yet to be elucidated. Method The mRNA expression of SUMO1/2/3 was analyzed by the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO) databases (N=412). We also evaluated the SUMO1/2/3 protein expression in 212 TNBC patients using immunohistochemical (IHC) staining method. A classifier with Least absolute shrinkage and selection operator (LASSO) Cox regression model was then built based on the associations between the expression of SUMO1/2/3 proteins and the disease-free survival (DFS) of TNBC patients. Results Elevated SUMO1/2/3 levels were indicated to be associated with a poorer overall survival (OS) and DFS for TNBC patients. With the LASSO model, we built a classifier based on the IHC scores of SUMO1/2/3 proteins and named it the 'SB classifier'. Patients with SB classifier-defined high score were found to have an unfavorable response to chemotherapy [hazard ratio (HR) 4.04, 95% confidence interval (CI): 2.14-7.63; P<0.0001]. A nomogram was then developed to identify which patients might benefit from chemotherapy. Finally, our results also suggested that the activation of SUMOylation pathway in TNBC might be induced by MYC signaling. Conclusions We constructed a reliable prognostic and predictive tool for TNBC patients treated with chemotherapy, which could facilitate individualized counseling and management.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Fujian Provincial Key Laboratory of Hepatic Drug Research, Fuzhou, China
| | - Yingying Lin
- Department of Healthcare, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meichen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Rongrong Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| |
Collapse
|