1
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Tao W, Sun Q, Xu B, Wang R. Towards the Prediction of Responses to Cancer Immunotherapy: A Multi-Omics Review. Life (Basel) 2025; 15:283. [PMID: 40003691 PMCID: PMC11856636 DOI: 10.3390/life15020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor treatment has undergone revolutionary changes with the development of immunotherapy, especially immune checkpoint inhibitors. Because not all patients respond positively to immune therapeutic agents, and severe immune-related adverse events (irAEs) are frequently observed, the development of the biomarkers evaluating the response of a patient is key for the application of immunotherapy in a wider range. Recently, various multi-omics features measured by high-throughput technologies, such as tumor mutation burden (TMB), gene expression profiles, and DNA methylation profiles, have been proved to be sensitive and accurate predictors of the response to immunotherapy. A large number of predictive models based on these features, utilizing traditional machine learning or deep learning frameworks, have also been proposed. In this review, we aim to cover recent advances in predicting tumor immunotherapy response using multi-omics features. These include new measurements, research cohorts, data sources, and predictive models. Key findings emphasize the importance of TMB, neoantigens, MSI, and mutational signatures in predicting ICI responses. The integration of bulk and single-cell RNA sequencing has enhanced our understanding of the tumor immune microenvironment and enabled the identification of predictive biomarkers like PD-L1 and IFN-γ signatures. Public datasets and machine learning models have also improved predictive tools. However, challenges remain, such as the need for large and diverse clinical datasets, standardization of multi-omics data, and model interpretability. Future research will require collaboration among researchers, clinicians, and data scientists to address these issues and enhance cancer immunotherapy precision.
Collapse
Affiliation(s)
- Weichu Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Qian Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| |
Collapse
|
3
|
Liu YX, Song JL, Li XM, Lin H, Cao YN. Identification of target genes co-regulated by four key histone modifications of five key regions in hepatocellular carcinoma. Methods 2024; 231:165-177. [PMID: 39349287 DOI: 10.1016/j.ymeth.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with high morbidity and mortality. Studies have shown that histone modification plays an important regulatory role in the occurrence and development of HCC. However, the specific regulatory effects of histone modifications on gene expression in HCC are still unclear. This study focuses on HepG2 cell lines and hepatocyte cell lines. First, the distribution of histone modification signals in the two cell lines was calculated and analyzed. Then, using the random forest algorithm, we analyzed the effects of different histone modifications and their modified regions on gene expression in the two cell lines, four key histone modifications (H3K36me3, H3K4me3, H3K79me2, and H3K9ac) and five key regions that co-regulate gene expression were obtained. Subsequently, target genes regulated by key histone modifications in key regions were screened. Combined with clinical data, Cox regression analysis and Kaplan-Meier survival analysis were performed on the target genes, and four key target genes (CBX2, CEBPZOS, LDHA, and UMPS) related to prognosis were identified. Finally, through immune infiltration analysis and drug sensitivity analysis of key target genes, the potential role of key target genes in HCC was confirmed. Our results provide a theoretical basis for exploring the occurrence of HCC and propose potential biomarkers associated with histone modifications, which may be potential drug targets for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yu-Xian Liu
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jia-Le Song
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Ming Li
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan-Ni Cao
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
4
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
5
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Du P, Chen Y, Li Q, Gai Z, Bai H, Zhang L, Liu Y, Cao Y, Zhai Y, Jin W. CancerMHL: the database of integrating key DNA methylation, histone modifications and lncRNAs in cancer. Database (Oxford) 2024; 2024:baae029. [PMID: 38613826 PMCID: PMC11015892 DOI: 10.1093/database/baae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
The discovery of key epigenetic modifications in cancer is of great significance for the study of disease biomarkers. Through the mining of epigenetic modification data relevant to cancer, some researches on epigenetic modifications are accumulating. In order to make it easier to integrate the effects of key epigenetic modifications on the related cancers, we established CancerMHL (http://www.positionprediction.cn/), which provide key DNA methylation, histone modifications and lncRNAs as well as the effect of these key epigenetic modifications on gene expression in several cancers. To facilitate data retrieval, CancerMHL offers flexible query options and filters, allowing users to access specific key epigenetic modifications according to their own needs. In addition, based on the epigenetic modification data, three online prediction tools had been offered in CancerMHL for users. CancerMHL will be a useful resource platform for further exploring novel and potential biomarkers and therapeutic targets in cancer. Database URL: http://www.positionprediction.cn/.
Collapse
Affiliation(s)
- Pengyu Du
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Zhimin Gai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Luqiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuxian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yanni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuanyuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| |
Collapse
|
7
|
Jeon AJ, Anene-Nzelu CG, Teo YY, Chong SL, Sekar K, Wu L, Chew SC, Chen J, Kendarsari RI, Lai H, Ling WH, Kaya NA, Lim JQ, Chung AYF, Cheow PC, Kam JH, Madhavan K, Kow A, Ganpathi IS, Lim TKH, Leow WQ, Loong S, Loh TJ, Wan WK, Soon GST, Pang YH, Yoong BK, Bee-Lan Ong D, Lim J, de Villa VH, dela Cruz RD, Chanwat R, Thammasiri J, Bonney GK, Goh BK, Foo RSY, Chow PKH. A genomic enhancer signature associates with hepatocellular carcinoma prognosis. JHEP Rep 2023; 5:100715. [PMID: 37168287 PMCID: PMC10165154 DOI: 10.1016/j.jhepr.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 05/13/2023] Open
Abstract
Background & Aims Lifestyle and environmental-related exposures are important risk factors for hepatocellular carcinoma (HCC), suggesting that epigenetic dysregulation significantly underpins HCC. We profiled 30 surgically resected tumours and the matched adjacent normal tissues to understand the aberrant epigenetic events associated with HCC. Methods We identified tumour differential enhancers and the associated genes by analysing H3K27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) and Hi-C/HiChIP data from the resected tumour samples of 30 patients with early-stage HCC. This epigenome dataset was analysed with previously reported genome and transcriptome data of the overlapping group of patients from the same cohort. We performed patient-specific differential expression testing using multiregion sequencing data to identify genes that undergo both enhancer and gene expression changes. Based on the genes selected, we identified two patient groups and performed a recurrence-free survival analysis. Results We observed large-scale changes in the enhancer distribution between HCC tumours and the adjacent normal samples. Many of the gain-in-tumour enhancers showed corresponding upregulation of the associated genes and vice versa, but much of the enhancer and gene expression changes were patient-specific. A subset of the upregulated genes was activated in a subgroup of patients' tumours. Recurrence-free survival analysis revealed that the patients with a more robust upregulation of those genes showed a worse prognosis. Conclusions We report the genomic enhancer signature associated with differential prognosis in HCC. Findings that cohere with oncofoetal reprogramming in HCC were underpinned by genome-wide enhancer rewiring. Our results present the epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or disease prognostication in HCC. Impact and Implications Lifestyle and environmental-related exposures are the important risk factors of hepatocellular carcinoma (HCC), suggesting that tumour-associated epigenetic dysregulations may significantly underpin HCC. We profiled tumour tissues and their matched normal from 30 patients with early-stage HCC to study the dysregulated epigenetic changes associated with HCC. By also analysing the patients' RNA-seq and clinical data, we found the signature genes - with epigenetic and transcriptomic dysregulation - associated with worse prognosis. Our findings suggest that systemic approaches are needed to consider the surrounding cellular environmental and epigenetic changes in HCC tumours.
Collapse
Affiliation(s)
- Ah-Jung Jeon
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| | - Yue-Yang Teo
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Shay Lee Chong
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Karthik Sekar
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Lingyan Wu
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Sin-Chi Chew
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Raden Indah Kendarsari
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Hannah Lai
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Wen Huan Ling
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
| | - Neslihan Arife Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Alexander Yaw Fui Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Peng-Chung Cheow
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Alfred Kow
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Shihleone Loong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tracy Jiezhen Loh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wei Keat Wan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | - Yin Huei Pang
- Department of Pathology, National University Hospital, Singapore
| | - Boon Koon Yoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanessa H. de Villa
- Department of Surgery and Center for Liver Health and Transplantation, The Medical City, Pasig City, Philippines
| | - Rouchelle D. dela Cruz
- Department of Laboratory Medicine and Pathology, The Medical City, Pasig City, Philippines
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok, Thailand
| | | | - Glenn K. Bonney
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Brian K.P. Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Singapore
- Department of Hepatopancreatobiliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore
- Corresponding author. Address: National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore. Tel.: +65-63065424.
| |
Collapse
|
8
|
Luo S, Jia Y, Zhang Y, Zhang X. A transcriptomic intratumour heterogeneity-free signature overcomes sampling bias in prognostic risk classification for hepatocellular carcinoma. JHEP Rep 2023; 5:100754. [PMID: 37234275 PMCID: PMC10206488 DOI: 10.1016/j.jhepr.2023.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Background & Aims Intratumour heterogeneity (ITH) fosters the vulnerability of RNA expression-based biomarkers derived from a single biopsy to tumour sampling bias, and is regarded as an unaddressed confounding factor for patient precision stratification using molecular biomarkers. This study aimed to identify an ITH-free predictive biomarker in hepatocellular carcinoma (HCC). Methods We interrogated the confounding effect of ITH on performance of molecular biomarkers and quantified transcriptomic heterogeneity utilising three multiregional HCC transcriptome datasets involving 142 tumoural regions from 30 patients. A de novo strategy based on the heterogeneity metrics was devised to develop a surveillant biomarker (a utility gadget using RNA; AUGUR) using three datasets involving 715 liver samples from 509 patients with HCC. The performance of AUGUR was assessed in seven cross-platform HCC cohorts that encompassed 1,206 patients. Results An average discordance rate of 39.9% at the level of individual patients was observed applying 13 published prognostic signatures to classify tumour regions. We partitioned genes into four heterogeneity quadrants, from which we developed and validated a reproducible robust ITH-free expression signature AUGUR that showed significant positive associations with adverse features of HCC. High AUGUR risk increased the risk of disease progression and mortality independent of established clinicopathological indices, which maintained concordance across seven cohorts. Moreover, AUGUR compared favourably to the discriminative ability, prognostic accuracy, and patient risk concordant rates of 13 published signatures. Finally, a well-calibrated predictive nomogram integrating AUGUR and tumour-node-metastasis (TNM) stage was established, which generated a numerical probability of mortality. Conclusions We constructed and validated an ITH-free AUGUR and nomogram that overcame sampling bias and provided reliable prognostic information for patients with HCC. Impact and Implications Intratumour heterogeneity (ITH) is prevalent in hepatocellular carcinoma (HCC), and is regarded as an unaddressed confounding factor for biomarker design and application. We examined the confounding effect of transcriptomic ITH in patient risk classification, and found existing molecular biomarkers of HCC were vulnerable to tumour sampling bias. We then developed an ITH-free expression biomarker (a utility gadget using RNA; AUGUR) that overcame clinical sampling bias and maintained prognostic reproducibility and generalisability across multiple HCC patient cohorts from different commercial platforms. Furthermore, we established and validated a well-calibrated nomogram based on AUGUR and tumour-node-metastasis (TNM) stage that provided an individualised prognostic information for patients with HCC.
Collapse
Affiliation(s)
- Shangyi Luo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yajing Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang, China
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Li L, He Z, Shi Y, Sun H, Yuan B, Cai J, Chen J, Long M. Role of epigenetics in mycotoxin toxicity: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104154. [PMID: 37209890 DOI: 10.1016/j.etap.2023.104154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mycotoxins can induce cell cycle disorders, cell proliferation, oxidative stress, and apoptosis through pathways such as those associated with MAPK, JAK2/STAT3, and Bcl-w/caspase-3, and cause reproductive toxicity, immunotoxicity, and genotoxicity. Previous studies have explored the toxicity mechanism of mycotoxins from the levels of DNA, RNA, and proteins, and proved that mycotoxins have epigenetic toxicity. To explore the toxic effects and mechanisms of these changes in mycotoxins, this paper summarizes the changes in DNA methylation, non-coding RNA, RNA and histone modification induced by several common mycotoxins (zearalenone, aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, etc.) based on epigenetic studies. In addition, the roles of mycotoxin-induced epigenetic toxicity in germ cell maturation, embryonic development, and carcinogenesis are highlighted. In summary, this review provides theoretical support for a better understanding of the regulatory mechanism of mycotoxin epigenotoxicity and the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Liuliu Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ziqi He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Yang Shi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Bowei Yuan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
10
|
Kurden-Pekmezci A, Cakiroglu E, Eris S, Mazi FA, Coskun-Deniz OS, Dalgic E, Oz O, Senturk S. MALT1 paracaspase is overexpressed in hepatocellular carcinoma and promotes cancer cell survival and growth. Life Sci 2023; 323:121690. [PMID: 37059355 DOI: 10.1016/j.lfs.2023.121690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, therapeutic management of HCC remains a challenge, emphasizing the importance of exploring novel targets. MALT1 paracaspase is a druggable signaling molecule whose dysregulation has been linked to hematological and solid tumors. However, the role of MALT1 in HCC remains poorly understood, leaving its molecular functions and oncogenic implications unclear. Here we provide evidence that MALT1 expression is elevated in human HCC tumors and cell lines, and that correlates with tumor grade and differentiation state, respectively. Our results indicate that ectopic expression of MALT1 confers increased cell proliferation, 2D clonogenic growth, and 3D spheroid formation in well differentiated HCC cell lines with relatively low MALT1 levels. In contrast, stable silencing of endogenous MALT1 through RNA interference attenuates these aggressive cancer cell phenotypes, as well as migration, invasion, and tumor-forming ability, in poorly differentiated HCC cell lines with higher paracaspase expression. Consistently, we find that pharmacological inhibition of MALT1 proteolytic activity with MI-2 recapitulates MALT1 depletion phenotypes. Finally, we show that MALT1 expression is positively correlated with NF-kB activation in human HCC tissues and cell lines, suggesting that its tumor promoting functions may involve functional interaction with the NF-kB signaling pathway. This work unveils new insights into the molecular implications of MALT1 in hepatocarcinogenesis and places this paracaspase as a potential marker and druggable liability in HCC.
Collapse
Affiliation(s)
- Asli Kurden-Pekmezci
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sude Eris
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Fatma Aybuke Mazi
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ozlem Silan Coskun-Deniz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ertugrul Dalgic
- Department of Medical Biology, Zonguldak Bulent Ecevit University School of Medicine, Zonguldak, Turkey
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
11
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Zhang LQ, Yang H, Liu JJ, Zhang LR, Hao YD, Guo JM, Lin H. Recognition of driver genes with potential prognostic implications in lung adenocarcinoma based on H3K79me2. Comput Struct Biotechnol J 2022; 20:5535-5546. [PMID: 36249560 PMCID: PMC9556929 DOI: 10.1016/j.csbj.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
The efficacy of H3K79me2 on gene expression regulation is affirmed in LUAD. An open-source algorithm for identifying LUAD-related driver genes is presented. 12 H3K79me2-targeted driver genes with clinical values are verified by qPCR. The regions with obvious H3K79me2 signals changes on driver genes are pinpointed.
Lung adenocarcinoma is a malignancy with a low overall survival and a poor prognosis. Studies have shown that lung adenocarcinoma progression relates to locus-specific/global changes in histone modifications. To explore the relationship between histone modification and gene expression changes, we focused on 11 histone modifications and quantitatively analyzed their influences on gene expression. We found that, among the studied histone modifications, H3K79me2 displayed the greatest impact on gene expression regulation. Based on the Shannon entropy, 867 genes with differential H3K79me2 levels during tumorigenesis were identified. Enrichment analyses showed that these genes were involved in 16 common cancer pathways and 11 tumors and were target-regulated by trans-regulatory elements, such as Tp53 and WT1. Then, an open-source computational framework was presented (https://github.com/zlq-imu/Identification-of-potential-LUND-driver-genes). Twelve potential driver genes were extracted from the genes with differential H3K79me2 levels during tumorigenesis. The expression levels of these potential driver genes were significantly increased/decreased in tumor cells, as assayed by RT–qPCR. A risk score model comprising these driver genes was further constructed, and this model was strongly negatively associated with the overall survival of patients in different datasets. The proportional hazards assumption and outlier test indicated that this model could robustly distinguish patients with different survival rates. Immune analyses and responses to immunotherapeutic and chemotherapeutic agents showed that patients in the high and low-risk groups may have distinct tendencies for clinical selection. Finally, the regions with clear H3K79me2 signal changes on these driver genes were accurately identified. Our research may offer potential molecular biomarkers for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China,Corresponding authors.
| | - Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, China
| | - Jun-Jie Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Li-Rong Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Yu-Duo Hao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Jun-Mei Guo
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, China
| | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China,Corresponding authors.
| |
Collapse
|
13
|
Temraz S, Nasr R, Mukherji D, Kreidieh F, Shamseddine A. Liquid Biopsy Derived Circulating Tumor Cells and Circulating Tumor DNA as Novel Biomarkers in Hepatocellular Carcinoma. Expert Rev Mol Diagn 2022; 22:507-518. [PMID: 35758097 DOI: 10.1080/14737159.2022.2094706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The diagnosis of hepatocellular carcinoma (HCC) is made at a relatively advanced stage resulting in poor prognosis. Alpha-fetoprotein and liver ultrasound have limited accuracy as biomarkers in HCC. Liver biopsy provides information on tumor biology; however, it is invasive and holds high threat of tumor seeding. Thus, more accurate and less invasive approaches are needed. AREAS COVERED Highly sensitive liquid biopsy assays have made possible the detection and analysis of cells or organelles such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-derived exosomes. Here, we focus on CTCs and ctDNA components of liquid biopsy and their clinical application as diagnostic, prognostic and predictive biomarkers in HCC. Unlike tissue biopsy, liquid biopsy involves attaining a sample at several time frames in an easy and a non-invasive manner. They have been efficacious in detecting and classifying cancer, in predicting treatment response, in monitoring disease relapse and in identifying mechanisms of resistance to targeted therapies. EXPERT OPINION Although interesting and highly promising, liquid biopsy techniques still have many obstacles to overcome before their wide spread clinical application sees the light. It is expected that these techniques will be incorporated into traditional methodologies for better diagnostic, predictive and prognostic results.
Collapse
Affiliation(s)
- Sally Temraz
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Deborah Mukherji
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Firas Kreidieh
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| | - Ali Shamseddine
- Department of internal medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut, Lebanon
| |
Collapse
|
14
|
Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, Peng D, Chen Z. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med 2022; 184:135-147. [PMID: 35381326 DOI: 10.1016/j.freeradbiomed.2022.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/09/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy that is characterized by poor prognosis. RNA-binding motif protein 15 (RBM15) has been identified as an oncogene in multiple tumors. Nevertheless, the function and mechanism of RBM15 in ccRCC are not clear. In this study, RBM15 was found to be upregulated in ccRCC cells and tissues. RBM15 enhanced the proliferation, clone formation, migration, invasion and epithelial-interstitial transition of ccRCC cells. Enhanced RBM15 was caused by the abundant histone 3 acetylation modification of the RBM15 promoter induced by EP300/CBP. RBM15 enhanced the stability of CXCL11 mRNA in an m6A-dependent manner. Moreover, RBM15 was found to promote macrophage infiltration and M2 polarization by promoting the secretion of CXCL11 in ccRCC cells in vitro and in vivo. Our findings highlight the function of RBM15 in ccRCC and reveal a novel identified EP300/CBP-RBM15-CXCL11 signaling axis, which promotes ccRCC progression and provides new insight into ccRCC therapy.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jihua Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weiqiang Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dan Peng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Cao YN, Li QZ, Liu YX, Jin W, Hou R. Discovering the key genes and important DNA methylation regions in breast cancer. Hereditas 2022; 159:7. [PMID: 35063044 PMCID: PMC8781361 DOI: 10.1186/s41065-022-00220-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer is the malignant tumor with the highest incidence in women. DNA methylation has an important effect on breast cancer, but the effect of abnormal DNA methylation on gene expression in breast cancer is still unclear. Therefore, it is very important to find therapeutic targets related to DNA methylation. RESULTS In this work, we calculated the DNA methylation distribution and gene expression level in cancer and para-cancerous tissues for breast cancer samples. We found that DNA methylation in key regions is closely related to gene expression by analyzing the relationship between the distribution characteristics of DNA methylation in different regions and the change of gene expression level. Finally, the 18 key genes (17 tumor suppressor genes and 1 oncogene) related to prognosis were confirmed by the survival analysis of clinical data. Some important DNA methylation regions in these genes that result in breast cancer were found. CONCLUSIONS We believe that 17 TSGs and 1 oncogene may be breast cancer biomarkers regulated by DNA methylation in key regions. These results will help to explore DNA methylation biomarkers as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China.
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.
| | - Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| | - Rui Hou
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, No.235 West Daxue Street, Saihan District, Hohhot, 010021, P.R. China
| |
Collapse
|
16
|
Liu YX, Li QZ, Cao YN. The effect of key DNA methylation in different regions on gene expression in hepatocellular carcinoma. Mol Omics 2021; 18:57-70. [PMID: 34782907 DOI: 10.1039/d1mo00282a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with high morbidity and mortality. As we all know, the alteration of DNA methylation has a crucial impact on the occurrence of HCC. However, the mechanism of the effect of DNA methylation in different regions on gene expression is still unclear. Here, by computing and analyzing the distribution of differential methylation in 12 different regions in HCC tissues and adjacent normal tissues, not only the hypermethylation of CpG islands and global hypomethylation were found, but also a stable distribution pattern of differential methylation in HCC was found. Then the correlations between DNA methylations in different regions and gene expressions were calculated, and the diversity of correlations in different regions was determined. The key genes of differential methylation and differential expression related to the survival of HCC patients were obtained by using Cox regression analysis, a four-gene prognostic risk scoring model was constructed, and the prognostic performance was well verified. The regions of the differentially methylated CpG sites corresponding to the four key genes were located and their influences on the expression were analyzed. The results indicate that the promoter, first exon, 5'UTR, sixth exon, N_Shore, and S_Shore hypomethylation promotes the expression of key oncogenes, which together lead to the occurrence of HCC. These results might help to study the role of DNA methylation in HCC and provide potential biomarkers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China. .,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| | - Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
17
|
Lv X, Xiang X, Wu Y, Liu Y, Xu R, Xiang Q, Lai G. GATA binding protein 4 promotes the expression and transcription of hepatitis B virus by facilitating hepatocyte nuclear factor 4 alpha in vitro. Virol J 2021; 18:196. [PMID: 34583732 PMCID: PMC8479913 DOI: 10.1186/s12985-021-01668-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background GATA binding protein 4 (GATA4) has been reported as a potential target of gene therapy for hepatocellular carcinoma (HCC). It is well known that the main cause of HCC is the chronic infection of hepatitis B virus (HBV). However, whether the effect of GATA4 on HBV has not yet been reported. Methods In this study, the regulation of GATA4 on HBV was analyzed in vitro. In turn, the effect of HBV on GATA4 was also observed in vitro, in vivo, and clinical HCC patients. Subsequently, we analyzed whether the effect of GATA4 on HBV was related to hepatocyte nuclear factor 4 alpha (HNF4α) in vitro. Results The results showed that GATA4 significantly promoted the secretion of HBV surface antigen (HBsAg) and HBV e antigen in the cell culture medium, improved the replication of HBV genomic DNA, and increased the level of HBV 3.5 kb pre-genomic RNA and HBV total RNA (P < 0.05). Moreover, it was showed that HBV had no significant effect on GATA4 in vitro and in vivo (P > 0.05). At the same time, GATA4 expression was decreased in 78.9% (15/19) of HCC patients regardless of the HBV and HBsAg status. Among them, there were 76.9% (10/13) in HBV-associated patients with HCC (HBV-HCC), and 83.3% (5/6) in non-HBV-HCC patients. In addition, the expression of HNF4α was also up-regulated or down-regulated accordingly when stimulating or interfering with the expression of GATA4. Furthermore, stimulating the expression of HNF4α could only alleviate the HBsAg level and HBV transcription levels, but had no significant effect on GATA4. Conclusions In summary, this study found that GATA4 has a positive effect on HBV, and the potential pathway may be related to another transcription factor HNF4α that regulates HBV.
Collapse
Affiliation(s)
- Xiaoqin Lv
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xia Xiang
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Wu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Yang Liu
- LuXian No. 2 High School, Sichuan, 646100, China
| | - Ruqing Xu
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Xiang
- Molecular Oncology and Epigenetics Laboratory of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoqi Lai
- Laboratory Animal Center of Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
18
|
Bongiovanni L, Andriessen A, Silvestri S, Porcellato I, Brachelente C, de Bruin A. H2AFZ: A Novel Prognostic Marker in Canine Melanoma and a Predictive Marker for Resistance to CDK4/6 Inhibitor Treatment. Front Vet Sci 2021; 8:705359. [PMID: 34485433 PMCID: PMC8415453 DOI: 10.3389/fvets.2021.705359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Uncontrolled proliferation is a key feature of tumor progression and malignancy. This suggests that cell-cycle related factors could be exploited as cancer biomarkers and that pathways specifically involved in the cell cycle, such as the Rb-E2F pathway, could be targeted as an effective anti-tumor therapy. We investigated 34 formalin-fixed paraffin-embedded (FFPE) tissue samples of canine cutaneous melanocytoma, cutaneous melanoma, and oral melanoma. Corresponding clinical follow-up data were used to determine the prognostic value of the mRNA expression levels of several cell cycle regulated E2F target genes (E2F1, DHFR, CDC6, ATAD2, MCM2, H2AFZ, GINS2, and survivin/BIRC5). Moreover, using four canine melanoma cell lines, we explored the possibility of blocking the Rb-E2F pathway by using a CDK4/6 inhibitor (Palbociclib) as a potential anti-cancer therapy. We investigated the expression levels of the same E2F target gene transcripts before and after treatment to determine the potential utility of these molecules as predictive markers. The E2F target gene H2AFZ was expressed in 91.43% of the primary tumors and H2AFZ expression was significantly higher in cases with unfavorable clinical outcome. Among the other tested genes, survivin/BIRC5 showed as well-promising results as a prognostic marker in canine melanoma. Three of the four tested melanoma cell lines were sensitive to the CDK4/6 inhibitor. The resistant cell line displayed higher expression levels of H2AFZ before treatment compared to the CDK4/6 inhibitor-sensitive cell lines. The present results suggest that CDK4/6 inhibitors could potentially be used as a new anti-cancer treatment for canine melanoma and that H2AFZ could serve as a prognostic and predictive marker for patient selection.
Collapse
Affiliation(s)
- Laura Bongiovanni
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anneloes Andriessen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Xiao Y, Zhou H, Jiang L, Liu R, Chen Q. Epigenetic regulation of ion channels in the sense of taste. Pharmacol Res 2021; 172:105760. [PMID: 34450315 DOI: 10.1016/j.phrs.2021.105760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023]
Abstract
There are five fundamental tastes discovered so far: sweet, bitter, umami, sour and salty. Taste is mediated by the specialized neuroepithelial cells mainly located at the tongue papillae, namely taste receptor cells, which can be classified into type I, type II, type III and type IV. Ion channels are necessary for diverse cell physiological activities including taste sensing, smell experience and temperature perception. Existing evidences have demonstrated distinct structures and working models of ion channels. Epigenetic modifications regulate gene expression mainly through histone modifications, DNA methylation and non-coding RNA-mediated regulation, without altering DNA sequence. This review summarizes how ion channels work during the transduction of multiple tastes, as well as the recent progressions in the epigenetic regulation of ion channels.
Collapse
Affiliation(s)
- Yanxuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hangfan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Yuan Y, Cao W, Zhou H, Qian H, Wang H. H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the transcriptional misregulation in cancer signaling pathway in hepatocellular carcinoma. Cell Death Dis 2021; 12:609. [PMID: 34120148 PMCID: PMC8197763 DOI: 10.1038/s41419-021-03895-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
In eukaryotes, histones and their variants are essential for chromatin structure and function; both play important roles in the regulation of gene transcription, as well as the development of tumors. We aimed to explore the genomics data of hepatocellular carcinoma (HCC), combined with literature analysis, in terms of the histone variant H2A.Z. Cell phenotype assay confirmed the effect of H2A.Z on the proliferation, metastasis, apoptosis, and cell cycle of HCC cells. H2A.Z was shown to function via the tumor dysregulation signaling pathway, with BCL6 as its interacting protein. In addition, the acetylation level of H2A.Z was higher in HCC and was related to tumor formation. We found the acetylation of H2A.Z to be related to and regulated by lincZNF337-AS1. LincZNF337-AS1 was found to bind to H2A.Z and KAT5 at different sites, promoting the acetylation of H2A.Z through KAT5. We concluded that, in HCC, H2A.Z is an oncogene, whose acetylation promotes the transcription of downstream genes, and is regulated by lincZNF331-AS1.
Collapse
Affiliation(s)
- Yin Yuan
- The Department of Hepatobiliary Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Wen Cao
- The Department of Liver Disease of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Hongbing Zhou
- The Department of Hepatobiliary Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Honggang Wang
- The Department of General Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China.
| |
Collapse
|
21
|
Yu YL, Chen M, Zhu H, Zhuo MX, Chen P, Mao YJ, Li LY, Zhao Q, Wu M, Ye M. STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease. Clin Epigenetics 2021; 13:127. [PMID: 34112215 PMCID: PMC8194145 DOI: 10.1186/s13148-021-01101-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1–EP300–H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. Results Lymphocyte cytosolic protein 2 (LCP2) and TNF-α‐inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. Conclusions p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation. Graphic abstract ![]()
Collapse
Affiliation(s)
- Ya-Li Yu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Meng Chen
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ming-Xing Zhuo
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yu-Juan Mao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
22
|
Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021; 2021:8837811. [PMID: 33728291 PMCID: PMC7937489 DOI: 10.1155/2021/8837811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main causes of death related to cancer worldwide; its etiology is related with infections by C or B hepatitis virus, alcohol consumption, smoking, obesity, nonalcoholic fatty liver disease, diabetes, and iron overload, among other causes. Several kinds of primary liver cancer occur, but we will focus on hepatocellular carcinoma (HCC). Numerous cellular signaling pathways are implicated in hepatocarcinogenesis, including YAP-HIPPO, Wnt-β-catenin, and nuclear factor-κB (NF-κB); these in turn are considered novel therapeutic targets. In this review, the role of lipid metabolism regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in the development of HCC will also be discussed. Moreover, recent evidence has been obtained regarding the participation of epigenetic changes such as acetylation and methylation of histones and DNA methylation in the development of HCC. In this review, we provide detailed and current information about these topics. Experimental models represent useful tools for studying the different stages of liver cancer and help to develop new pharmacologic treatments. Each model in vivo and in vitro has several characteristics and advantages to offer for the study of this disease. Finally, the main therapies approved for the treatment of HCC patients, first- and second-line therapies, are described in this review. We also describe a novel option, pirfenidone, which due to its pharmacological properties could be considered in the future as a therapeutic option for HCC treatment.
Collapse
|