1
|
Xu LL, Zhou Z, Schäuble S, Vivas W, Dlubatz K, Bauer M, Weis S, Singer M, Lukaszewski R, Panagiotou G. Multi-Omics and -Organ Insights into Energy Metabolic Adaptations in Early Sepsis Onset. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e04418. [PMID: 40411399 DOI: 10.1002/advs.202504418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Systemic metabolic dysregulation in sepsis critically impacts patient survival. To better understand its onset, untargeted serum metabolomics and lipidomics are analyzed from 152 presymptomatic patients undergoing major elective surgery, and identified key metabolites, including serine and aminoadipic acid, that differentiate postoperative uncomplicated infection from sepsis. Using single-nucleus RNA sequencing data from an in vivo mouse model of sepsis, tissue-independent down-regulation and tissue-specific differences of serine and energy-related genes including key module roles for the mitochondria-linked genes, Cox4i1, Cox8a, and Ndufa4 are identified. Finally, serine-dependent metabolic shifts, especially in the liver, are revealed by using 12C/13C murine data with labeled serine, and link altered activity of the serine hydroxymethyltransferase (SHMT) cycle with perturbed purine metabolism during sepsis. This study demonstrates the close interrelationship between early metabolite changes and mitochondrial dysfunction in sepsis, improves the understanding of the underlying pathophysiology, and highlights metabolic targets to prospectively treat presymptomatic, but at-risk, patients.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
| | - Zhengyuan Zhou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
| | - Sascha Schäuble
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
| | - Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
- Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
- Institute of Infectious Disease and Infection Control, Jena University Hospital, 07747, Jena, Germany
| | - Karen Dlubatz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
- Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
- Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
- Institute of Infectious Disease and Infection Control, Jena University Hospital, 07747, Jena, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, NW1 2BU, UK
| | - Roman Lukaszewski
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, NW1 2BU, UK
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany
- Department of Medicine, University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
2
|
Ji A, Meredith LW, Shridas P. Serum Amyloid A: A Double-Edged Sword in Health and Disease. Int J Mol Sci 2025; 26:4528. [PMID: 40429677 PMCID: PMC12110822 DOI: 10.3390/ijms26104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Despite more than fifty years since its discovery in the 1970s, Serum Amyloid A (SAA)'s true biological functions remain enigmatic. The research so far has primarily associated SAA with chronic inflammatory conditions such as cardiovascular disease, obesity, and type 2 diabetes; its role in acute inflammation is less understood. Unlike the modest elevations observed in chronic conditions, SAA levels surge dramatically during acute inflammatory responses. Notably, approximately 2.5% of hepatic protein synthesis is devoted to SAA production during acute inflammation-despite the high energy demands required for synthesizing pro-inflammatory cytokines and immune cell activation-leaving its precise necessity unclear. Elucidating SAA's physiological role in acute inflammation is crucial to determine the therapeutic potential of SAA inhibition for chronic inflammatory diseases, such as atherosclerosis and abdominal aortic aneurysms. The evidence suggests that SAA may play a protective role in acute inflammation, positioning it as a "double-edged sword": detrimental in chronic inflammation, yet potentially beneficial in acute settings. This review explores the divergent roles of SAA in chronic versus acute inflammation, proposing that while SAA inhibition could offer therapeutic benefits for chronic conditions, it might pose risks during acute inflammation. As the primary transporter of SAA in circulation, high-density lipoprotein (HDL) has been shown to become dysfunctional in chronic inflammation, at least partly due to SAA's effects. However, we propose that SAA may confer functional properties to HDL during acute inflammatory states, such as sepsis, thereby highlighting the context-dependent nature of its impact.
Collapse
Affiliation(s)
- Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
| | - Luke W. Meredith
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
| | - Preetha Shridas
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
- Department of Internal Medicine, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA
| |
Collapse
|
3
|
Qi M, Wei J, Zhang M, Jiao C, He C, Sui L, Ma S, Mao Z, Pan X, Zhu X. THE CAUSAL ASSOCIATION OF CARDIOMETABOLIC DISEASES AND SEPSIS-RELATED OUTCOMES: A MENDELIAN RANDOMIZATION AND POPULATION STUDY. Shock 2025; 63:579-586. [PMID: 39965633 DOI: 10.1097/shk.0000000000002538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
ABSTRACT Objective: The causality between cardiometabolic disease (CMD) and sepsis has remained largely unknown. To elucidate this, we conducted a Mendelian randomization (MR) and population study. Methods: First, we used univariable and multivariable MR analyses to investigate causal associations between CMD and sepsis-related outcomes. We obtained genome-wide association study summary from both the MRC Integrative Epidemiology Unit and the FinnGen consortium. Subsequently, a two-step mediation MR analysis was performed to explore mediators. Afterward, we conducted an observational study using the Medical Information Mart for Intensive Care IV database, in which multivariable logistic regression models were utilized to examine the relationship between CMD and sepsis-related outcomes. Results: In the MR study, type 2 diabetes mellitus (OR = 1.058, 95% CI = 1.017-1.100, P = 0.005), obesity (OR = 1.113, 95% CI = 1.057-1.172, P < 0.001), and heart failure (HF) (OR = 1.178, 95% CI = 1.063-1.305, P = 0.002) were independently causally related to sepsis. Obesity (OR = 1.215, 95% CI = 1.027-1.437, P = 0.023) and HF (OR = 1.494, 95% CI = 1.080-2.065, P = 0.015) also showed independent causal associations with sepsis critical care admission. Mediation MR analysis identified 23 blood metabolites potentially causally linked to sepsis ( P < 0.05), yet none mediated the relationship between CMD and sepsis. In the observational study, we found associations between sepsis and several conditions including type 2 diabetes mellitus, obesity, hypertension, stroke, HF, and hyperlipidemia after adjusting for confounding factors. Moreover, hypertension, stroke, HF, coronary artery disease, and hyperlipidemia were linked to sepsis critical care admission. Conclusion: This study has, for the first time, revealed indicative evidence of a causal relationship between CMD and sepsis through observational and genetic evidence. Taken together, clinical attention to sepsis may be warranted among patients with CMD.
Collapse
Affiliation(s)
- Mengmeng Qi
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Zhang X, Zhang W, Zhang H, Liao X. Sepsis subphenotypes: bridging the gaps in sepsis treatment strategies. Front Immunol 2025; 16:1546474. [PMID: 40013154 PMCID: PMC11862915 DOI: 10.3389/fimmu.2025.1546474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Sepsis, a heterogeneous illness produced by a dysregulated host response to infection, remains a severe mortality risk. Recent discoveries in sepsis research have stressed phenotyping as a feasible strategy for tackling heterogeneity and enhancing therapy precision. Sepsis phenotyping has moved from traditional stratifications based on severity and prognosis to dynamic, phenotype-driven therapeutic options. This review covers recent progress in connecting sepsis subgroups to personalized treatments, with a focus on phenotype-based therapeutic predictions and decision-support systems. Despite ongoing challenges, such as standardizing phenotyping frameworks and incorporating findings into clinical practice, this topic has enormous promise. By investigating phenotypic variation in therapy responses, we hope to uncover new biomarkers and phenotype-driven therapeutic solutions, laying the groundwork for more effective therapies and, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Critical Care Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Mayers JR, Varon J, Zhou RR, Daniel-Ivad M, Beaulieu C, Bhosle A, Glasser NR, Lichtenauer FM, Ng J, Vera MP, Huttenhower C, Perrella MA, Clish CB, Zhao SD, Baron RM, Balskus EP. A metabolomics pipeline highlights microbial metabolism in bloodstream infections. Cell 2024; 187:4095-4112.e21. [PMID: 38885650 PMCID: PMC11283678 DOI: 10.1016/j.cell.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.
Collapse
Affiliation(s)
- Jared R Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ruixuan R Zhou
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Martin Daniel-Ivad
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sihai D Zhao
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Taylor R, Zhang C, George D, Kotecha S, Abdelghaffar M, Forster T, Santos Rodrigues PD, Reisinger AC, White D, Hamilton F, Watkins WJ, Griffith DM, Ghazal P. Low circulatory levels of total cholesterol, HDL-C and LDL-C are associated with death of patients with sepsis and critical illness: systematic review, meta-analysis, and perspective of observational studies. EBioMedicine 2024; 100:104981. [PMID: 38290288 PMCID: PMC10844818 DOI: 10.1016/j.ebiom.2024.104981] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Mechanistic studies have established a biological role of sterol metabolism in infection and immunity with clinical data linking deranged cholesterol metabolism during sepsis with poorer outcomes. In this systematic review we assess the relationship between biomarkers of cholesterol homeostasis and mortality in critical illness. METHODS We identified articles by searching a total of seven electronic databases from inception to October 2023. Prospective observational cohort studies included those subjects who had systemic cholesterol (Total Cholesterol (TC), HDL-C or LDL-C) levels assessed on the first day of ICU admission and short-term mortality recorded. Meta-analysis and meta-regression were used to evaluate overall mean differences in serum cholesterol levels between survivors and non-survivors. Study quality was assessed using the Newcastle-Ottawa Scale. FINDINGS From 6469 studies identified by searches, 24 studies with 2542 participants were included in meta-analysis. Non-survivors had distinctly lower HDL-C at ICU admission -7.06 mg/dL (95% CI -9.21 to -4.91, p < 0.0001) in comparison with survivors. Corresponding differences were also seen less robustly for TC -21.86 mg/dL (95% CI -31.23 to -12.49, p < 0.0001) and LDL-C -8.79 mg/dL (95% CI, -13.74 to -3.83, p = 0.0005). INTERPRETATION Systemic cholesterol levels (TC, HDL-C and LDL-C) on admission to critical care are inversely related to mortality. This finding is consistent with the notion that inflammatory and metabolic setpoints are coupled, such that the maladaptive-setpoint changes of cholesterol in critical illness are related to underlying inflammatory processes. We highlight the potential of HDL-biomarkers as early predictors of severity of illness and emphasise that future research should consider the metabolic and functional heterogeneity of HDLs. FUNDING EU-ERDF-Welsh Government Ser Cymru programme, BBSRC, and EU-FP7 ClouDx-i project (PG).
Collapse
Affiliation(s)
- Rory Taylor
- Deanery of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK.
| | - Chengyuan Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, NHS Lothian, Edinburgh, UK
| | - Deslit George
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Sarah Kotecha
- Department of Child Health, School of Medicine, University of Cardiff, Cardiff, UK
| | | | | | | | - Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Daniel White
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - W John Watkins
- Dept of Immunity and Infection, School of Medicine, Cardiff University, Cardiff, UK
| | - David M Griffith
- Anaesthesia, Critical Care and Pain, Molecular, Genetics, and Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Ghazal
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK.
| |
Collapse
|
8
|
Johansson PI, Henriksen HH, Karvelsson ST, Rolfsson Ó, Schønemann-Lund M, Bestle MH, McGarrity S. LASSO regression shows histidine and sphingosine 1 phosphate are linked to both sepsis mortality and endothelial damage. Eur J Med Res 2024; 29:71. [PMID: 38245777 PMCID: PMC10799523 DOI: 10.1186/s40001-023-01612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
Sepsis is a major cause of death worldwide, with a mortality rate that has remained stubbornly high. The current gold standard of risk stratifying sepsis patients provides limited mechanistic insight for therapeutic targeting. An improved ability to predict sepsis mortality and to understand the risk factors would allow better treatment targeting. Sepsis causes metabolic dysregulation in patients; therefore, metabolomics offers a promising tool to study sepsis. It is also known that that in sepsis endothelial cells affecting their function regarding blood clotting and vascular permeability. We integrated metabolomics data from patients admitted to an intensive care unit for sepsis, with commonly collected clinical features of their cases and two measures of endothelial function relevant to blood vessel function, platelet endothelial cell adhesion molecule and soluble thrombomodulin concentrations in plasma. We used least absolute shrinkage and selection operator penalized regression, and pathway enrichment analysis to identify features most able to predict 30-day survival. The features important to sepsis survival include carnitines, and amino acids. Endothelial proteins in plasma also predict 30-day mortality and the levels of these proteins also correlate with a somewhat overlapping set of metabolites. Overall metabolic dysregulation, particularly in endothelial cells, may be a contributory factor to sepsis response. By exploring sepsis metabolomics data in conjunction with clinical features and endothelial proteins we have gained a better understanding of sepsis risk factors.
Collapse
Affiliation(s)
- Pär I Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hanne H Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Óttar Rolfsson
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Martin Schønemann-Lund
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital - North Zealand, Hillerod, Denmark
| | - Morten H Bestle
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Anaesthesiology and Intensive Care, Copenhagen University Hospital - North Zealand, Hillerod, Denmark
| | - Sarah McGarrity
- Biomedical Center, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Barber G, Tanic J, Leligdowicz A. Circulating protein and lipid markers of early sepsis diagnosis and prognosis: a scoping review. Curr Opin Lipidol 2023; 34:70-81. [PMID: 36861948 DOI: 10.1097/mol.0000000000000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW Sepsis is the extreme response to infection associated with high mortality, yet reliable biomarkers for its identification and stratification are lacking. RECENT FINDINGS Our scoping review of studies published from January 2017 to September 2022 that investigated circulating protein and lipid markers to inform non-COVID-19 sepsis diagnosis and prognosis identified interleukin (IL)-6, IL-8, heparin-binding protein (HBP), and angiopoietin-2 as having the most evidence. Biomarkers can be grouped according to sepsis pathobiology to inform biological data interpretation and four such physiologic processes include: immune regulation, endothelial injury and coagulopathy, cellular injury, and organ injury. Relative to proteins, the pleiotropic effects of lipid species' render their categorization more difficult. Circulating lipids are relatively less well studied in sepsis, however, low high-density lipoprotein (HDL) is associated with poor outcome. SUMMARY There is a lack of robust, large, and multicenter studies to support the routine use of circulating proteins and lipids for sepsis diagnosis or prognosis. Future studies will benefit from standardizing cohort design as well as analytical and reporting strategies. Incorporating biomarker dynamic changes and clinical data in statistical modeling may improve specificity for sepsis diagnosis and prognosis. To guide future clinical decisions at the bedside, point-of-care circulating biomarker quantification is needed.
Collapse
Affiliation(s)
- Gemma Barber
- Schulich School of Medicine and Dentistry
- Robarts Research Insitute
| | | | - Aleksandra Leligdowicz
- Schulich School of Medicine and Dentistry
- Robarts Research Insitute
- Department of Medicine, Division of Critical Care, Western University, London, ON, Canada
| |
Collapse
|
11
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 146.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
12
|
Hofmaenner DA, Arina P, Kleyman A, Page Black L, Salomao R, Tanaka S, Guirgis FW, Arulkumaran N, Singer M. Association Between Hypocholesterolemia and Mortality in Critically Ill Patients With Sepsis: A Systematic Review and Meta-Analysis. Crit Care Explor 2023; 5:e0860. [PMID: 36751516 PMCID: PMC9894355 DOI: 10.1097/cce.0000000000000860] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To ascertain the association between cholesterol and triglyceride levels on ICU admission and mortality in patients with sepsis. DATA SOURCES Systematic review and meta-analysis of published studies on PubMed and Embase. STUDY SELECTION All observational studies reporting ICU admission cholesterol and triglyceride levels in critically ill patients with sepsis were included. Authors were contacted for further data. DATA EXTRACTION Eighteen observational studies were identified, including 1,283 patients with a crude overall mortality of 33.3%. Data were assessed using Revman (Version 5.1, Cochrane Collaboration, Oxford, United Kingdom) and presented as mean difference (MD) with 95% CIs, p values, and I 2 values. DATA SYNTHESIS Admission levels of total cholesterol (17 studies, 1,204 patients; MD = 0.52 mmol/L [0.27-0.77 mmol/L]; p < 0.001; I 2 = 91%), high-density lipoprotein (HDL)-cholesterol (14 studies, 991 patients; MD = 0.08 mmol/L [0.01-0.15 mmol/L]; p = 0.02; I 2 = 61%), and low-density lipoprotein (LDL)-cholesterol (15 studies, 1,017 patients; MD = 0.18 mmol/L [0.04-0.32 mmol/L]; p = 0.01; I 2 = 71%) were significantly lower in eventual nonsurvivors compared with survivors. No association was seen between admission triglyceride levels and mortality (15 studies, 1,070 patients; MD = 0.00 mmol/L [-0.16 to 0.15 mmol/L]; p = -0.95; I 2 = 79%). CONCLUSIONS Mortality was associated with lower levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol, but not triglyceride levels, in patients admitted to ICU with sepsis. The impact of cholesterol replacement on patient outcomes in sepsis, particularly in at-risk groups, merits investigation.
Collapse
Affiliation(s)
- Daniel A Hofmaenner
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Lauren Page Black
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL
| | - Reinaldo Salomao
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Sébastien Tanaka
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, DMU PARABOL, Bichat-Claude Bernard Hospital, Paris, France
- French Institute of Health and Medical Research (INSERM), U1188 Diabetes Atherothrombosis Réunion Indian Ocean (DéTROI), CYROI Plateform, Réunion Island University, Saint-Denis de La Réunion, France
| | - Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL
| | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
13
|
Duceau B, Blatzer M, Bardon J, Chaze T, Giai Gianetto Q, Castelli F, Fenaille F, Duarte L, Lescot T, Tresallet C, Riou B, Matondo M, Langeron O, Rocheteau P, Chrétien F, Bouglé A. Using a multiomics approach to unravel a septic shock specific signature in skeletal muscle. Sci Rep 2022; 12:18776. [PMID: 36335235 PMCID: PMC9637214 DOI: 10.1038/s41598-022-23544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Sepsis is defined as a dysregulated host response to infection leading to organs failure. Among them, sepsis induces skeletal muscle (SM) alterations that contribute to acquired-weakness in critically ill patients. Proteomics and metabolomics could unravel biological mechanisms in sepsis-related organ dysfunction. Our objective was to characterize a distinctive signature of septic shock in human SM by using an integrative multi-omics approach. Muscle biopsies were obtained as part of a multicenter non-interventional prospective study. Study population included patients in septic shock (S group, with intra-abdominal source of sepsis) and two critically ill control populations: cardiogenic shock (C group) and brain dead (BD group). The proteins and metabolites were extracted and analyzed by High-Performance Liquid Chromatography-coupled to tandem Mass Spectrometry, respectively. Fifty patients were included, 19 for the S group (53% male, 64 ± 17 years, SAPS II 45 ± 14), 12 for the C group (75% male, 63 ± 4 years, SAPS II 43 ± 15), 19 for the BD group (63% male, 58 ± 10 years, SAPS II 58 ± 9). Biopsies were performed in median 3 days [interquartile range 1-4]) after intensive care unit admission. Respectively 31 patients and 40 patients were included in the proteomics and metabolomics analyses of 2264 proteins and 259 annotated metabolites. Enrichment analysis revealed that mitochondrial pathways were significantly decreased in the S group at protein level: oxidative phosphorylation (adjusted p = 0.008); branched chained amino acids degradation (adjusted p = 0.005); citrate cycle (adjusted p = 0.005); ketone body metabolism (adjusted p = 0.003) or fatty acid degradation (adjusted p = 0.008). Metabolic reprogramming was also suggested (i) by the differential abundance of the peroxisome proliferator-activated receptors signaling pathway (adjusted p = 0.007), and (ii) by the accumulation of fatty acids like octanedioic acid dimethyl or hydroxydecanoic. Increased polyamines and depletion of mitochondrial thioredoxin or mitochondrial peroxiredoxin indicated a high level of oxidative stress in the S group. Coordinated alterations in the proteomic and metabolomic profiles reveal a septic shock signature in SM, highlighting a global impairment of mitochondria-related metabolic pathways, the depletion of antioxidant capacities, and a metabolic shift towards lipid accumulation.ClinicalTrial registration: NCT02789995. Date of first registration 03/06/2016.
Collapse
Affiliation(s)
- Baptiste Duceau
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| | - Michael Blatzer
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Jean Bardon
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.412116.10000 0001 2292 1474AP-HP, Department of Anesthesiology and Critical Care Medicine, Hôpital Henri Mondor, Créteil, France
| | - Thibault Chaze
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Quentin Giai Gianetto
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Florence Castelli
- grid.457334.20000 0001 0667 2738Département Médicaments Et Technologies Pour La Santé (MTS), Université Paris Saclay, CEA, INRAE, MetaboHUB, Gif-Sur-Yvette, France
| | - François Fenaille
- grid.457334.20000 0001 0667 2738Département Médicaments Et Technologies Pour La Santé (MTS), Université Paris Saclay, CEA, INRAE, MetaboHUB, Gif-Sur-Yvette, France
| | - Lucie Duarte
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| | - Thomas Lescot
- grid.50550.350000 0001 2175 4109Department of Anesthesiology and Critical Care Medicine, Hôpital Saint-Antoine, Sorbonne Université, GRC 29, AP-HP, Paris, France
| | - Christophe Tresallet
- grid.50550.350000 0001 2175 4109Department of General and Endocrine Surgery, Hôpital La Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Bruno Riou
- grid.50550.350000 0001 2175 4109Emergency Department, Hôpital La Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | - Mariette Matondo
- grid.428999.70000 0001 2353 6535Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit USR CNRS 2000, Bioinformatics and Biostatistics Hub Computational Biology Department USR CNRS 3756, Paris, France
| | - Olivier Langeron
- grid.412116.10000 0001 2292 1474AP-HP, Department of Anesthesiology and Critical Care Medicine, Hôpital Henri Mondor, Créteil, France
| | - Pierre Rocheteau
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Fabrice Chrétien
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.414435.30000 0001 2200 9055Hôpital Sainte Anne, GHU Paris Psychiatrie Et Neurosciences, Paris, France
| | - Adrien Bouglé
- grid.428999.70000 0001 2353 6535Experimental Neuropathology Unit, Institut Pasteur, Paris, France ,grid.411439.a0000 0001 2150 9058Department of Anesthesiology and Critical Care Medicine, Cardiology Institute, University Hospital Pitié-Salpêtrière (AP-HP. Sorbonne Université), GRC 29, Assistance Publique, 47-83 Boulevard de L’Hôpital, 75013 Paris, France
| |
Collapse
|
14
|
Liu J, Zhou G, Wang X, Liu D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell Mol Life Sci 2022; 79:456. [PMID: 35904600 PMCID: PMC9336160 DOI: 10.1007/s00018-022-04490-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ failure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| |
Collapse
|
15
|
Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022; 12:metabo12050376. [PMID: 35629881 PMCID: PMC9145582 DOI: 10.3390/metabo12050376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Infections are common and need minimal treatment; however, occasionally, due to inappropriate immune response, they can develop into a life-threatening condition known as sepsis. Sepsis is a global concern with high morbidity and mortality. There has been little advancement in the treatment of sepsis, outside of antibiotics and supportive measures. Some of the difficulty in identifying novel therapies is the heterogeneity of the condition. Metabolic phenotyping has great potential for gaining understanding of this heterogeneity and how the metabolic fingerprints of patients with sepsis differ based on survival, organ dysfunction, disease severity, type of infection, treatment or causative organism. Moreover, metabolomics offers potential for patient stratification as metabolic profiles obtained from analytical platforms can reflect human individuality and phenotypic variation. This article reviews the most relevant metabolomic studies in sepsis and aims to provide an overview of the metabolic derangements in sepsis and how metabolic phenotyping has been used to identify sub-groups of patients with this condition. Finally, we consider the new avenues that metabolomics could open, exploring novel phenotypes and untangling the heterogeneity of sepsis, by looking at advances made in the field with other -omics technologies.
Collapse
Affiliation(s)
- Humma Hussain
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Kritchai Vutipongsatorn
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Beatriz Jiménez
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
- Correspondence:
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The 'gut-liver axis' is thought to play an important role in pathogenesis of sepsis. Despite a wealth of experimental data to support the concept of reciprocal crosstalk between gut and liver through bacterial translocation and shaping of the microbiome by liver-derived molecules, for example bile acids, clinical data, and in particular diagnostic and therapeutic options, are limited. RECENT FINDINGS Assessment of organ failure in the current definition of sepsis is operationalized by means of the Sequential Organ Failure Assessment (SOFA) score, including exclusively bilirubin to reflect the complex functions of the liver but ignoring the gut. However, our understanding of the intestinal microbiome and how it is affected by critical illness has clearly improved. Microbiota maintain gut-barrier function and modulate the innate and adaptive immune system. The best-defined intervention affecting the gut microbiome, that is selective decontamination of the digestive tract (SDD) is clinically studied regarding prevention of nosocomial lung infection and antibiotic resistance patterns, although its impact on liver function has not been systematically evaluated in critical illness. SUMMARY Characterization of liver function beyond bilirubin and the microbiome can be achieved with contemporary sequencing and metabolomic techniques. Such studies are essential to understand how gut-liver crosstalk and 'dysbiosis' affect susceptibility to and outcome of sepsis.
Collapse
|
17
|
Marfil-Sánchez A, Zhang L, Alonso-Pernas P, Mirhakkak M, Mueller M, Seelbinder B, Ni Y, Santhanam R, Busch A, Beemelmanns C, Ermolaeva M, Bauer M, Panagiotou G. An integrative understanding of the large metabolic shifts induced by antibiotics in critical illness. Gut Microbes 2022; 13:1993598. [PMID: 34793277 PMCID: PMC8604395 DOI: 10.1080/19490976.2021.1993598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in the ICU is less clear than their benefit on course of infection in the absence of organ dysfunction. We characterized here the compositional and metabolic changes of the gut microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in conjunction with 2,180 gut microbiome samples representing 16 different diseases. We revealed an "infection-vulnerable" gut microbiome environment present only in critically ill treated with antibiotics (ICU+). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and Lactobacillus crispatus, species that expanded in ICU+ patients, revealed a significant negative impact of these microbes on host viability and developmental homeostasis. These results suggest that antibiotic administration can dramatically impact essential functional activities in the gut related to immune responses more than critical illness itself, which might explain in part untoward effects of antibiotics in the critically ill.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | | | - Mohammad Mirhakkak
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Melinda Mueller
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Rakesh Santhanam
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Maria Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany,Maria Ermolaeva Stress Tolerance and Homeostasis, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, Jena 07745, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany,Michael Bauer Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China,Lead Contact,CONTACT Gianni Panagiotou Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11A, Jena07745, Germany
| |
Collapse
|
18
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Zou G, Zhu Q, Ren B, Guo Q, Wu Y, He J, Wu Y, Luo Z. HDL-Associated Lipoproteins: Potential Prognostic Biomarkers for Gram-Negative Sepsis. J Inflamm Res 2022; 15:1117-1131. [PMID: 35210815 PMCID: PMC8860992 DOI: 10.2147/jir.s350737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To determine the levels of serum HDL-associated apolipoproteins (apoM and apoC) and HDL-binding receptor (scavenger receptor BI, SR-BI) in patients with gram-negative bacteria sepsis (G-sepsis) and to evaluate the value of lipoproteins in the diagnosis, severity and prognosis of G-sepsis. Patients and Methods A total of 128 patients with sepsis, 40 patients with system inflammatory reaction syndrome (SIRS) and 40 healthy subjects were enrolled in the Second People’s Hospital of Hunan Province from September 2019 to September 2020. The levels and the correlation of lipoproteins were detected and dynamically monitored by enzyme-linked adsorption method, ROC curve for the diagnostic, severity and prognostic value of lipoproteins in G-sepsis. Results The levels of serum HDL-associated lipoproteins in patients with G-sepsis were significantly decreased (P < 0.05), and the ROC curve showed that HDL-C, SR-BI, apoM and apoC had cut-off values of 0.915 mmol/L, 122.100 pg/mL, 102.400 ug/mL and 17.55 mg/mL, respectively, for the diagnosis of G-sepsis, with the sensitivity was 85.56%, 97.78%, 93.33% and 73.03%, and the specificity was 95.0%, 82.50%, 61.54% and 82.50%, respectively. There was a correlation between HDL-associated apolipoproteins. Changes in serum HDL-associated lipoproteins were more obvious in shock group than classic inflammation indicators, such as PCT, IL-6 and CRP. They showed a trend change on day 3, with the levels of SR-BI and apoC changing 2–3 times, and the sensitivity of HDL-C, SR-BI, apoM and apoC for the diagnosis of G-septic shock were 32.43%, 72.97%, 65.75%, and 43.24%, and specificity of 94.34%, 81.13%, 83.07%, and 86.79%, respectively. The AUC, sensitivity and specificity of apoM combined with SR-BI were improved. Conclusion HDL-associated lipoproteins were correlated with bacterial-infected types, and serum levels of HDL-associated lipoproteins can be used as potential biomarkers for early diagnosis and progress of G-sepsis. ApoM combined with SR-BI could improve the sensitivity and specificity of prognosis assessment.
Collapse
Affiliation(s)
- Guoying Zou
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qing Zhu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Biqiong Ren
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Qi Guo
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Yuanyuan Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Junyu He
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying Wu
- Department of Clinical Laboratory, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
| | - Zhihong Luo
- Office of the Party Committee, The Second People’s Hospital of Hunan Province, Changsha, Hunan, 410007, People’s Republic of China
- Correspondence: Zhihong Luo, Office of the Party Committee, The Second People’s Hospital of Hunan Province, Furong Middle Road 427, Yuhua District, Changsha, Hunan, 410007, People’s Republic of China, Tel +86 19848029533, Email
| |
Collapse
|
20
|
Schuurman AR, Reijnders TDY, Kullberg RFJ, Butler JM, van der Poll T, Wiersinga WJ. Sepsis: deriving biological meaning and clinical applications from high-dimensional data. Intensive Care Med Exp 2021; 9:27. [PMID: 33961170 PMCID: PMC8105470 DOI: 10.1186/s40635-021-00383-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of sepsis is multi-facetted and highly complex. As sepsis is a leading cause of global mortality that still lacks targeted therapies, increased understanding of its pathogenesis is vital for improving clinical care and outcomes. An increasing number of investigations seeks to unravel the complexity of sepsis through high-dimensional data analysis, enabled by advances in -omics technologies. Here, we summarize progress in the following major -omics fields: genomics, epigenomics, transcriptomics, proteomics, lipidomics, and microbiomics. We describe what these fields can teach us about sepsis, and highlight current trends and future challenges. Finally, we focus on multi-omics integration, and discuss the challenges in deriving biological meaning and clinical applications from these types of data.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands. .,Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Noord-Holland, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|