1
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
2
|
Abbasi AF, Asim MN, Dengel A. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. J Transl Med 2025; 23:153. [PMID: 39905452 PMCID: PMC11796103 DOI: 10.1186/s12967-024-06013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
The revolutionary CRISPR-Cas9 system leverages a programmable guide RNA (gRNA) and Cas9 proteins to precisely cleave problematic regions within DNA sequences. This groundbreaking technology holds immense potential for the development of targeted therapies for a wide range of diseases, including cancers, genetic disorders, and hereditary diseases. CRISPR-Cas9 based genome editing is a multi-step process such as designing a precise gRNA, selecting the appropriate Cas protein, and thoroughly evaluating both on-target and off-target activity of the Cas9-gRNA complex. To ensure the accuracy and effectiveness of CRISPR-Cas9 system, after the targeted DNA cleavage, the process requires careful analysis of the resultant outcomes such as indels and deletions. Following the success of artificial intelligence (AI) in various fields, researchers are now leveraging AI algorithms to catalyze and optimize the multi-step process of CRISPR-Cas9 system. To achieve this goal AI-driven applications are being integrated into each step, but existing AI predictors have limited performance and many steps still rely on expensive and time-consuming wet-lab experiments. The primary reason behind low performance of AI predictors is the gap between CRISPR and AI fields. Effective integration of AI into multi-step CRISPR-Cas9 system demands comprehensive knowledge of both domains. This paper bridges the knowledge gap between AI and CRISPR-Cas9 research. It offers a unique platform for AI researchers to grasp deep understanding of the biological foundations behind each step in the CRISPR-Cas9 multi-step process. Furthermore, it provides details of 80 available CRISPR-Cas9 system-related datasets that can be utilized to develop AI-driven applications. Within the landscape of AI predictors in CRISPR-Cas9 multi-step process, it provides insights of representation learning methods, machine and deep learning methods trends, and performance values of existing 50 predictive pipelines. In the context of representation learning methods and classifiers/regressors, a thorough analysis of existing predictive pipelines is utilized for recommendations to develop more robust and precise predictive pipelines.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany.
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Smart Data and Knowledge Services, German Research Center for Artificial Intelligence, 67663, Kaiserslautern, Germany
- Department of Computer Science, Rhineland-Palatinate Technical University Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
3
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
4
|
Ding S, Zheng J, Jia C. DeepMEns: an ensemble model for predicting sgRNA on-target activity based on multiple features. Brief Funct Genomics 2025; 24:elae043. [PMID: 39528429 PMCID: PMC11735754 DOI: 10.1093/bfgp/elae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The CRISPR/Cas9 system developed from Streptococcus pyogenes (SpCas9) has high potential in gene editing. However, its successful application is hindered by the considerable variability in target efficiencies across different single guide RNAs (sgRNAs). Although several deep learning models have been created to predict sgRNA on-target activity, the intrinsic mechanisms of these models are difficult to explain, and there is still scope for improvement in prediction performance. To overcome these issues, we propose an ensemble interpretable model termed DeepMEns based on deep learning to predict sgRNA on-target activity. By using five different training and validation datasets, we constructed five sub-regressors, each comprising three parts. The first part uses one-hot encoding, wherein 0-1 representation of the secondary structure is used as the input to the convolutional neural network (CNN) with Transformer encoder. The second part uses the DNA shape feature matrix as the input to the CNN with Transformer encoder. The third part uses positional encoding feature matrices as the proposed input into a long short-term memory network with an attention mechanism. These three parts are concatenated through the flattened layer, and the final prediction result is the average of the five sub-regressors. Extensive benchmarking experiments indicated that DeepMEns achieved the highest Spearman correlation coefficient for 6 of 10 independent test datasets as compared to previous predictors, this finding confirmed that DeepMEns can accomplish state-of-the-art performance. Moreover, the ablation analysis also indicated that the ensemble strategy may improve the performance of the prediction model.
Collapse
Affiliation(s)
- Shumei Ding
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia Zheng
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
5
|
Yang Y, Zheng Y, Zou Q, Li J, Feng H. Overcoming CRISPR-Cas9 off-target prediction hurdles: A novel approach with ESB rebalancing strategy and CRISPR-MCA model. PLoS Comput Biol 2024; 20:e1012340. [PMID: 39226304 PMCID: PMC11398643 DOI: 10.1371/journal.pcbi.1012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/13/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
The off-target activities within the CRISPR-Cas9 system remains a formidable barrier to its broader application and development. Recent advancements have highlighted the potential of deep learning models in predicting these off-target effects, yet they encounter significant hurdles including imbalances within datasets and the intricacies associated with encoding schemes and model architectures. To surmount these challenges, our study innovatively introduces an Efficiency and Specificity-Based (ESB) class rebalancing strategy, specifically devised for datasets featuring mismatches-only off-target instances, marking a pioneering approach in this realm. Furthermore, through a meticulous evaluation of various One-hot encoding schemes alongside numerous hybrid neural network models, we discern that encoding and models of moderate complexity ideally balance performance and efficiency. On this foundation, we advance a novel hybrid model, the CRISPR-MCA, which capitalizes on multi-feature extraction to enhance predictive accuracy. The empirical results affirm that the ESB class rebalancing strategy surpasses five conventional methods in addressing extreme dataset imbalances, demonstrating superior efficacy and broader applicability across diverse models. Notably, the CRISPR-MCA model excels in off-target effect prediction across four distinct mismatches-only datasets and significantly outperforms contemporary state-of-the-art models in datasets comprising both mismatches and indels. In summation, the CRISPR-MCA model, coupled with the ESB rebalancing strategy, offers profound insights and a robust framework for future explorations in this field.
Collapse
Affiliation(s)
- Yanpeng Yang
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou, China
| | - Yanyi Zheng
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Jian Li
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou, China
| | - Hailin Feng
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Zhu W, Xie H, Chen Y, Zhang G. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction. Int J Mol Sci 2024; 25:4429. [PMID: 38674012 PMCID: PMC11050447 DOI: 10.3390/ijms25084429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
CRISPR/Cas9 is a powerful genome-editing tool in biology, but its wide applications are challenged by a lack of knowledge governing single-guide RNA (sgRNA) activity. Several deep-learning-based methods have been developed for the prediction of on-target activity. However, there is still room for improvement. Here, we proposed a hybrid neural network named CrnnCrispr, which integrates a convolutional neural network and a recurrent neural network for on-target activity prediction. We performed unbiased experiments with four mainstream methods on nine public datasets with varying sample sizes. Additionally, we incorporated a transfer learning strategy to boost the prediction power on small-scale datasets. Our results showed that CrnnCrispr outperformed existing methods in terms of accuracy and generalizability. Finally, we applied a visualization approach to investigate the generalizable nucleotide-position-dependent patterns of sgRNAs for on-target activity, which shows potential in terms of model interpretability and further helps in understanding the principles of sgRNA design.
Collapse
Affiliation(s)
| | | | | | - Guishan Zhang
- College of Engineering, Shantou University, Shantou 515063, China; (W.Z.); (H.X.); (Y.C.)
| |
Collapse
|
7
|
Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA, Sanjana NE. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nat Biotechnol 2024; 42:628-637. [PMID: 37400521 DOI: 10.1038/s41587-023-01830-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Transcriptome engineering applications in living cells with RNA-targeting CRISPR effectors depend on accurate prediction of on-target activity and off-target avoidance. Here we design and test ~200,000 RfxCas13d guide RNAs targeting essential genes in human cells with systematically designed mismatches and insertions and deletions (indels). We find that mismatches and indels have a position- and context-dependent impact on Cas13d activity, and mismatches that result in G-U wobble pairings are better tolerated than other single-base mismatches. Using this large-scale dataset, we train a convolutional neural network that we term targeted inhibition of gene expression via gRNA design (TIGER) to predict efficacy from guide sequence and context. TIGER outperforms the existing models at predicting on-target and off-target activity on our dataset and published datasets. We show that TIGER scoring combined with specific mismatches yields the first general framework to modulate transcript expression, enabling the use of RNA-targeting CRISPRs to precisely control gene dosage.
Collapse
Affiliation(s)
- Hans-Hermann Wessels
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Andrew Stirn
- New York Genome Center, New York City, NY, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Eric J Kim
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Sydney K Hart
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - David A Knowles
- New York Genome Center, New York City, NY, USA.
- Department of Computer Science, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
- Department of Systems Biology, Columbia University, New York City, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York City, NY, USA.
- Department of Biology, New York University, New York City, NY, USA.
| |
Collapse
|
8
|
Luo Y, Chen Y, Xie H, Zhu W, Zhang G. Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT. Comput Biol Med 2024; 169:107932. [PMID: 38199209 DOI: 10.1016/j.compbiomed.2024.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Off-target effects of CRISPR/Cas9 can lead to suboptimal genome editing outcomes. Numerous deep learning-based approaches have achieved excellent performance for off-target prediction; however, few can predict the off-target activities with both mismatches and indels between single guide RNA (sgRNA) and target DNA sequence pair. In addition, data imbalance is a common pitfall for off-target prediction. Moreover, due to the complexity of genomic contexts, generating an interpretable model also remains challenged. To address these issues, firstly we developed a BERT-based model called CRISPR-BERT for enhancing the prediction of off-target activities with both mismatches and indels. Secondly, we proposed an adaptive batch-wise class balancing strategy to combat the noise exists in imbalanced off-target data. Finally, we applied a visualization approach for investigating the generalizable nucleotide position-dependent patterns of sgRNA-DNA pair for off-target activity. In our comprehensive comparison to existing methods on five mismatches-only datasets and two mismatches-and-indels datasets, CRISPR-BERT achieved the best performance in terms of AUROC and PRAUC. Besides, the visualization analysis demonstrated how implicit knowledge learned by CRISPR-BERT facilitates off-target prediction, which shows potential in model interpretability. Collectively, CRISPR-BERT provides an accurate and interpretable framework for off-target prediction, further contributes to sgRNA optimization in practical use for improved target specificity in CRISPR/Cas9 genome editing. The source code is available at https://github.com/BrokenStringx/CRISPR-BERT.
Collapse
Affiliation(s)
- Ye Luo
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Yaowen Chen
- College of Engineering, Shantou University, Shantou, 515063, China
| | - HuanZeng Xie
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Wentao Zhu
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Guishan Zhang
- College of Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
9
|
Dixit S, Kumar A, Srinivasan K, Vincent PMDR, Ramu Krishnan N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front Bioeng Biotechnol 2024; 11:1335901. [PMID: 38260726 PMCID: PMC10800897 DOI: 10.3389/fbioe.2023.1335901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing (GED) technologies have unlocked exciting possibilities for understanding genes and improving medical treatments. On the other hand, Artificial intelligence (AI) helps genome editing achieve more precision, efficiency, and affordability in tackling various diseases, like Sickle cell anemia or Thalassemia. AI models have been in use for designing guide RNAs (gRNAs) for CRISPR-Cas systems. Tools like DeepCRISPR, CRISTA, and DeepHF have the capability to predict optimal guide RNAs (gRNAs) for a specified target sequence. These predictions take into account multiple factors, including genomic context, Cas protein type, desired mutation type, on-target/off-target scores, potential off-target sites, and the potential impacts of genome editing on gene function and cell phenotype. These models aid in optimizing different genome editing technologies, such as base, prime, and epigenome editing, which are advanced techniques to introduce precise and programmable changes to DNA sequences without relying on the homology-directed repair pathway or donor DNA templates. Furthermore, AI, in collaboration with genome editing and precision medicine, enables personalized treatments based on genetic profiles. AI analyzes patients' genomic data to identify mutations, variations, and biomarkers associated with different diseases like Cancer, Diabetes, Alzheimer's, etc. However, several challenges persist, including high costs, off-target editing, suitable delivery methods for CRISPR cargoes, improving editing efficiency, and ensuring safety in clinical applications. This review explores AI's contribution to improving CRISPR-based genome editing technologies and addresses existing challenges. It also discusses potential areas for future research in AI-driven CRISPR-based genome editing technologies. The integration of AI and genome editing opens up new possibilities for genetics, biomedicine, and healthcare, with significant implications for human health.
Collapse
Affiliation(s)
- Shriniket Dixit
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Anant Kumar
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - P. M. Durai Raj Vincent
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| | - Nadesh Ramu Krishnan
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Santorsola M, Lescai F. The promise of explainable deep learning for omics data analysis: Adding new discovery tools to AI. N Biotechnol 2023; 77:1-11. [PMID: 37329982 DOI: 10.1016/j.nbt.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Deep learning has already revolutionised the way a wide range of data is processed in many areas of daily life. The ability to learn abstractions and relationships from heterogeneous data has provided impressively accurate prediction and classification tools to handle increasingly big datasets. This has a significant impact on the growing wealth of omics datasets, with the unprecedented opportunity for a better understanding of the complexity of living organisms. While this revolution is transforming the way these data are analyzed, explainable deep learning is emerging as an additional tool with the potential to change the way biological data is interpreted. Explainability addresses critical issues such as transparency, so important when computational tools are introduced especially in clinical environments. Moreover, it empowers artificial intelligence with the capability to provide new insights into the input data, thus adding an element of discovery to these already powerful resources. In this review, we provide an overview of the transformative effects explainable deep learning is having on multiple sectors, ranging from genome engineering and genomics, from radiomics to drug design and clinical trials. We offer a perspective to life scientists, to better understand the potential of these tools, and a motivation to implement them in their research, by suggesting learning resources they can use to move their first steps in this field.
Collapse
Affiliation(s)
| | - Francesco Lescai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Yang Y, Li J, Zou Q, Ruan Y, Feng H. Prediction of CRISPR-Cas9 off-target activities with mismatches and indels based on hybrid neural network. Comput Struct Biotechnol J 2023; 21:5039-5048. [PMID: 37867973 PMCID: PMC10589368 DOI: 10.1016/j.csbj.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The CRISPR/Cas9 system has significantly advanced the field of gene editing, yet its clinical application is constrained by the considerable challenge of off-target effects. Although numerous deep learning models for off-target prediction have been proposed, most struggle to effectively extract the nuanced features of guide RNA (gRNA) and DNA sequence pairs and to mitigate information loss during data transmission within the model. To address these limitations, we introduce a novel Hybrid Neural Network (HNN) model that employs a parallelized network structure to fully extract pertinent features from different positions and types of bases in the sequence to minimize information loss. Notably, this study marks the first application of word embedding techniques to extract information from sequence pairs that contain insertions and deletions (Indels). Comprehensive evaluation across diverse datasets indicates that our proposed model outperforms existing state-of-the-art prediction methods in off-target prediction. The datasets and source codes supporting this study can be found at https://github.com/Yang-k955/CRISPR-HW.
Collapse
Affiliation(s)
- Yanpeng Yang
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian Li
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou 311300, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yaoping Ruan
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou 311300, China
| | - Hailin Feng
- School of Mathematics and Computer science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Zhang G, Luo Y, Dai X, Dai Z. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities. Brief Bioinform 2023; 24:bbad333. [PMID: 37775147 DOI: 10.1093/bib/bbad333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
In silico design of single guide RNA (sgRNA) plays a critical role in clustered regularly interspaced, short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. Continuous efforts are aimed at improving sgRNA design with efficient on-target activity and reduced off-target mutations. In the last 5 years, an increasing number of deep learning-based methods have achieved breakthrough performance in predicting sgRNA on- and off-target activities. Nevertheless, it is worthwhile to systematically evaluate these methods for their predictive abilities. In this review, we conducted a systematic survey on the progress in prediction of on- and off-target editing. We investigated the performances of 10 mainstream deep learning-based on-target predictors using nine public datasets with different sample sizes. We found that in most scenarios, these methods showed superior predictive power on large- and medium-scale datasets than on small-scale datasets. In addition, we performed unbiased experiments to provide in-depth comparison of eight representative approaches for off-target prediction on 12 publicly available datasets with various imbalanced ratios of positive/negative samples. Most methods showed excellent performance on balanced datasets but have much room for improvement on moderate- and severe-imbalanced datasets. This study provides comprehensive perspectives on CRISPR/Cas9 sgRNA on- and off-target activity prediction and improvement for method development.
Collapse
Affiliation(s)
- Guishan Zhang
- College of Engineering, Shantou University, Shantou 515063, China
| | - Ye Luo
- College of Engineering, Shantou University, Shantou 515063, China
| | - Xianhua Dai
- School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen 518107, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Choi SR, Lee M. Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review. BIOLOGY 2023; 12:1033. [PMID: 37508462 PMCID: PMC10376273 DOI: 10.3390/biology12071033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The emergence and rapid development of deep learning, specifically transformer-based architectures and attention mechanisms, have had transformative implications across several domains, including bioinformatics and genome data analysis. The analogous nature of genome sequences to language texts has enabled the application of techniques that have exhibited success in fields ranging from natural language processing to genomic data. This review provides a comprehensive analysis of the most recent advancements in the application of transformer architectures and attention mechanisms to genome and transcriptome data. The focus of this review is on the critical evaluation of these techniques, discussing their advantages and limitations in the context of genome data analysis. With the swift pace of development in deep learning methodologies, it becomes vital to continually assess and reflect on the current standing and future direction of the research. Therefore, this review aims to serve as a timely resource for both seasoned researchers and newcomers, offering a panoramic view of the recent advancements and elucidating the state-of-the-art applications in the field. Furthermore, this review paper serves to highlight potential areas of future investigation by critically evaluating studies from 2019 to 2023, thereby acting as a stepping-stone for further research endeavors.
Collapse
Affiliation(s)
| | - Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
| |
Collapse
|
14
|
Lee M. Deep learning in CRISPR-Cas systems: a review of recent studies. Front Bioeng Biotechnol 2023; 11:1226182. [PMID: 37469443 PMCID: PMC10352112 DOI: 10.3389/fbioe.2023.1226182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
In genetic engineering, the revolutionary CRISPR-Cas system has proven to be a vital tool for precise genome editing. Simultaneously, the emergence and rapid evolution of deep learning methodologies has provided an impetus to the scientific exploration of genomic data. These concurrent advancements mandate regular investigation of the state-of-the-art, particularly given the pace of recent developments. This review focuses on the significant progress achieved during 2019-2023 in the utilization of deep learning for predicting guide RNA (gRNA) activity in the CRISPR-Cas system, a key element determining the effectiveness and specificity of genome editing procedures. In this paper, an analytical overview of contemporary research is provided, with emphasis placed on the amalgamation of artificial intelligence and genetic engineering. The importance of our review is underscored by the necessity to comprehend the rapidly evolving deep learning methodologies and their potential impact on the effectiveness of the CRISPR-Cas system. By analyzing recent literature, this review highlights the achievements and emerging trends in the integration of deep learning with the CRISPR-Cas systems, thus contributing to the future direction of this essential interdisciplinary research area.
Collapse
|
15
|
Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Brief Bioinform 2023; 24:bbad131. [PMID: 37080758 PMCID: PMC10199778 DOI: 10.1093/bib/bbad131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) is a popular and effective two-component technology used for targeted genetic manipulation. It is currently the most versatile and accurate method of gene and genome editing, which benefits from a large variety of practical applications. For example, in biomedicine, it has been used in research related to cancer, virus infections, pathogen detection, and genetic diseases. Current CRISPR/Cas9 research is based on data-driven models for on- and off-target prediction as a cleavage may occur at non-target sequence locations. Nowadays, conventional machine learning and deep learning methods are applied on a regular basis to accurately predict on-target knockout efficacy and off-target profile of given single-guide RNAs (sgRNAs). In this paper, we present an overview and a comparative analysis of traditional machine learning and deep learning models used in CRISPR/Cas9. We highlight the key research challenges and directions associated with target activity prediction. We discuss recent advances in the sgRNA-DNA sequence encoding used in state-of-the-art on- and off-target prediction models. Furthermore, we present the most popular deep learning neural network architectures used in CRISPR/Cas9 prediction models. Finally, we summarize the existing challenges and discuss possible future investigations in the field of on- and off-target prediction. Our paper provides valuable support for academic and industrial researchers interested in the application of machine learning methods in the field of CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Zeinab Sherkatghanad
- Departement d’Informatique, Universite du Quebec a Montreal, H2X 3Y7, Montreal, QC, Canada
| | - Moloud Abdar
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, 3216, Geelong, VIC, Australia
| | - Jeremy Charlier
- Departement d’Informatique, Universite du Quebec a Montreal, H2X 3Y7, Montreal, QC, Canada
| | - Vladimir Makarenkov
- Departement d’Informatique, Universite du Quebec a Montreal, H2X 3Y7, Montreal, QC, Canada
| |
Collapse
|
16
|
Wan Y, Jiang Z. TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1518-1528. [PMID: 36006888 DOI: 10.1109/tcbb.2022.3201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CRISPR/Cas9 is a widely used genome editing tool for site-directed modification of deoxyribonucleic acid (DNA) nucleotide sequences. However, how to accurately predict and evaluate the on- and off-target effects of single guide RNA (sgRNA) is one of the key problems for CRISPR/Cas9 system. Using computational methods to obtain high cell-specific sensitivity and specificity is a prerequisite for the optimal design of sgRNAs. Inspired by the work of predecessors, we found that sgRNA on-target knockout efficacy was not only related to the original sequence but also affected by important biological features. Hence, we introduce a novel approach called TransCrispr, which integrates Transformer and convolutional neural network (CNN) architecture to predict sgRNA knockout efficacy. Firstly, we encode the sequence data and send the transformed sgRNA sequence, positional information, and biological features into the network as input. Then, the convolutional neural network will automatically learn an appropriate feature representation for the sgRNA sequence and combine it with the positional information for self-attention learning of the Transformer. Finally, a regression score is generated by predicting biological features. Experiments on seven public datasets illustrate that TransCrispr outperforms state-of-the-art methods in terms of prediction accuracy and generalization ability.
Collapse
|
17
|
Sapoval N, Aghazadeh A, Nute MG, Antunes DA, Balaji A, Baraniuk R, Barberan CJ, Dannenfelser R, Dun C, Edrisi M, Elworth RAL, Kille B, Kyrillidis A, Nakhleh L, Wolfe CR, Yan Z, Yao V, Treangen TJ. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 2022; 13:1728. [PMID: 35365602 PMCID: PMC8976012 DOI: 10.1038/s41467-022-29268-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Amirali Aghazadeh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Michael G Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Advait Balaji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Richard Baraniuk
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - C J Barberan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | - Chen Dun
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - R A Leo Elworth
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Cameron R Wolfe
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Zhi Yan
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Vicky Yao
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
18
|
Li B, Ai D, Liu X. CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction. Biomolecules 2022; 12:409. [PMID: 35327601 PMCID: PMC8945678 DOI: 10.3390/biom12030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
As the third generation gene editing technology, Crispr/Cas9 has a wide range of applications. The success of Crispr depends on the editing of the target gene via a functional complex of sgRNA and Cas9 proteins. Therefore, highly specific and high on-target cleavage efficiency sgRNA can make this process more accurate and efficient. Although there are already many sophisticated machine learning or deep learning models to predict the on-target cleavage efficiency of sgRNA, prediction accuracy remains to be improved. XGBoost is good at classification as the ensemble model could overcome the deficiency of a single classifier to classify, and we would like to improve the prediction efficiency for sgRNA on-target activity by introducing XGBoost into the model. We present a novel machine learning framework which combines a convolutional neural network (CNN) and XGBoost to predict sgRNA on-target knockout efficacy. Our framework, called CNN-XG, is mainly composed of two parts: a feature extractor CNN is used to automatically extract features from sequences and predictor XGBoost is applied to predict features extracted after convolution. Experiments on commonly used datasets show that CNN-XG performed significantly better than other existing frameworks in the predicted classification mode.
Collapse
Affiliation(s)
- Bohao Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (B.L.); (D.A.)
| | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (B.L.); (D.A.)
- Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiuqin Liu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (B.L.); (D.A.)
| |
Collapse
|
19
|
Zhang ZR, Jiang ZR. Effective use of sequence information to predict CRISPR-Cas9 off-target. Comput Struct Biotechnol J 2022; 20:650-661. [PMID: 35140885 PMCID: PMC8804193 DOI: 10.1016/j.csbj.2022.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/05/2022] Open
Abstract
The CRISPR/Cas9 gene-editing system is the third-generation gene-editing technology that has been widely used in biomedical applications. However, off-target effects occurring CRISPR/Cas9 system has been a challenging problem it faces in practical applications. Although many predictive models have been developed to predict off-target activities, current models do not effectively use sequence pair information. There is still room for improved accuracy. This study aims to effectively use sequence pair information to improve the model's performance for predicting off-target activities. We propose a new coding scheme for coding sequence pairs and design a new model called CRISPR-IP for predicting off-target activity. Our coding scheme distinguishes regions with different functions in the sequence pairs through the function channel. Moreover, it distinguishes between bases and base pairs using type channels, effectively representing the sequence pair information. The CRISPR-IP model is based on CNN, BiLSTM, and the attention layer to learn features of sequence pairs. We performed performance verification on two data sets and found that our coding scheme can represent sequence pair information effectively, and the CRISPR-IP model performance is better than others. Data and source codes are available at https://github.com/BioinfoVirgo/CRISPR-IP.
Collapse
|
20
|
Niu R, Peng J, Zhang Z, Shang X. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System. Genes (Basel) 2021; 12:1878. [PMID: 34946828 PMCID: PMC8702036 DOI: 10.3390/genes12121878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system is a groundbreaking gene-editing tool, which has been widely adopted in biomedical research. However, the guide RNAs in CRISPR-Cas9 system may induce unwanted off-target activities and further affect the practical application of the technique. Most existing in silico prediction methods that focused on off-target activities possess limited predictive precision and remain to be improved. Hence, it is necessary to propose a new in silico prediction method to address this problem. In this work, a deep learning framework named R-CRISPR is presented, which devises an encoding scheme to encode gRNA-target sequences into binary matrices, a convolutional neural network as feature extractor, and a recurrent neural network to predict off-target activities with mismatch, insertion, or deletion. It is demonstrated that R-CRISPR surpasses six mainstream prediction methods with a significant improvement on mismatch-only datasets verified by GUIDE-seq. Compared with the state-of-art prediction methods, R-CRISPR also achieves competitive performance on datasets with mismatch, insertion, and deletion. Furthermore, experiments show that data concatenate could influence the quality of training data, and investigate the optimal combination of datasets.
Collapse
Affiliation(s)
| | | | | | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (R.N.); (J.P.); (Z.Z.)
| |
Collapse
|
21
|
Li X, Wang C, Peng T, Chai Z, Ni D, Liu Y, Zhang J, Chen T, Lu S. Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Comput Struct Biotechnol J 2021; 19:6108-6124. [PMID: 34900128 PMCID: PMC8632846 DOI: 10.1016/j.csbj.2021.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are prokaryotic adaptive immunity against invading phages and plasmids. Phages have evolved diverse protein inhibitors of CRISPR-Cas systems, called anti-CRISPR (Acr) proteins, to neutralize this CRISPR machinery. In response, bacteria have co-evolved Cas variants to escape phage's anti-CRISPR strategies, called anti-anti-CRISPR systems. Here we explore the anti-CRISPR allosteric inhibition and anti-anti-CRISPR rescue mechanisms between Streptococcus thermophilus Cas9 (St1Cas9) and the anti-CRISPR protein AcrIIA6 at the atomic level, by generating mutants of key residues in St1Cas9. Extensive unbiased molecular dynamics simulations show that the functional motions of St1Cas9 in the presence of AcrIIA6 differ substantially from those of St1Cas9 alone. AcrIIA6 binding triggers a shift of St1Cas9 conformational ensemble towards a less catalytically competent state; this state significantly compromises protospacer adjacent motif (PAM) recognition and nuclease activity by altering interdependently conformational dynamics and allosteric signals among nuclease domains, PAM-interacting (PI) regions, and AcrIIA6 binding motifs. Via in vitro DNA cleavage assays, we further elucidate the rescue mechanism of efficiently escaping AcrIIA6 inhibition harboring St1Cas9 triple mutations (G993K/K1008M/K1010E) in the PI domain and identify the evolutionary landscape of such mutational escape within species. Our results provide mechanistic insights into Acr proteins as natural brakes for the CRISPR-Cas systems and a promising potential for the design of allosteric Acr peptidomimetics.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Chengxiang Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Peng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Caudai C, Galizia A, Geraci F, Le Pera L, Morea V, Salerno E, Via A, Colombo T. AI applications in functional genomics. Comput Struct Biotechnol J 2021; 19:5762-5790. [PMID: 34765093 PMCID: PMC8566780 DOI: 10.1016/j.csbj.2021.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by "deep learning", along with a burst of "big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.
Collapse
Affiliation(s)
- Claudia Caudai
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Antonella Galizia
- CNR, Institute of Applied Mathematics and Information Technologies (IMATI), Genoa, Italy
| | - Filippo Geraci
- CNR, Institute for Informatics and Telematics (IIT), Pisa, Italy
| | - Loredana Le Pera
- CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Veronica Morea
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Emanuele Salerno
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Allegra Via
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Teresa Colombo
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| |
Collapse
|