1
|
Guo W, Alarcon E, Sanchez JE, Xiao C, Li L. Modeling Viral Capsid Assembly: A Review of Computational Strategies and Applications. Cells 2024; 13:2088. [PMID: 39768179 PMCID: PMC11674207 DOI: 10.3390/cells13242088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process. This review provides a comprehensive overview of studies on viral capsid assembly, emphasizing their critical role in advancing our knowledge. It examines the contributions, strengths, and limitations of different computational methods, presents key computational works in the field, and analyzes milestone studies that have shaped current research.
Collapse
Affiliation(s)
- Wenhan Guo
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Esther Alarcon
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Jason E. Sanchez
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Chuan Xiao
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA;
- Department of Computational Science, University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
2
|
Pourcel C, Essoh C, Ouldali M, Tavares P. Acinetobacter baumannii satellite phage Aci01-2-Phanie depends on a helper myophage for its multiplication. J Virol 2024; 98:e0066724. [PMID: 38829140 PMCID: PMC11264900 DOI: 10.1128/jvi.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.
Collapse
Affiliation(s)
- Christine Pourcel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Essoh
- Department of Biochemistry-Genetic, School of Biological Sciences, Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Brown C, Agarwal A, Luque A. pyCapsid: identifying dominant dynamics and quasi-rigid mechanical units in protein shells. Bioinformatics 2024; 40:btad761. [PMID: 38113434 PMCID: PMC10786678 DOI: 10.1093/bioinformatics/btad761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
SUMMARY pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures. AVAILABILITY AND IMPLEMENTATION pyCapsid's source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in the online documentation and in the pyCapsid's YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can post issues regarding pyCapsid in the repository's issues section.
Collapse
Affiliation(s)
- Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Department of Physics, San Diego State University, San Diego, CA 92116, United States
| | - Anuradha Agarwal
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92116, United States
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, United States
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, United States
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
4
|
Luque A, Reguera D. Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses. Subcell Biochem 2024; 105:693-741. [PMID: 39738961 DOI: 10.1007/978-3-031-65187-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - David Reguera
- Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
| |
Collapse
|
5
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Fernanda Mora M, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. Microb Genom 2023; 9:001100. [PMID: 37665209 PMCID: PMC10569736 DOI: 10.1099/mgen.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Present address: Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide SA, 5042, Australia
| |
Collapse
|
6
|
Papudeshi B, Vega AA, Souza C, Giles SK, Mallawaarachchi V, Roach MJ, An M, Jacobson N, McNair K, Mora MF, Pastrana K, Boling L, Leigh C, Harker C, Plewa WS, Grigson SR, Bouras G, Decewicz P, Luque A, Droit L, Handley SA, Wang D, Segall AM, Dinsdale EA, Edwards RA. Host interactions of novel Crassvirales species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531146. [PMID: 36945541 PMCID: PMC10028833 DOI: 10.1101/2023.03.05.531146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. Impact statement Bacteriophages play a crucial role in shaping microbial communities within the human gut. Among the most dominant bacteriophages in the human gut microbiome are Crassvirales phages, which infect Bacteroides. Despite being widely distributed, only a few Crassvirales genomes have been isolated, leading to a limited understanding of their biology, ecology, and evolution. This study isolated and characterized three novel Crassvirales genomes belonging to two different families, and three genera, but infecting one bacterial host, Bacteroides cellulosilyticus WH2. Notably, the observation confirmed the phages are not co-evolving with their bacterial hosts, rather have a shared ability to exploit similar features in their bacterial host. Additionally, the identification of a critical viral protein undergoing purifying selection and interacting with the bacterial receptors opens doors to targeted therapies against bacterial infections. Given Bacteroides role in polysaccharide degradation in the human gut, our findings advance our understanding of the phage-host interactions and could have important implications for the development of phage-based therapies. These discoveries may hold implications for improving gut health and metabolism to support overall well-being. Data summary The genomes used in this research are available on Sequence Read Archive (SRA) within the project, PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. ' frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11 are all available on GenBank with accessions NZ_CP072251.1 ( B. cellulosilyticus WH2), QQ198717 (Bc01), QQ198718 (Bc03), and QQ198719 (Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michelle An
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Nicole Jacobson
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Katelyn McNair
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Maria Fernanda Mora
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Karina Pastrana
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Christopher Leigh
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clarice Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Will S. Plewa
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Przemysław Decewicz
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Antoni Luque
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA, 992182, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott A. Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| |
Collapse
|
7
|
George EE, Barcytė D, Lax G, Livingston S, Tashyreva D, Husnik F, Lukeš J, Eliáš M, Keeling PJ. A single cryptomonad cell harbors a complex community of organelles, bacteria, a phage, and selfish elements. Curr Biol 2023; 33:1982-1996.e4. [PMID: 37116483 DOI: 10.1016/j.cub.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada.
| | - Dovilė Barcytė
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic; Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Gordon Lax
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Sam Livingston
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, 701 00 Ostrava, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver V6T 1Z4, Canada
| |
Collapse
|
8
|
Pchelin IM, Tkachev PV, Azarov DV, Gorshkov AN, Drachko DO, Zlatogursky VV, Dmitriev AV, Goncharov AE. A Genome of Temperate Enterococcus Bacteriophage Placed in a Space of Pooled Viral Dark Matter Sequences. Viruses 2023; 15:216. [PMID: 36680256 PMCID: PMC9865981 DOI: 10.3390/v15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
In the human gut, temperate bacteriophages interact with bacteria through predation and horizontal gene transfer. Relying on taxonomic data, metagenomic studies have associated shifts in phage abundance with a number of human diseases. The temperate bacteriophage VEsP-1 with siphovirus morphology was isolated from a sample of river water using Enterococcus faecalis as a host. Starting from the whole genome sequence of VEsP-1, we retrieved related phage genomes in blastp searches of the tail protein and large terminase sequences, and blastn searches of the whole genome sequences, with matches compiled from several different databases, and visualized a part of viral dark matter sequence space. The genome network and phylogenomic analyses resulted in the proposal of a novel genus "Vespunovirus", consisting of temperate, mainly metagenomic phages infecting Enterococcus spp.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Pavel V. Tkachev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Daniil V. Azarov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Andrey N. Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
- Laboratory of Pathomorphology, Almazov National Research Centre, 197341 Saint Petersburg, Russia
| | - Daria O. Drachko
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Vasily V. Zlatogursky
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander V. Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Artemiy E. Goncharov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| |
Collapse
|
9
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Hufsky F, Beslic D, Boeckaerts D, Duchene S, González-Tortuero E, Gruber AJ, Guo J, Jansen D, Juma J, Kongkitimanon K, Luque A, Ritsch M, Lencioni Lovate G, Nishimura L, Pas C, Domingo E, Hodcroft E, Lemey P, Sullivan MB, Weber F, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2022. Viruses 2022; 14:973. [PMID: 35632715 PMCID: PMC9144528 DOI: 10.3390/v14050973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Denis Beslic
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Dimitri Boeckaerts
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (D.B.); (C.P.)
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia;
| | - Enrique González-Tortuero
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- School of Science, Engineering and Environment (SEE), University of Salford, Salford M5 4WT, UK
| | - Andreas J. Gruber
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Jiarong Guo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Departments of Microbiology, and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Daan Jansen
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, KU Leuven, 3000 Leuven, Belgium
| | - John Juma
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya;
- South African National Bioinformatics Institute, South African MRC Bioinformatics Unit, Cape Town 7530, South Africa
| | - Kunaphas Kongkitimanon
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Antoni Luque
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Viral Information Institute, San Diego State University, San Diego, CA 92116, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92116, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92116, USA
| | - Muriel Ritsch
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel Lencioni Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Célia Pas
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (D.B.); (C.P.)
| | - Esteban Domingo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emma Hodcroft
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Philippe Lemey
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew B. Sullivan
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Departments of Microbiology, and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Friedemann Weber
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Virology, Veterinary Medicine, Justus-Liebig University, 35390 Gießen, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (E.G.-T.); (A.J.G.); (J.G.); (D.J.); (K.K.); (A.L.); (M.R.); (G.L.L.); (L.N.); (E.D.); (E.H.); (P.L.); (M.B.S.); (F.W.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|