1
|
Borah A, Srivastava A. Impact of extracellular enzymes on Staphylococcus aureus host tissue adaptation and infection. APMIS 2025; 133:e13502. [PMID: 39604200 DOI: 10.1111/apm.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Staphylococcus aureus is a multi-host pathogen that can colonize and infect both humans and livestock in a tissue-specific manner. This amazing feature of the pathogen is mainly facilitated by the surplus virulence agents produced upon necessity and favorable environmental factors. These factors are adept at damaging cellular barriers, manipulating host immune factors, and circumventing the host complement system. The delicate balance between the timely release of virulent factors and the regulation of their production underscores the significance of the exoenzyme network. Moreover, the intricate relationship between the pathogen and host tissue highlights the importance of understanding tissue-specific phenotypes for effective therapeutic strategies. Here, we provide a review on the diverse role played by the extracellular enzymes of S. aureus in tissue-specific infection and systemic colonization leading to distinctive diseased conditions. The article highlights the need to study the role of staphylococcal exoenzymes in various systemic invasions, their impact on the deterioration of host tissue, and the regulation of S. aureus virulence factors.
Collapse
Affiliation(s)
- Atlanta Borah
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| | - Anand Srivastava
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| |
Collapse
|
2
|
Prusty JS, Kumar A. In silico-driven identification and experimental confirmation of antifungal proteins (AFPs) against Candidaalbicans. Biochimie 2025; 228:44-57. [PMID: 39134296 DOI: 10.1016/j.biochi.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mycoses infect millions of people annually across the world. The most common mycosis agent, Candida albicans is responsible for a great deal of illness and death. C. albicans infection is becoming more widespread and the current antifungals polyenes, triazoles, and echinocandins are less efficient against it. Investigating antifungal peptides (AFPs) as therapeutic is gaining momentum. Therefore, we used MALDI-TOF/MS analysis to identify AFPs and protein-protein docking to analyze their interactions with the C. albicans target protein. Some microorganisms with strong antifungal action against C. albicans were selected for the isolation of AFPs. Using MALDI-TOF/MS, we identified 3 AFPs Chitin binding protein (ACW83017.1; Bacillus licheniformis), the bifunctional protein GlmU (BBQ13478.1; Stenotrophomonas maltophilia), and zinc metalloproteinase aureolysin (BBA25172.1; Staphylococcus aureus). These AFPs showed robust interactions with C. albicans target protein Sap5. We deciphered some important residues in identified APFs and highlighted interaction with Sap5 through hydrogen bonds, protein-protein interactions, and salt bridges using protein-protein docking and MD simulations. The three discovered AFPs-Sap5 complexes exhibit different levels of stability, as seen by the RMSD analysis and interaction patterns. Among protein-protein interactions, the remarkable stability of the BBQ25172.1-2QZX complex highlights the role of salt bridges and hydrogen bonds. Identified AFPs could be further studied for developing successful antifungal candidates and peptide-based new antifungal therapeutic strategies as fresh insights into addressing antifungal resistance also.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, CG, India.
| |
Collapse
|
3
|
Duarte ML, Eto C, Mazzon RR, Melocco G, Esposito F, Lincopan N, Ferreira FA. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) RdJ clone (CC5-ST105-SCCmecII-t002) in Santa Catarina, Brazil. Microb Pathog 2024; 195:106903. [PMID: 39208961 DOI: 10.1016/j.micpath.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The emergence of highly successful genetic lineages of methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge in human healthcare due to increased morbidity and mortality rates. The RdJ clone (CC5-ST105-SCCmecII-t002 lineage), previously identified in Rio de Janeiro, Brazil, was linked to bloodstream infections and features a mutation in the aur gene (encoding aureolysin). Additionally, clinical isolates derived from this clone were more effective at evading monocytic immune responses. This study aimed to detect the RdJ clone among clinical MRSA isolated in Santa Catarina (SC) and examine its antimicrobial resistance and phagocytosis evasion capabilities. Our findings revealed the RdJ clone in 20 % of MRSA isolates, all exhibiting multiresistance. RdJ clone isolates from SC did not demonstrate a decreased rate of phagocytosis compared to CC5 non-RdJ isolates. Structural analysis suggests that the aur mutation is unlikely to significantly impact aureolysin activity. Genomic analysis of one isolate unveiled a genetic variant of the RdJ clone, sharing lineage and gene distribution but lacking the aur mutation. This study enhances the understanding of the clinical and epidemiologic risks associated with the RdJ clone and the biological mechanisms underlying its spreading in SC.
Collapse
Affiliation(s)
- Matheus Luís Duarte
- Laboratory of Bacterial Molecular Genetics (GeMBac), Department of Microbiology, Immunology and Parasitology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade88040-960, Florianópolis, SC, Brazil
| | - Carolina Eto
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade, 88040-960, Florianópolis, SC, Brazil
| | - Ricardo Ruiz Mazzon
- Laboratory of Bacterial Molecular Genetics (GeMBac), Department of Microbiology, Immunology and Parasitology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade88040-960, Florianópolis, SC, Brazil
| | - Gregory Melocco
- Laboratory of Resistome and Therapeutic Alternatives, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Avenida Professor Lineu Prestes, Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fernanda Esposito
- Laboratory of Resistome and Therapeutic Alternatives, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Avenida Professor Lineu Prestes, Butantã, 05508-000, São Paulo, SP, Brazil
| | - Nilton Lincopan
- Laboratory of Resistome and Therapeutic Alternatives, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Avenida Professor Lineu Prestes, Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fabienne Antunes Ferreira
- Laboratory of Bacterial Molecular Genetics (GeMBac), Department of Microbiology, Immunology and Parasitology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Reitor João David Ferreira Lima, Trindade88040-960, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
5
|
Bozin TN, Berdyshev IM, Chukhontseva KN, Karaseva MA, Konarev PV, Varizhuk AM, Lesovoy DM, Arseniev AS, Kostrov SV, Bocharov EV, Demidyuk IV. NMR structure of emfourin, a novel protein metalloprotease inhibitor: Insights into the mechanism of action. J Biol Chem 2023; 299:104585. [PMID: 36889586 PMCID: PMC10124921 DOI: 10.1016/j.jbc.2023.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis. Arguably, emfourin-like inhibitors participate in the regulation of bacterial pathogenesis by controlling PLP activity. Here, we determined the 3D structure of M4in using solution NMR spectroscopy. The obtained structure demonstrated no significant similarity to known protein structures. This structure was used to model the M4in-enzyme complex and the complex model was verified by small-angle X-ray scattering. Based on the model analysis, we propose a molecular mechanism for the inhibitor, which was confirmed by site-directed mutagenesis. We show that two spatially close flexible loop regions are critical for the inhibitor-protease interaction. One region includes aspartic acid forming a coordination bond with catalytic Zn2+ of the enzyme and the second region carries hydrophobic amino acids interacting with protease substrate binding sites. Such an active site structure corresponds to the noncanonical inhibition mechanism. This is the first demonstration of such a mechanism for protein inhibitors of thermolysin family metalloproteases, which puts forward M4in as a new basis for the development of antibacterial agents relying on selective inhibition of prominent factors of bacterial pathogenesis belonging to this family.
Collapse
Affiliation(s)
- Timur N Bozin
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia; National Research Centre "Kurchatov Institute", Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor M Berdyshev
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ksenia N Chukhontseva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Maria A Karaseva
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr V Konarev
- Shubnikov Institute of Crystallography of the Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Anna M Varizhuk
- Moscow Institute of Physics and Technology, State University, Dolgoprudny, Russia
| | - Dmitry M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Kostrov
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, State University, Dolgoprudny, Russia
| | - Ilya V Demidyuk
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
6
|
Książek M, Goulas T, Mizgalska D, Rodríguez-Banqueri A, Eckhard U, Veillard F, Waligórska I, Benedyk-Machaczka M, Sochaj-Gregorczyk AM, Madej M, Thøgersen IB, Enghild JJ, Cuppari A, Arolas JL, de Diego I, López-Pelegrín M, Garcia-Ferrer I, Guevara T, Dive V, Zani ML, Moreau T, Potempa J, Gomis-Rüth FX. A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen Tannerella forsythia. Chem Sci 2023; 14:869-888. [PMID: 36755705 PMCID: PMC9890683 DOI: 10.1039/d2sc04166a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct β-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.
Collapse
Affiliation(s)
- Mirosław Książek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly Temponera str. Karditsa 43100 Greece
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Irena Waligórska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Alicja M. Sochaj-Gregorczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityGronostajowa 7Kraków 30-387Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Anna Cuppari
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Joan L. Arolas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| | - Iñaki de Diego
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Sample Environment and Characterization Group, European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany
| | - Mar López-Pelegrín
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Irene Garcia-Ferrer
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), ERL CNRS 9004Gif-sur-Yvette 91191France
| | - Marie-Louise Zani
- Departement de Biochimie, Université de Tours10 Bd. TonelléTours Cedex 37032France
| | | | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| |
Collapse
|
7
|
Wei R, Wang X, Wang Q, Qiang G, Zhang L, Hu HY. Hyperglycemia in Diabetic Skin Infections Promotes Staphylococcus aureus Virulence Factor Aureolysin: Visualization by Molecular Imaging. ACS Sens 2022; 7:3416-3421. [PMID: 36351204 DOI: 10.1021/acssensors.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial skin infections are common in diabetic patients, with Staphylococcus aureus (S. aureus) being the most commonly isolated, causing comorbidities such as increased mortality and long-term hospitalization. While precise mechanisms remain to be determined, hyperglycemia represents an important pathogenetic factor responsible for the increased risk of S. aureus infection. Herein, we constructed a series of ratiometric fluorescent molecular probes for aureolysin (Aur), a major virulence factor in S. aureus. Using probe 1, we were able to determine specific Aur activity in both cells and tissues. We also observed that elevated glucose levels led to 2-fold higher Aur expression in S. aureus cultures. In a diabetic mouse model, we used molecular imaging to demonstrate that hyperglycemia tripled S. aureus Aur virulence compared to nondiabetic mice, resulting in more severe infections.
Collapse
Affiliation(s)
- Rao Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Ramírez-Larrota JS, Eckhard U. An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules 2022; 12:306. [PMID: 35204806 PMCID: PMC8869686 DOI: 10.3390/biom12020306] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective tissue or the immune system. Importantly, both secreted proteases and the capability of biofilm formation are considered key virulence factors. In this review, we focus on the basic aspects of proteolysis and protein secretion, and highlight various secreted bacterial proteases involved in biofilm establishment and dispersal, and how they aid bacteria in immune evasion by degrading immunoglobulins and components of the complement system. Thus, secreted proteases represent not only prominent antimicrobial targets but also enzymes that can be used for dedicated applications in biotechnology and biomedicine, including their use as laundry detergents, in mass spectrometry for the glycoprofiling of antibodies, and the desensitization of donor organs intended for positive crossmatch patients.
Collapse
Affiliation(s)
| | - Ulrich Eckhard
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15-21, 08028 Barcelona, Spain;
| |
Collapse
|