1
|
Tian M, Tang X, Ouyang Z, Li Y, Bai X, Chen B, Yue S, Hu P, Bo X, Ren C, Chen H, Lu M. Long-range transcription factor binding sites clustered regions may mediate transcriptional regulation through phase-separation interactions in early human embryo. Comput Struct Biotechnol J 2024; 23:3514-3526. [PMID: 39435341 PMCID: PMC11492133 DOI: 10.1016/j.csbj.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
In mammals, during the post-fertilization pre-implantation phase, the expression of cell type-specific genes is crucial for normal embryonic development, which is regulated by cis-regulatory elements (CREs). TFs control gene expression by interacting with CREs. Research shows that transcription factor binding sites (TFBSs) reflect the general characteristics of the regulatory genome. Here, we identified TFBSs from chromatin accessibility data in five stages of early human embryonic development, and quantified transcription factor binding sites-clustered regions (TFCRs) and their complexity (TC). Assigning TC values to TFCRs has made it possible to assess the functionality of these regulatory elements in a more quantitative way. Our findings reveal a robust correlation between TFCR complexity and gene expression starting from the 8Cell stage, which is when the zygotic genome is activated in humans. Furthermore, we have defined long-range TFCRs (LR-TFCRs) and conjecture that LR-TFCRs may regulate gene expression through phase-separation mechanisms during the early stages of human embryonic development.
Collapse
Affiliation(s)
- Mengge Tian
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaohan Tang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Shutong Yue
- Academy of Military Medical Sciences, Beijing 100850, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pengzhen Hu
- Academy of Military Medical Sciences, Beijing 100850, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Meisong Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
2
|
Shuai Y, Zhang H, Liu C, Wang J, Jiang Y, Sun J, Gao X, Bo X, Xiao X, Liao X, Huang C, Chen H, Jiang G. CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine modification of p21 mRNA and promote bladder cancer progression. Cell Death Dis 2024; 15:9. [PMID: 38182571 PMCID: PMC10770081 DOI: 10.1038/s41419-023-06373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Chromatin accessibility plays important roles in revealing the regulatory networks of gene expression, while its application in bladder cancer is yet to be fully elucidated. Chloride intracellular channel 3 (CLIC3) protein has been reported to be associated with the progression of some tumors, whereas the specific mechanism of CLIC3 in tumor remains unclear. Here, we screened for key genes in bladder cancer through the identification of transcription factor binding site clustered region (TFCR) on the basis of chromatin accessibility and TF motif. CLIC3 was identified by joint profiling of chromatin accessibility data with TCGA database. Clinically, CLIC3 expression was significantly elevated in bladder cancer and was negatively correlated with patient survival. CLIC3 promoted the proliferation of bladder cancer cells by reducing p21 expression in vitro and in vivo. Mechanistically, CLIC3 interacted with NAT10 and inhibited the function of NAT10, resulting in the downregulation of ac4C modification and stability of p21 mRNA. Overall, these findings uncover an novel mechanism of mRNA ac4C modification and CLIC3 may act as a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Junting Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yangkai Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xincheng Gao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xingyuan Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin Liao
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Lee JW, Lee HY. Exploring distinct properties of endometrial stem cells through advanced single-cell analysis platforms. Stem Cell Res Ther 2023; 14:379. [PMID: 38124100 PMCID: PMC10734114 DOI: 10.1186/s13287-023-03616-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|