1
|
Chu Y, Wei M, Cao Z, Chen L, Tan J, Bao W, Yang F, Zhang Y, Lin Y, Zhang Y, Li S, Lv C, Zhou W, Du H, Shen L, Huai C, Wang Z, Qin S. Integrative analysis based on CRISPR screen identifies apilimod as a potential therapeutic agent for cisplatin-induced acute kidney injury treatment. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1770-1785. [PMID: 40138089 DOI: 10.1007/s11427-025-2874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Acute kidney injury (AKI), a life-threatening side effect of cisplatin therapy, significantly limits the drug's therapeutic potential. In this study, we conducted a genome-wide CRISPR/Cas9 knockout screen in human renal tubular epithelial cells, integrating the results with transcriptome analyses and the Connectivity Map (CMap) database. Apilimod and elacridar emerged as the top two candidates of mitigating cisplatin-induced nephrotoxicity, with apilimod demonstrating superior efficacy in drug matrix experiments. Apilimod reduced cisplatin-induced apoptosis, inflammation and reactive oxygen species (ROS) generation. Transcriptome analyses suggested that apilimod may protect against cisplatin-induced nephrotoxicity via modulating lipid metabolism. In vitro experiments revealed that apilimod significantly ameliorated cisplatin-induced lipotoxicity by enhancing lipid clearance and upregulating PGC1α-mediated fatty acid oxidation. Mechanism experiments showed that apilimod induces the nuclear translocation of TFEB through the inhibition of its target, PIKfyve, thereby enhancing PGC1α expression and ameliorating lipotoxicity. These protective effects of apilimod were simulated by siRNA-mediated PIKfyve knockdown and diminished by the PGC1α inhibitor SR-18292 and siRNA targeting TFEB, confirming the role of the PIKfyve/TFEB/PGC1α signaling axis in apilimod's renoprotective effects. In vivo, apilimod alleviated apoptosis, inflammation, and lipid accumulation in a cisplatin-induced AKI mouse model. Additionally, apilimod treatment did not compromise the antitumor effect of cisplatin in cancer cells or tumor-bearing mice. Overall, our study suggests that apilimod could be a promising therapeutic agent for the treatment of cisplatin-induced AKI and revealed its underlying molecular mechanism.
Collapse
Affiliation(s)
- Yunpeng Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Muyun Wei
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Baoshan Branch, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201900, China
| | - Zhongyu Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Jie Tan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Wei Bao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Fan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yingtian Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yunxiao Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Yutong Zhang
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiyi Li
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cai Lv
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 100062, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China
| | - Zhenting Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, 100062, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200230, China.
| |
Collapse
|
2
|
Niu YR, Xiang MD, Yang WW, Fang YT, Qian HL, Sun YK. NAD+/SIRT1 pathway regulates glycolysis to promote oxaliplatin resistance in colorectal cancer. World J Gastroenterol 2025; 31:100785. [PMID: 40124268 PMCID: PMC11924001 DOI: 10.3748/wjg.v31.i11.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND Glycolysis provides growth advantages and leads to drug resistance in colorectal cancer (CRC) cells. SIRT1, an NAD+-dependent deacetylase, regulates various cellular processes, and its upregulation results in antitumor effects. This study investigated the role of SIRT1 in metabolic reprogramming and oxaliplatin resistance in CRC cells. AIM To investigate the role of SIRT1 in metabolic reprogramming and overcoming oxaliplatin resistance in CRC cells. METHODS We performed transcriptome sequencing of human CRC parental cells and oxaliplatin-resistant cells to identify differentially expressed genes. Key regulators were identified via the LINCS database. NAD+ levels were measured by flow cytometry, and the effects of SIRT1 on oxaliplatin sensitivity were assessed by MTS assays, colony formation assays, and xenograft models. Glycolytic function was measured using Western blot and Seahorse assays. RESULTS Salermide, a SIRT1 inhibitor, was identified as a candidate compound that enhances oxaliplatin resistance. In oxaliplatin-resistant cells, SIRT1 was downregulated, whereas γH2AX and PARP were upregulated. PARP activation led to NAD+ depletion and SIRT1 inhibition, which were reversed by PARP inhibitor treatment. The increase in SIRT1 expression overcame oxaliplatin resistance, and while SIRT1 inhibition increased glycolysis, the increase in SIRT1 inhibited glycolysis in resistant CRC cells, which was characterized by reduced expression of the glycolytic enzymes PKM2 and LDHA, as well as a decreased extracellular acidification rate. The PKM2 inhibitor shikonin inhibited glycolysis and reversed oxaliplatin resistance induced by SIRT1 inhibition. CONCLUSION SIRT1 expression is reduced in oxaliplatin-resistant CRC cells due to PARP activation, which in turn increases glycolysis. Restoring SIRT1 expression reverses oxaliplatin resistance in CRC cells, offering a promising therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mi-Dan Xiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- National Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
3
|
Chang C, Cheng YY, Kamlapurkar S, White S, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N. GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15. Gynecol Oncol 2024; 185:8-16. [PMID: 38342006 PMCID: PMC11179984 DOI: 10.1016/j.ygyno.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-β growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Ya-Yun Cheng
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Shriya Kamlapurkar
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Sierra White
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Priscilla W Tang
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal T Elhaw
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Zaineb Javed
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA; Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Katherine M Aird
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rébécca Phaëton
- Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Reitsam NG, Grozdanov V, Löffler CML, Muti HS, Grosser B, Kather JN, Märkl B. Novel biomarker SARIFA in colorectal cancer: highly prognostic, not genetically driven and histologic indicator of a distinct tumor biology. Cancer Gene Ther 2024; 31:207-216. [PMID: 37990064 PMCID: PMC10874891 DOI: 10.1038/s41417-023-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
SARIFA (Stroma AReactive Invasion Front Areas) has recently emerged as a promising histopathological biomarker for colon and gastric cancer. To elucidate the underlying tumor biology, we assessed SARIFA-status in tissue specimens from The-Cancer-Genome-Atlas (TCGA) cohorts COAD (colonic adenocarcinoma) and READ (rectal adenocarcinoma). For the final analysis, 207 CRC patients could be included, consisting of 69 SARIFA-positive and 138 SARIFA-negative cases. In this external validation cohort, H&E-based SARIFA-positivity was strongly correlated with unfavorable overall, disease-specific, and progression-free survival, partly outperforming conventional prognostic factors. SARIFA-positivity was not associated with known high-risk genetic profiles, such as BRAF V600E mutations or microsatellite-stable status. Transcriptionally, SARIFA-positive CRCs exhibited an overlap with CRC consensus molecular subtypes CMS1 and CMS4, along with distinct differential gene expression patterns, linked to lipid metabolism and increased stromal cell infiltration scores (SIIS). Gene-expression-based drug sensitivity prediction revealed a differential treatment response in SARIFA-positive CRCs. In conclusion, SARIFA represents the H&E-based counterpart of an aggressive tumor biology, demonstrating a partial overlap with CMS1/4 and also adding a further biological layer related to lipid metabolism. Our findings underscore SARIFA-status as an ideal biomarker for refined patient stratification and novel drug developments, particularly given its cost-effective assessment based on routinely available H&E slides.
Collapse
Affiliation(s)
- Nic G Reitsam
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
| | | | - Chiara M L Löffler
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
| | - Hannah S Muti
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Bianca Grosser
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
5
|
Chang C, Cheng YY, Kamlapurkar S, White SR, Tang PW, Elhaw AT, Javed Z, Aird KM, Mythreye K, Phaëton R, Hempel N. GPX3 supports ovarian cancer tumor progression in vivo and promotes expression of GDF15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577037. [PMID: 38352432 PMCID: PMC10862694 DOI: 10.1101/2024.01.24.577037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Objective We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-β growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Ya-Yun Cheng
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Shriya Kamlapurkar
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Priscilla W Tang
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal T Elhaw
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Zaineb Javed
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Katherine M Aird
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rébécca Phaëton
- Department of Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| |
Collapse
|
6
|
Zhou R, Li L, Zhang Y, Liu Z, Wu J, Zeng D, Sun H, Liao W. Integrative analysis of co-expression pattern of solute carrier transporters reveals molecular subtypes associated with tumor microenvironment hallmarks and clinical outcomes in colon cancer. Heliyon 2024; 10:e22775. [PMID: 38163210 PMCID: PMC10754711 DOI: 10.1016/j.heliyon.2023.e22775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| |
Collapse
|
7
|
Zhou R, Liu Y, Wang Z, Lv J, Liao W, Shen Z, Rong X. Nanoparticle-Based MRI-Guided Tumor Microenvironment Heating via the Synergistic Effect of Ferroptosis and Inhibition of TGF-β Signaling. Adv Healthc Mater 2023; 12:e2300176. [PMID: 37093559 DOI: 10.1002/adhm.202300176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Although induction of ferroptosis and inhibition of transforming growth factor-β (TGF-β) signaling are both effective ways to reform the tumor microenvironment (TME) and render low-immunogenic tumors responsive to immune checkpoint inhibitor therapy, dose-limiting side effects remain major obstacles hindering their clinical application. Herein, novel sorafenib and anti-TGF-β antibody loaded Fe3 O4 /Gd2 O3 hybrid nanoparticles with conjugation of arginine-glycine-aspartic dimer (FeGd-HN@Sorafenib@TGF-β-antibody@RGD2, FG-STR) are developed. Sorafenib significantly enhances FeGd-HN-triggered ferroptosis and improves maturation and phagocytosis of dendritic cells (DCs) by inducing damage-associated molecular patterns released from ferroptotic cancer cells, while the anti-TGF-β antibody further synergizes with enhanced ferroptosis to promote DC maturation and the recruitment of CD8+ T cells, thus heating the TME. Moreover, the incorporation of RGD2 facilitates the uptake of the FG-STR in tumor cells which lead to a significant dosage reduction of both sorafenib and anti-TGF-β antibody to avoid dose-limiting toxicities. Finally, in vitro and in vivo experiments show that FG-STR has significantly superior intrinsic magnetic resonance imaging (MRI) capability than that of Gadovist, effectively inhibits tumor growth and lung metastasis, and increases the efficacy of anti-programmed cell death-1 treatment. Taken together, this study provides a promising strategy for new advanced MRI-guided TME heating therapies.
Collapse
Affiliation(s)
- Rui Zhou
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| | - Yantan Liu
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhaojun Wang
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| | - Jinyu Lv
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| | - Wangjun Liao
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxiang Rong
- Nanfang Hospital, Southern Medical University, Department of Oncology, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
8
|
Zhou R, Li L, Xi S, Zhang Y, Liu Z, Zeng D, Sun H, Wu J, Wang L, Shi M, Bin J, Liao Y, Liao W. Expression pattern of secretory-cell-related transcriptional signatures in colon adenocarcinomas defines tumor microenvironment characteristics and correlates with clinical outcomes. Mol Oncol 2023; 17:499-517. [PMID: 36349418 PMCID: PMC9980301 DOI: 10.1002/1878-0261.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Despite the connection of secretory cells to distinct mucus-containing colon cancer histological subtypes and the interaction of secretory cells with immune cells in the pathogenesis of intestinal inflammatory diseases, whether the secretory cell signatures are associated with tumor microenvironment (TME) heterogeneity and can aid in colon cancer patient classification have not been investigated. Here, by performing the principal component analysis and consensus clustering analysis, we identified four distinct expression patterns based on secretory cell signatures which were significantly associated with different clinical behaviors, TME landscape, pathway activation, genomic mutations, and DNA methylation characteristics. Subsequently, a 'SCS score' model was constructed. The high SCS score indicated a pattern of 'secretory cell subtype 2', which was characterized by stromal infiltration and activation, and predicted poor prognosis and low sensitivity to fluorouracil-based chemotherapy and immunotherapy, but high sensitivity to PI3K catalytic subunit inhibitors. In conclusion, our study comprehensively uncovered the tumor heterogeneity related to secretory cell signature expression patterns. Moreover, the SCS score can supplement routine histopathological assessments to guide personalized therapeutic strategies in colon cancer patients.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
9
|
Hu Q, Chen J, Yang W, Xu M, Zhou J, Tan J, Huang T. GPX3 expression was down-regulated but positively correlated with poor outcome in human cancers. Front Oncol 2023; 13:990551. [PMID: 36845676 PMCID: PMC9947857 DOI: 10.3389/fonc.2023.990551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Cancer is a crucial public health problem and one of the leading causes of death worldwide. Previous studies have suggested that GPX3 may be involved in cancer metastasis and chemotherapy resistance. However, how GPX3 affects cancer patients' outcomes and the underlying mechanism remains unclear. Methods Sequencing data and clinical data from TCGA, GTEx, HPA, and CPTAC were used to explore the relationship between GPX3 expression and clinical features. Immunoinfiltration scores were used to assess the relationship between GPX3 and the tumor immune microenvironment. Functional enrichment analysis was used to predict the role of GPX3 in tumors. Gene mutation frequency, methylation level, and histone modification were used to predict the GPX3 expression regulation method. Breast, ovarian, colon, and gastric cancer cells were used to investigate the relationship between GPX3 expression and cancer cell metastasis, proliferation, and chemotherapy sensitivity. Results GPX3 is down-regulated in various tumor tissues, and GPX3 expression level can be used as a marker for cancer diagnosis. However, GPX3 expression is associated with higher stage and lymph node metastasis, as well as poorer prognosis. GPX3 is closely related to thyroid function and antioxidant function, and its expression may be regulated by epigenetic inheritance such as methylation modification or histone modification. In vitro experiments, GPX3 expression is associated with cancer cell sensitivity to oxidant and platinum-based chemotherapy and is involved in tumor metastasis in oxidative environments. Discussion We explored the relationship between GPX3 and clinical features, immune infiltration characteristics, migration and metastasis, and chemotherapy sensitivities of human cancers. We further investigated the potential genetic and epigenetic regulation of GPX3 in cancer. Our results suggested that GPX3 plays a complicated role in the tumor microenvironment, simultaneously promoting metastasis and chemotherapy resistance in human cancers.
Collapse
Affiliation(s)
| | | | | | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Tan
- *Correspondence: Tao Huang, ; Jie Tan,
| | - Tao Huang
- *Correspondence: Tao Huang, ; Jie Tan,
| |
Collapse
|
10
|
Zhou R, Xie F, Liu K, Zhou X, Chen X, Chen J, Xi S, Huang Z, Rong X. Cross talk between acetylation and methylation regulators reveals histone modifier expression patterns posing prognostic and therapeutic implications on patients with colon cancer. Clin Epigenetics 2022; 14:70. [PMID: 35606881 PMCID: PMC9128235 DOI: 10.1186/s13148-022-01290-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/15/2022] [Indexed: 11/14/2022] Open
Abstract
Background Alterations in histone modifications have been reported to be related to tumorigenicity and tumor progression. However, whether histone modification can aid the classification of patients or influence clinical behavior in patients with colon cancer remains unclear. Therefore, this study aimed to evaluate histone modifier expression patterns using the unsupervised clustering of the transcriptomic expressions of 88 histone acetylation and methylation regulators. Results In this study, by consensus clustering analysis based on the transcriptome data of 88 histone modification regulators, we identified four distinct expression patterns of histone modifiers associated with different prognoses, intrinsic fluorouracil sensitivities, biological pathways, and tumor microenvironment characteristics among 1372 colon cancer samples. In these four clusters, the HMC4 cluster represented a stroma activation phenotype characterized by both the worst prognosis and lowest response rates to fluorouracil treatment. Then, we established a scoring scheme comprising 155 genes designated as “HM_score” by using the Boruta algorithm to distinguish colon cancer patients within the HMC4 cluster. Patients with a high HM_score were considered to have high stromal pathway activation, high stromal fraction, and an unfavorable prognosis. Further analyses indicated that a high HM_score also correlated with reduced therapeutic benefits from fluorouracil chemotherapy. Moreover, through CRISPR library screening, ZEB2 was found to be a critical driver gene that mediates fluorouracil resistance, which is associated with histone modifier expression patterns. Conclusions This study highlights that characterizing histone modifier expression patterns may help better understand the epigenetic mechanisms underlying tumor heterogeneity in patients with colon cancer and provide more personalized therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01290-y.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Fuli Xie
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Kuncai Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xuee Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xuemei Chen
- Department of Radiotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|