1
|
Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137934. [PMID: 35805592 PMCID: PMC9265816 DOI: 10.3390/ijerph19137934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring.
Collapse
|
2
|
D'Azeredo Orlando MT, Galvão ES, Passamai JL, Zordan AB, Orlando CGP, Oliveira JP, Gouvea SA, Ribeiro FND, Dos Santos Alves TPD, Soares J. Physicochemical characterization of monazite sand and its associated bacterial species from the beaches of southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11815-11830. [PMID: 34550521 DOI: 10.1007/s11356-021-16523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Beaches with monazitic sands show high natural radiation, and the knowledge of this radiation is fundamental to simulate the effects of natural terrestrial radiation on biological systems. Monazite-rich sand from a beach in the southeastern Brazil were collected and analyzed by X-ray fluorescence, X-ray diffraction, and magnetic susceptibility. The natural terrestrial radiation of the beach sand showed a positive correlation with the Th and Y elements, which are closely associated with Ce, Nd, Ca, and P, suggesting that this grouping is mainly associated with local natural radiation. Based on the sand characterization, a physical simulator of natural gamma radiation was built with parameters similar to those of the monazite beach sand, considering areas with high natural radiation levels. The simulation revealed that the natural radiation of the monazite sands has a significant effect on reducing the growth of the bacteria strains of E. coli and S. aureus present in the beach sand, with a reduction of 23.8% and 18.4%, respectively.
Collapse
Affiliation(s)
- Marcos Tadeu D'Azeredo Orlando
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | - Elson Silva Galvão
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil.
| | - José Luis Passamai
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | - Alan Bragança Zordan
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | - Cintia Garrido Pinheiro Orlando
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | - Jairo Pinto Oliveira
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | - Sonia Alves Gouvea
- Departamento de Física, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari, 514, 29075-910, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
3
|
Weiskerger CJ, Brandão J, Ahmed W, Aslan A, Avolio L, Badgley BD, Boehm AB, Edge TA, Fleisher JM, Heaney CD, Jordao L, Kinzelman JL, Klaus JS, Kleinheinz GT, Meriläinen P, Nshimyimana JP, Phanikumar MS, Piggot AM, Pitkänen T, Robinson C, Sadowsky MJ, Staley C, Staley ZR, Symonds EM, Vogel LJ, Yamahara KM, Whitman RL, Solo-Gabriele HM, Harwood VJ. Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. WATER RESEARCH 2019; 162:456-470. [PMID: 31301475 DOI: 10.1016/j.watres.2019.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 05/16/2023]
Abstract
Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats. Models of FIB and pathogen fate and transport at beaches can help predict the risk of infectious disease from beach use, but knowledge gaps with respect to decay and growth rates of pathogens in beach habitats impede robust modeling. Climatic variability adds further complexity to predictive modeling because extreme weather events, warming water, and sea level change may increase human exposure to waterborne pathogens and alter relationships between FIB and pathogens. In addition, population growth and urbanization will exacerbate contamination events and increase the potential for human exposure. The cumulative effects of anthropogenic changes will alter microbial population dynamics in beach habitats and the assumptions and relationships used in quantitative microbial risk assessment (QMRA) and process-based models. Here, we review our current understanding of microbial populations and transport dynamics across the sand-water continuum at beaches, how these dynamics can be modeled, and how global change factors (e.g., climate and land use) should be integrated into more accurate beachscape-based models.
Collapse
Affiliation(s)
- Chelsea J Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisboa, Lisboa, Portugal.
| | - Warish Ahmed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Ecosciences Precinct, 41 Boogo Road, Dutton Park, Old, 4102, Australia
| | - Asli Aslan
- Department of Environmental Health Sciences, Georgia Southern University, Statesboro, GA, USA
| | - Lindsay Avolio
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Brian D Badgley
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Thomas A Edge
- Department of Biology, McMaster University, Ontario, Canada
| | - Jay M Fleisher
- College of Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luisa Jordao
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | | | - James S Klaus
- Department of Marine Geosciences, University of Miami, Miami, FL, USA
| | | | - Päivi Meriläinen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alan M Piggot
- Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Clare Robinson
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Michael J Sadowsky
- BioTechnology Institute and Departments of Soil, Water, & Climate, and Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | | | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Laura J Vogel
- Department of Civil and Environmental Engineering, Western University, London, Ontario, Canada
| | - Kevan M Yamahara
- Monterrey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Richard L Whitman
- Great Lakes Science Center, United States Geological Survey, Chesterton, IN, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Graham KE, Prussin AJ, Marr LC, Sassoubre LM, Boehm AB. Microbial community structure of sea spray aerosols at three California beaches. FEMS Microbiol Ecol 2018; 94:4810542. [DOI: 10.1093/femsec/fiy005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/12/2018] [Indexed: 02/04/2023] Open
|
5
|
Environmental Factors Correlated with Culturable Enterococci Concentrations in Tropical Recreational Waters: A Case Study in Escambron Beach, San Juan, Puerto Rico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121602. [PMID: 29257092 PMCID: PMC5751019 DOI: 10.3390/ijerph14121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 01/26/2023]
Abstract
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005–2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480–960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481–960 mm; irradiance < 667 W·m−2; daily average turbidity anomaly >0.005 sr−1; SST anomaly >0.8 °C; and 3-day average MSL anomaly <−18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.
Collapse
|
6
|
Vogel LJ, Edge TA, O'Carroll DM, Solo-Gabriele HM, Kushnir CSE, Robinson CE. Evaluation of methods to sample fecal indicator bacteria in foreshore sand and pore water at freshwater beaches. WATER RESEARCH 2017; 121:204-212. [PMID: 28538189 DOI: 10.1016/j.watres.2017.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear. Sampling was conducted at six freshwater beaches with different sand types to evaluate sampling methods for characterizing the abundance of E. coli in the foreshore reservoir as well as the partitioning of E. coli between different components in the foreshore reservoir (pore water, saturated sand, unsaturated sand). Methods were evaluated for collection of pore water (drive point, shovel, and careful excavation), unsaturated sand (top 1 cm, top 5 cm), and saturated sand (sediment core, shovel, and careful excavation). Ankle-depth surface water samples were also collected for comparison. Pore water sampled with a shovel resulted in the highest observed E. coli concentrations (only statistically significant at fine sand beaches) and lowest variability compared to other sampling methods. Collection of the top 1 cm of unsaturated sand resulted in higher and more variable concentrations than the top 5 cm of sand. There were no statistical differences in E. coli concentrations when using different methods to sample the saturated sand. Overall, the unsaturated sand had the highest amount of E. coli when compared to saturated sand and pore water (considered on a bulk volumetric basis). The findings presented will help determine the appropriate sampling strategy for characterizing FIB abundance in the foreshore reservoir as a means of predicting its potential impact on nearshore surface water quality and public health risk.
Collapse
Affiliation(s)
- Laura J Vogel
- Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Thomas A Edge
- Environment Canada, Canada Center for Inland Waters, Burlington, Ontario, L7S 1A1, Canada
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, N6A 3K7, Canada; School of Civil and Environmental Engineering, Connected Water Institute, University of New South Wales, Manly Vale, NSW 2093, Australia
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Caitlin S E Kushnir
- Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
7
|
Wu MZ, O'Carroll DM, Vogel LJ, Robinson CE. Effect of Low Energy Waves on the Accumulation and Transport of Fecal Indicator Bacteria in Sand and Pore Water at Freshwater Beaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2786-2794. [PMID: 28186740 DOI: 10.1021/acs.est.6b05985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Elevated fecal indicator bacteria (FIB) in beach sand and pore water represent an important nonpoint source of contamination to surface waters. This study examines the physical processes governing the accumulation and distribution of FIB in a beach aquifer. Field data indicate E. coli and enterococci can be transported 1 and 2 m, respectively, below the water table. Data were used to calibrate a numerical model whereby FIB are delivered to a beach aquifer by wave-induced infiltration across the beach face. Simulations indicate FIB rapidly accumulate in a beach aquifer with FIB primarily associated with sand rather than freely residing in the pore water. Simulated transport of E. coli in a beach aquifer is complex and does not correlate with conservative tracer transport. Beaches with higher wave-induced infiltration rate and vertical infiltration velocity (i.e., beaches with higher beach slope and wave height, and lower terrestrial groundwater discharge) had greater E. coli accumulation and E. coli was transported deeper below the beach face. For certain beach conditions, the amount of FIB accumulated in sand over 5-6 days was found to be sufficient to trigger a beach advisory if eroded to surface water.
Collapse
Affiliation(s)
- Ming Zhi Wu
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
- School of Civil and Environmental Engineering, Connected Water Initiative, University of New South Wales , Manly Vale NSW 2093, Australia
| | - Laura J Vogel
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| |
Collapse
|
8
|
Abreu R, Figueira C, Romão D, Brandão J, Freitas MC, Andrade C, Calado G, Ferreira C, Campos A, Prada S. Sediment characteristics and microbiological contamination of beach sand - A case-study in the archipelago of Madeira. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:627-638. [PMID: 27585431 DOI: 10.1016/j.scitotenv.2016.08.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 05/06/2023]
Abstract
Beach sand can harbour pathogenic and opportunistic microorganisms, as well as faecal indicator bacteria that influence directly the bathing water quality. Pathogenic and opportunistic microorganisms often raise concern of exposure during beach related recreational activities. In this work, three different types of sandy beaches (natural basaltic, natural calcareous and artificial calcareous) of the Archipelago of Madeira (Portugal) were sampled for bacterial and fungal contaminants and grain size distribution, during four years (2010-2013). Following an extreme weather event in 2010, the faecal indicator bacteria levels spiked, returning to base levels shortly thereafter. The same phenomenon occurred with fungi, where potentially pathogenic fungi were the dominant group. Yeast-like fungi and dermatophytes were, however, mainly associated to months of higher usage by recreational users. Statistical analysis showed higher contamination of sediment in artificial beaches compared to natural beaches and granulometry and chemical composition of sand did not influence in the microbial loads. Instead, bather density and the influence of coastal protection structures needed to maintain the volume of artificial beach sand regarding the removal potential of wave induced currents are obvious influencing factors.
Collapse
Affiliation(s)
- Roberto Abreu
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal
| | - Celso Figueira
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal.
| | - Daniela Romão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - João Brandão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - M Conceição Freitas
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - César Andrade
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - Graça Calado
- Laboratório de Saúde Pública, IASaúde, Rua das Pretas n° 1, 9004-515 Funchal, Portugal
| | - Carmen Ferreira
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Ana Campos
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Susana Prada
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal; Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| |
Collapse
|
9
|
Brown KI, Boehm AB. Transport of Fecal Indicators from Beach Sand to the Surf Zone by Recirculating Seawater: Laboratory Experiments and Numerical Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12840-12847. [PMID: 27783485 DOI: 10.1021/acs.est.6b02534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recirculating seawater is an important component of submarine groundwater discharge, yet its role in transporting microbial contaminants from beach sand to coastal water is unknown. This study investigated the extent to which recirculating seawater carries fecal indicators, Enterococcus and bird-associated Catellicoccus, through the beach subsurface. Laboratory experiments and numerical modeling were performed to characterize the transport of fecal indicators suspended in seawater through medium-grained beach sand under transient and saturated flow conditions. Enterococcus was measured both by culture (cENT) and DNA assay (tENT), and Catellicoccus (CAT) by DNA assay. There were differences between transport of tENT and CAT compared to cENT through laboratory columns containing beach sands. Under transient flow conditions, first-order attachment rate coefficients (katt) of DNA markers were greater (∼10 h-1) than katt of cENT (∼1 h-1), although under saturated conditions katt values were similar (∼1 h-1). First-order detachment rate coefficients, kdet, of DNA markers were greater (∼1 h-1) than kdet of cENT (∼0.1h-1) under both types of flow conditions. Incorporating the rate coefficients into field-scale subsurface transport simulations showed that, in this sand type, the contribution of recirculating seawater to surf zone contamination is likely to be minimal unless bird feces are deposited close to the land-sea interface.
Collapse
Affiliation(s)
- Kendra I Brown
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-4020, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305-4020, United States
| |
Collapse
|
10
|
Vogel LJ, O'Carroll DM, Edge TA, Robinson CE. Release of Escherichia coli from Foreshore Sand and Pore Water during Intensified Wave Conditions at a Recreational Beach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5676-5684. [PMID: 27120087 DOI: 10.1021/acs.est.6b00707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Foreshore beach sands and pore water may act as a reservoir and nonpoint source of fecal indicator bacteria (FIB) to surface waters. This paper presents data collected at a fine sand beach on Lake Huron, Canada over three field events. The data show that foreshore sand erosion as wave height increases results in elevated Escherichia coli concentrations in surface water, as well as depletion of E. coli from the foreshore sand and pore water. E. coli initially attached to foreshore sand rather than initially residing in the pore water was found to be the main contributor to elevated surface water concentrations. Surface water E. coli concentrations were a function of not only wave height (and associated sand erosion) but also the time elapsed since a preceding period of high wave intensity. This finding is important for statistical regression models used to predict beach advisories. While calculations suggest that foreshore sand erosion may be the dominant mechanism for releasing E. coli to surface water during intensified wave conditions at a fine sand beach, comparative characterization of the E. coli distribution at a coarse sand-cobble beach suggests that interstitial pore water flow and discharge may be more important for coarser sand beaches.
Collapse
Affiliation(s)
- Laura J Vogel
- Department of Civil and Environmental Engineering, University of Western Ontario , London, Ontario N6A 3K7, Canada
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, University of Western Ontario , London, Ontario N6A 3K7, Canada
| | - Thomas A Edge
- Environment Canada, Canada Center for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, University of Western Ontario , London, Ontario N6A 3K7, Canada
| |
Collapse
|
11
|
Staley ZR, Robinson C, Edge TA. Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach, playground and sandbox settings in Toronto, Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:520-527. [PMID: 26432162 DOI: 10.1016/j.scitotenv.2015.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
While beach sands are increasingly being studied as a reservoir of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in other recreational sands (i.e., sandboxes and playgrounds). In this study, different culture-based FIB enumeration techniques were compared and microbial source tracking assays were conducted on recreational sand samples from beaches, playgrounds and sandboxes around Toronto, ON. FIB were detected in every sand sample (n=104) with concentrations not changing significantly over the five month sampling period. Concentrations of FIB and a gull-specific DNA marker were significantly higher in foreshore beach sands, and indicated these were a more significant reservoir of FIB contamination than sandbox or playground sands. Human- and dog-specific contamination markers were not detected. All culture-based FIB enumeration techniques were consistent in identifying the elevated FIB concentrations associated with foreshore beach sands. However, significant differences between differential agar media, IDEXX and Aquagenx Compartment Bag Test were observed, with DC media and Enterolert being the most sensitive methods to detect Escherichia coli and enterococci, respectively. To better understand the elevated occurrence of E. coli in foreshore sands, microcosm survival experiments were conducted at two different temperatures (15 °C and 28 °C) using non-sterile saturated foreshore beach sands collected from two urban freshwater beaches with different sand type (fine grain and sand-cobble). Microcosms were inoculated with a mixture of eight sand-derived E. coli strains and sampled over a 28-day period. E. coli levels were found to decline in all microcosms, although survival was significantly greater in the finer sand and at the cooler temperature (15 °C). These results indicate that FIB can be widespread in any type of recreational sand and, while E. coli can survive for many weeks, it is most likely to accumulate in cooler fine-grain sand as occurs below the foreshore sand surface.
Collapse
Affiliation(s)
- Zachery R Staley
- Department of Civil and Environmental Engineering, Western University, London, ON, Canada; Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada.
| | - Clare Robinson
- Department of Civil and Environmental Engineering, Western University, London, ON, Canada
| | - Thomas A Edge
- Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
| |
Collapse
|
12
|
Feng Z, Reniers A, Haus BK, Solo-Gabriele HM, Wang JD, Fleming LE. A predictive model for microbial counts on beaches where intertidal sand is the primary source. MARINE POLLUTION BULLETIN 2015; 94:37-47. [PMID: 25840869 PMCID: PMC4424109 DOI: 10.1016/j.marpolbul.2015.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 05/28/2023]
Abstract
Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions.
Collapse
Affiliation(s)
- Zhixuan Feng
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | - Ad Reniers
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; Department of Hydraulic Engineering, Environmental Fluid Mechanics Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, Netherlands
| | - Brian K Haus
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Helena M Solo-Gabriele
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - John D Wang
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Lora E Fleming
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA; European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| |
Collapse
|
13
|
Russell TL, Sassoubre LM, Zhou C, French-Owen D, Hassaballah A, Boehm AB. Impacts of beach wrack removal via grooming on surf zone water quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2203-2211. [PMID: 24437501 DOI: 10.1021/es405536q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fecal indicator bacteria (FIB) are used to assess the microbial water quality of recreational waters. Increasingly, nonfecal sources of FIB have been implicated as causes of poor microbial water quality in the coastal environment. These sources are challenging to quantify and difficult to remediate. The present study investigates one nonfecal FIB source, beach wrack (decaying aquatic plants), and its impacts on water quality along the Central California coast. The prevalence of FIB on wrack was studied using a multibeach survey, collecting wrack throughout Central California. The impacts of beach grooming, to remove wrack, were investigated at Cowell Beach in Santa Cruz, California using a long-term survey (two summers, one with and one without grooming) and a 48 h survey during the first ever intensive grooming event. FIB were prevalent on wrack but highly variable spatially and temporally along the nine beaches sampled in Central California. Beach grooming was generally associated with either no change or a slight increase in coastal FIB concentrations and increases in surf zone turbidity and silicate, phosphate, and dissolved inorganic nitrogen concentrations. The findings suggest that beach grooming for wrack removal is not justified as a microbial pollution remediation strategy.
Collapse
Affiliation(s)
- Todd L Russell
- Environmental and Water Studies, Department of Civil and Environmental Engineering, Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
14
|
Phillips MC, Feng Z, Vogel LJ, Reniers AJHM, Haus BK, Enns AA, Zhang Y, Hernandez DB, Solo-Gabriele HM. Microbial release from seeded beach sediments during wave conditions. MARINE POLLUTION BULLETIN 2014; 79:114-22. [PMID: 24393380 PMCID: PMC3944643 DOI: 10.1016/j.marpolbul.2013.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 05/09/2023]
Abstract
Beach sands can sustain indigenous and introduced populations of enterococci. The objective of this study was to evaluate wave action in promoting the release of introduced bacteria. To accomplish this objective this study developed a method to assess attachment and identified conditions under which introduced bacteria are integrated into the sand. A new "shearing assay" showed that attachment of the introduced spike mimicked that of the natural sand when the spike was allowed to integrate into the sand for 24h at room temperature at a sand moisture content of 20%. Experiments in a wave flume showed that waves were capable of releasing about 60% of the total bacteria added. This suggests that for the range of wave conditions evaluated (height: 1.9-10.5 cm, period:1-2.7s), waves were incapable of releasing all of the bacteria. Further study is needed to evaluate bacteria attachment mechanisms.
Collapse
Affiliation(s)
- Matthew C Phillips
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Zhixuan Feng
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Division of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, United States
| | - Laura J Vogel
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Ad J H M Reniers
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Division of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, United States
| | - Brian K Haus
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Division of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, United States
| | - Amber A Enns
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yifan Zhang
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - David B Hernandez
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Helena M Solo-Gabriele
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, FL 33149, United States; University of Miami, Department of Civil, Arch., and Environmental Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
15
|
Russell TL, Sassoubre LM, Wang D, Masuda S, Chen H, Soetjipto C, Hassaballah A, Boehm AB. A coupled modeling and molecular biology approach to microbial source tracking at Cowell Beach, Santa Cruz, CA, United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10231-9. [PMID: 23924260 DOI: 10.1021/es402303w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Consistently high levels of bacterial indicators of fecal pollution rank Cowell Beach as the most polluted beach in California. High levels of fecal indicator bacteria (FIB), E. coli and enterococci, are measured throughout the summer, resulting in beach advisories with social and economic consequences. The source of FIB, however, is unknown. Speculations have been made that the wrack accumulating on the beach is a major source of FIB to the surf zone. The present study uses spatial and temporal sampling coupled with process-modeling to investigate potential FIB sources and the relative contributions of those sources. Temporal sampling showed consistently high FIB concentrations in the surf zone, sand, and wrack at Cowell Beach, and ruled out the storm drain, the river, the harbor, and the adjacent wharf as the sources of the high concentrations observed in the surf zone. Spatial sampling confirmed that the source of FIB to the beach is terrestrial rather than marine. Modeling results showed two dominant FIB sources to the surf zone: sand for enterococci and groundwater for E. coli. FIB from wrack represented a minor contribution to bacterial levels in the water. Molecular source tracking methods indicate the FIB at the beach is of human and bird origin. The microbial source tracking (MST) approach presented here provides a framework for future efforts.
Collapse
Affiliation(s)
- Todd L Russell
- Environmental and Water Studies, Department of Civil and Environmental Engineering, Stanford , California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Eichmiller JJ, Hicks RE, Sadowsky MJ. Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3395-402. [PMID: 23473470 PMCID: PMC3629727 DOI: 10.1021/es305116c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Water, sand, and sediment from a Lake Superior harbor site continuously receiving wastewater effluent was sampled monthly for June to October 2010 and from May to September 2011. Understanding the dynamics of genetic markers of fecal bacteria in these matrices is essential to accurately characterizing health risks. Genetic markers for enterococci, total Bacteroides, and human-associated Bacteroides were measured in site-water, sand, and sediment and in final effluent by quantitative PCR. The similarity between the quantity of molecular markers in the water column and effluent indicated that the abundance of genetic markers in the water column was likely controlled by effluent inputs. Effluent turbidity was positively correlated (p ≤ 0.05) with AllBac and HF183 in final effluent and AllBac in the water column. In sand and sediment, Entero1 and AllBac were most abundant in the upper 1-3 cm depths, whereas HF183 was most abundant in the upper 1 cm of sand and at 7 cm in sediment. The AllBac and Entero1 markers were 1- and 2-orders of magnitude more abundant in sand and sediment relative to the water column per unit mass. These results indicate that sand and sediment may act as reservoirs for genetic markers of fecal pollution at some freshwater sites.
Collapse
Affiliation(s)
- Jessica J. Eichmiller
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 438 BorH, St. Paul, MN 55108
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, SSB 207, Duluth, MN 55812
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, 1035 Kirby Drive, SSB 207, Duluth, MN 55812
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 438 BorH, St. Paul, MN 55108
- BioTechnology Institute, University of Minnesota,1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN 55108
- Corresponding author: Michael Sadowsky, Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Drive, Saint Paul, MN 55108, Phone: (612) 624-2706, Fax: (612) 625-2208,
| |
Collapse
|
17
|
Russell TL, Yamahara KM, Boehm AB. Mobilization and transport of naturally occurring enterococci in beach sands subject to transient infiltration of seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5988-5996. [PMID: 22533299 DOI: 10.1021/es300408z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study explores the transport of enterococci (ENT) from naturally contaminated beach sands to the groundwater table via infiltrating seawater using field, laboratory, and modeling experiments. ENT were readily mobilized and transported through the unsaturated zone during infiltration events in both the field and laboratory column experiments. Detachment mechanisms were investigated using a modified version of HYDRUS-1D. Three models for detachment kinetics were tested. Detachment kinetics that are first order with respect to the rate of change in the water content and attached surface bacterial concentrations were found to provide a best fit between predicted and observed data. From these experimental and model results we conclude that detachment mechanisms associated with the rapid increases in pore water content such as air-water interface scouring and thin film expansion are likely drivers of ENT mobilization in the investigated system. These findings suggest that through-beach transport of ENT may be an important pathway through which ENT from beach sands are transported to beach groundwater where they may be discharged to coastal waters via submarine groundwater discharge.
Collapse
Affiliation(s)
- Todd L Russell
- Environmental and Water Studies, Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|