1
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Soriano D, Santos Chocler G, Varela MA, Coronel MF. Chemotherapy-induced neuropathy and pain in pediatric oncology patients: impact of combination therapies. Eur J Pediatr 2024; 183:3749-3756. [PMID: 38856761 DOI: 10.1007/s00431-024-05638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated pain are prevalent adverse effects of pediatric cancer treatment, significantly affecting the patient's quality of life. Their impact and risk factors have yet to be assessed in our country. This study aimed to assess the prevalence and clinical characteristics of CIPN, as well as to explore associations with patient- and treatment-related variables, within a cohort of Argentinean pediatric oncology patients. Sixty-six patients diagnosed with malignant hematopoietic tumors and receiving the neurotoxic agent vincristine were included in this observational study. Variables analyzed included age, gender, anthropometric measurements, tumor type, chemotherapy treatment, development of pain and other symptoms, severity, and analgesic treatment. The study population consisted of 39 boys and 27 girls. Most patients received two or three neurotoxic drugs. Symptoms consistent with CIPN were identified in 15 children, reflecting a prevalence of 23%. The main symptom was pain in the lower limbs, with some patients reporting jaw or generalized body pain. Pain was categorized as moderate or severe in 60% and 27% of cases, respectively. NSAIDs, anticonvulsants, and/or opioids were prescribed. Among the patient- and treatment-related variables analyzed as potential risk factors, the use of vincristine in conjunction with cytarabine and the administration of a higher number of neurotoxic drugs demonstrated significant association with the development of CIPN. CONCLUSIONS Combination therapy stands out as a risk factor for clinical CIPN. The high prevalence of moderate/severe pain underscores the importance of close vigilance given its potential to compromise the patient's overall well-being. WHAT IS KNOWN • Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent adverse effect and dose-limiting factor in pediatric cancer treatment. • Prevalence varies among regions and risk factors are still under study. WHAT IS NEW • Prevalence of symptomatic CIPN is 23% among pediatric patients undergoing treatment for hematopoietic tumors in a referral hospital in Argentina. Most patients report moderate or severe pain. • Combining vincristine with cytarabine and using a higher number of neurotoxic drugs in combination therapies exhibit significant association with the development of CIPN-related symptoms.
Collapse
Affiliation(s)
- Delia Soriano
- Grupo de Dolor asociado al Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte Perón 1500, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Gisella Santos Chocler
- Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
- Servicio de Cuidados Paliativos Pediátricos, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Mariana Alejandra Varela
- Departamento de Hemato-oncología Pediátrica, Hospital Universitario Austral, Buenos Aires, Argentina
| | - María Florencia Coronel
- Grupo de Dolor asociado al Cáncer, Instituto de Investigaciones en Medicina Traslacional CONICET - Universidad Austral, Av. Pte Perón 1500, Pilar, Buenos Aires, Argentina.
- Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Alaniz-Arcos JL, Castellanos XT, Medina CMS, González HM, Cornejo MEO, Brito Suárez JM, Gutiérrez Camacho C. Ankle movement alterations during gait in children with acute lymphoblastic leukemia with suspected peripheral mononeuropathy. A cross-sectional study. Clin Biomech (Bristol, Avon) 2024; 115:106261. [PMID: 38749329 DOI: 10.1016/j.clinbiomech.2024.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Peripheral neuropathy due to chemotherapeutic drugs causes alterations in ankle movement during gait. This study aimed to describe the spatiotemporal parameters and ankle kinematics during gait in schoolchildren with acute lymphoblastic leukemia with clinically suspected peripheral neuropathy. METHODS In children with acute lymphoblastic leukemia in the maintenance phase, we calculated spatiotemporal and kinematic parameters of the ankle during gait using Kinovea® software. Furthermore, we identified alterations in the parameters obtained considering the values of the normality data from a stereophotogrammetry system as the reference values. Finally, we represented the kinematic parameters of the ankles calculated with Kinovea® compared to the normality values of the stereophotogrammetry. FINDINGS We evaluated 25 schoolchildren; 13 were male (52.0%) with a median age of 88.0months and a median of 60.0 weeks in the maintenance phase, and 54.8% were classified as standard risk. Spatiotemporal parameters: cadence (steps/min), bilateral step length (m), and average gait speed (m/s) in ALL children were significantly lower than reference values (p < 0.001). Except for right mid-stance and bilateral foot strike, initial swing showed that both ankles maintained plantar flexion values during gait, significantly lower in ALL patients (p < 0.05). INTERPRETATION We identified spatiotemporal and kinematics alterations in schoolchildren with acute lymphoblastic leukemia during all phases of the gait suggestive of alteration in ankle muscles during movement, probably due to peripheral neuropathy; nevertheless, our results should be taken with caution until the accuracy and reliability of Kinovea® software as a diagnostic test compared to the stereophotogrammetric system in children with ALL and healthy peers is proven.
Collapse
Affiliation(s)
- José Luis Alaniz-Arcos
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | | | | | | | - Ma Elena Ortiz Cornejo
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Juliette Marie Brito Suárez
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Claudia Gutiérrez Camacho
- Physiotherapy Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
4
|
Rodwin RL, DelRocco NJ, Hibbitts E, Devidas M, Whitley MK, Mohrmann CE, Schore RJ, Raetz E, Winick NJ, Hunger SP, Loh ML, Hockenberry MJ, Ma X, Angiolillo AL, Ness KK, Kairalla JA, Kadan-Lottick NS. Assessment of proxy-reported responses as predictors of motor and sensory peripheral neuropathy in children with B-lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e30634. [PMID: 37592363 PMCID: PMC10552080 DOI: 10.1002/pbc.30634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a common condition in children with acute lymphoblastic leukemia, can be challenging to diagnose. Using data from Children's Oncology Group AALL0932 physical function study, we sought to determine if parent/guardian proxy-reported responses from the Pediatric Outcomes Data Collection Instrument could identify children with motor or sensory CIPN diagnosed by physical/occupational therapists (PT/OT). Four variables moderately discriminated between children with and without motor CIPN (c-index 0.76, 95% confidence interval [CI]: 0.64-0.84), but sensory and optimism-corrected models had weak discrimination (c-index sensory models 0.65, 95% CI: 0.54-0.74). New proxy-report measures are needed to identify children with PT/OT diagnosed CIPN.
Collapse
Affiliation(s)
- Rozalyn L. Rodwin
- Department of Pediatrics, Yale School of Medicine, New Haven, CT
- Yale Cancer Center, New Haven, CT
| | - Natalie J. DelRocco
- Department of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL
| | - Emily Hibbitts
- Department of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Moira K. Whitley
- Department of Pediatrics, Yale School of Medicine, New Haven, CT
| | - Caroline E. Mohrmann
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
- Goldfarb School of Nursing, St. Louis, MO
| | - Reuven J. Schore
- Center of Cancer and Blood Disorders, Children’s National Health System, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Naomi J. Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mignon L. Loh
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children’s Hospital and the Ben Towne Center for Childhood Cancer Research, University of Washington, Seattle, WA
| | - Marilyn J. Hockenberry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- School of Nursing, Duke University, Durham, NC
| | - Xiaomei Ma
- Yale Cancer Center, New Haven, CT
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT
| | - Anne L. Angiolillo
- Center of Cancer and Blood Disorders, Children’s National Health System, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
- Servier Pharmaceuticals, Boston, MA
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - John A. Kairalla
- Department of Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL
| | - Nina S. Kadan-Lottick
- Cancer Prevention and Control Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| |
Collapse
|
5
|
Dykowski S, Simoneau J, Smith SR, Walling E, Lewno A. Clinical Considerations in Returning Pediatric and Young Adults With Cancer to Physical Activity. Curr Sports Med Rep 2023; 22:380-386. [PMID: 37921391 DOI: 10.1249/jsr.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
ABSTRACT There is a gap in the literature on the best treatment of clinical sequelae within adolescent and young adult pediatric cancer populations. Children, adolescents, and young adults are at risk for a multitude of immediate and late effects of their disease and treatment that warrant a comprehensive, multidisciplinary team approach to optimize care. Sports medicine providers are well-equipped with their background to join the oncology rehabilitation team in diagnosing and managing cancer-related impairments to help these populations live a healthier and more active lifestyle. In this manuscript, four essential clinical components to consider when returning children, adolescents, and young adults with cancer history to physical activity are discussed: chemotherapy-induced peripheral neuropathy, cardiotoxicity, nutritional deficiencies, and deconditioning.
Collapse
Affiliation(s)
- Sara Dykowski
- Department of Physical Medicine and Rehabilitation, University of Michigan, Michigan Medicine, Ann Arbor, MI
| | - Jillian Simoneau
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Michigan Medicine, Ann Arbor, MI
| | - Sean R Smith
- Department of Physical Medicine and Rehabilitation, University of Michigan, Michigan Medicine, Ann Arbor, MI
| | - Emily Walling
- Division of Hematology, Oncology, and BMT, Department of Pediatrics, University of Michigan, Michigan Medicine, Ann Arbor, MI
| | - Adam Lewno
- Department of Physical Medicine and Rehabilitation, University of Michigan, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
6
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|
7
|
Wu CY, Li GT, Chu CC, Guo HL, Fang WR, Li T, Wang YR, Xu J, Hu YH, Zhou L, Chen F. Proactive therapeutic drug monitoring of vincristine in pediatric and adult cancer patients: current supporting evidence and future efforts. Arch Toxicol 2023; 97:377-392. [PMID: 36418572 DOI: 10.1007/s00204-022-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Vincristine (VCR), an effective antitumor drug, has been utilized in several polytherapy regimens for acute lymphoblastic leukemia, neuroblastoma and rhabdomyosarcoma. However, clinical evidence shows that the metabolism of VCR varies greatly among patients. The traditional based body surface area (BSA) administration method is prone to insufficient exposure to VCR or severe VCR-induced peripheral neurotoxicity (VIPN). Therefore, reliable strategies are urgently needed to improve efficacy and reduce VIPN. Due to the unpredictable pharmacokinetic changes of VCR, therapeutic drug monitoring (TDM) may help to ensure its efficacy and to manage VIPN. At present, there is a lot of supporting evidence for the suitability of applying TDM to VCR therapy. Based on the consensus guidelines drafted by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), this review aimed to summarize various available data to evaluate the potential utility of VCR TDM for cancer patients. Of note, valuable evidence has accumulated on pharmacokinetics variability, pharmacodynamics, drug exposure-clinical response relationship, biomarkers for VIPN prediction, and assays for VCR monitoring. However, there are still many relevant clinical pharmacological questions that cannot yet be answered merely based on insufficient evidence. Currently, we cannot recommend a therapeutic exposure range and cannot yet provide a dose-adaptation strategy for clinicians and patients. In areas where the evidence is not yet sufficient, more research is needed in the future. The precision medicine of VCR cannot rely on TDM alone and needs to consider the clinical, environmental, genetic background and patient-specific factors as a whole.
Collapse
Affiliation(s)
- Chun-Ying Wu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guan-Ting Li
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chen-Chao Chu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Wei-Rong Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tao Li
- Department of Solid Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Ren Wang
- Department of Hematology /Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Li Zhou
- Department of Hematology /Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
8
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
9
|
Peters J, Staff NP. Update on Toxic Neuropathies. Curr Treat Options Neurol 2022; 24:203-216. [PMID: 36186669 PMCID: PMC9518699 DOI: 10.1007/s11940-022-00716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose of Review Toxic neuropathies are an important preventable and treatable form of peripheral neuropathy. While many forms of toxic neuropathies have been recognized for decades, an updated review is provided to increase vigilant in this area of neurology. A literature review was conducted to gather recent information about toxic neuropathies, which included the causes, clinical findings, and treatment options in these conditions. Recent Findings Toxic neuropathies continue to cause significant morbidity throughout the world and the causative agents, particularly with regards to medications, do not appear to be diminishing. A wide variety of causes of toxic neuropathies exist, which include alcohol, industrial chemicals, biotoxins, and medications. Unfortunately, no breakthrough treatments have been developed and prevention and symptom management remain the standard of care. Summary A detailed medication, occupational and hobby exposure history is critical to identifying toxic neuropathies. Increased research is warranted to identify mechanisms of neurotoxic susceptibility and potential common pathomechanistic pathways for treatment across diverse toxic neuropathies.
Collapse
Affiliation(s)
- Jannik Peters
- Department of Neurology, Mayo Clinic Rochester, MN USA
| | | |
Collapse
|
10
|
Uittenboogaard A, Neutel CLG, Ket JCF, Njuguna F, Huitema ADR, Kaspers GJL, van de Velde ME. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy in Children with Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030612. [PMID: 35158880 PMCID: PMC8833506 DOI: 10.3390/cancers14030612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Vincristine is a drug that is part of the treatment for many children with cancer. Its main side-effect is vincristine-induced peripheral neuropathy (VIPN), which often presents as tingling, pain, and lack of strength in the hands and feet. It is not yet possible to predict which children will suffer from VIPN. In this review, we report on all genetic variations that are associated with VIPN. We found that variations in genes related to vincristine transport, cell structure, hereditary nerve disease, and genes without a previously known connection to vincristine or VIPN are related to VIPN. Variations in genes involved in vincristine breakdown are not significantly associated with VIPN. In conclusion, genetic variations affect a child’s tendency to develop VIPN. In the future, this information might be used to predict the risk of VIPN and adapt treatment on this. Abstract Vincristine-induced peripheral neuropathy (VIPN) is a debilitating side-effect of vincristine. It remains a challenge to predict which patients will suffer from VIPN. Pharmacogenomics may explain an individuals’ susceptibility to side-effects. In this systematic review and meta-analysis, we describe the influence of pharmacogenomic parameters on the development of VIPN in children with cancer. PubMed, Embase and Web of Science were searched. In total, 1597 records were identified and 21 studies were included. A random-effects meta-analysis was performed for the influence of CYP3A5 expression on the development of VIPN. Single-nucleotide polymorphisms (SNPs) in transporter-, metabolism-, cytoskeleton-, and hereditary neuropathy-associated genes and SNPs in genes previously unrelated to vincristine or neuropathy were associated with VIPN. CYP3A5 expression status was not significantly associated with VIPN. The comparison and interpretation of the results of the included studies was limited due to heterogeneity in the study population, treatment protocol and assessment methods and definitions of VIPN. Independent replication is essential to validate the clinical significance of the reported associations. Future research should aim for prospective VIPN assessment in both a discovery and a replication cohort. Ultimately, the goal would be to screen patients upfront to determine optimal vincristine dosage with regards to efficacy and risk of VIPN.
Collapse
Affiliation(s)
- Aniek Uittenboogaard
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Correspondence: (A.U.); (G.J.L.K.)
| | - Céline L. G. Neutel
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Johannes C. F. Ket
- Medical Library, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Festus Njuguna
- Department of Pediatric Oncology, Moi University, Eldoret 30107, Kenya;
| | - Alwin D. R. Huitema
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Gertjan J. L. Kaspers
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Correspondence: (A.U.); (G.J.L.K.)
| | - Mirjam E. van de Velde
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|