1
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
2
|
Yang KL, Chi MS, Ko HL, Huang YY, Huang SC, Lin YM, Chi KH. Axitinib in combination with radiotherapy for advanced hepatocellular carcinoma: a phase I clinical trial. Radiat Oncol 2021; 16:18. [PMID: 33472666 PMCID: PMC7819176 DOI: 10.1186/s13014-020-01742-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To investigate maximum tolerated dose (MTD) of axitinib, a selective vascular endothelial growth factor receptor 1-3 inhibitor, in combination with radiotherapy (RT) for advanced hepatocellular carcinoma (HCC). METHODS This phase I study followed the rule of traditional 3 + 3 design. Major eligibility included: (1) patients with advanced HCC unsuitable for surgery, radiofrequency ablation or transarterial chemoembolization, or who failed after prior local-regional treatment; (2) failure on sorafenib or no grant for sorafenib from health insurance system. Eligible patients with advanced HCC received axitinib for total 8 weeks during and after RT. Three cohorts with axitinib dose escalation were planned: 1 mg twice daily (level I), 2 mg twice daily (level II) and 3 mg twice daily (level III). The prescribed doses of RT ranged from 37.5 to 67.5 Gy in 15 fractions to liver tumor(s) and were determined based on an upper limit of mean liver dose of 18 Gy (intended isotoxic RT for normal liver). The primary endpoint was MTD of axitinib in combination with RT. The secondary endpoints included overall response rate (ORR), RT in-field response rate, acute and late toxicities, overall survival (OS) and progression free survival (PFS). RESULTS Total nine eligible patients received axitinib dose levels of 1 mg twice daily (n = 3), 2 mg twice daily (n = 3) and 3 mg twice daily (n = 3). Dose-limiting toxicity (DLT) did not occur in the 3 cohorts; the MTD was defined as 3 mg twice daily in this study. ORR was 66.7%, including 3 complete responses and 3 partial responses, at 3 months after treatment initiation. With a median follow-up of 16.6 months, median OS was not reached, 1-year OS was 66.7%, and median PFS was 7.4 months. CONCLUSIONS Axitinib in combination with RT for advanced HCC was well tolerated with an axitinib MTD of 3 mg twice daily in this study. The outcome analysis should be interpreted with caution due to the small total cohort. Trial registration ClinicalTrials.gov (Identifier: NCT02814461), Registered June 27, 2016-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02814461.
Collapse
Affiliation(s)
- Kai-Lin Yang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan
- School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang, New Taipei City, Taiwan
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan
| | - Hui-Ling Ko
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan
| | - Yi-Ying Huang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan
| | - Su-Chen Huang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan
| | - Yu-Min Lin
- School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang, New Taipei City, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Shih-Lin District, No. 95, Wen-Chang Road, Taipei City, 111, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan.
| |
Collapse
|
3
|
Klein J, Tran W, Lai P, Al-Mahrouki A, Giles A, Czarnota GJ. Effect of Treatment Sequencing on the Tumor Response to Combined Treatment With Ultrasound-Stimulated Microbubbles and Radiotherapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2415-2425. [PMID: 32525248 DOI: 10.1002/jum.15363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES To investigate whether timing and sequencing of ultrasound-stimulated microbubbles (USMBs) and external beam radiotherapy (XRT) affect the treatment response in a preclinical prostate cancer model. METHODS Prostate cancer xenografts were treated with ultrasound-stimulated lipid microspheres before and after 8-Gy XRT. Treatments were separated by 0, 3, 6, 12, and 24 hours, with 5 tumors per group. Tumor effects were evaluated by microvessel density (measured by CD31 staining), cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling and hematoxylin-eosin staining), and hypoxia (carbonic anhydrase 9 staining). RESULTS Administering USMBs 6 hours before XRT showed the maximum treatment effect using all 3 assays. At this time, the mean cell death index ± SD was 36% ± 10%, compared with 19% ± 4% for no separation between USMB treatment and XRT; the microvessel density was 9 ± 3 counts per field (19 ± 5 without separation); and the percentage of hypoxic cells was 10% ± 5% (21% ± 4%). The observed treatment effect was greater with USMBs before XRT than when administering XRT first, but these differences were not statistically significant. CONCLUSIONS The maximum tumor effect was observed with USMBs delivered 6 hours before XRT. The sequencing of treatment did not have a significant effect on the tumor response.
Collapse
Affiliation(s)
- Jonathan Klein
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - William Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Sheffield, UK
- Department of Electrical Engineering and Computer Sciences, York University, Toronto, Ontario, Canada
| | - Priscilla Lai
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Azza Al-Mahrouki
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anoja Giles
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Pariset E, Malkani S, Cekanaviciute E, Costes SV. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol 2020; 97:S132-S150. [PMID: 32946305 DOI: 10.1080/09553002.2020.1820598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concerning outcome in the field of cancer radiotherapy and form a major risk for deep space exploration. Both acute and chronic CNS irradiation induce a complex network of molecular and cellular alterations including DNA damage, oxidative stress, cell death and systemic inflammation, leading to changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce the harmful effects of ionizing radiation include a wide range of protective and mitigative strategies, which merit a thorough comparative analysis. MATERIALS AND METHODS We reviewed current approaches for developing countermeasures to both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and cellular to the behavioral level. RESULTS We focus on countermeasures that aim to mitigate the four main detrimental actions of radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful systemic responses including tissue death and neuroinflammation. We propose a comprehensive review of CNS radiation countermeasures reported for the full range of irradiation types (photons and particles, low and high linear energy transfer) and doses (from a fraction of gray to several tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions relevant to deep-space environment and radiotherapy. Our review reveals the importance of combined strategies that increase DNA protection and repair, reduce free radical formation and increase their elimination, limit inflammation and improve cell viability, limit tissue damage and increase repair and plasticity. CONCLUSIONS The majority of therapeutic approaches to protect the CNS from ionizing radiation have been limited to acute high dose and high dose rate gamma irradiation, and few are translatable from animal models to potential human application due to harmful side effects and lack of blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising research direction would be to focus on practical applicability and effectiveness in a wider range of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to discovering novel therapeutics, it would be worth maximizing the benefits and reducing side effects of those that already exist. Finally, we suggest that novel cellular and tissue models for developing and testing countermeasures in the context of other impairments might also be applied to the field of CNS responses to ionizing radiation.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association, Columbia, MD, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sherina Malkani
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.,Young Scientist Program, Blue Marble Space Institute of Science, Moffett Field, CA, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
5
|
Kallio P, Jokinen E, Högström J, Das S, Heino S, Lähde M, Brodkin J, Korhonen EA, Alitalo K. Blocking Angiopoietin-2 Promotes Vascular Damage and Growth Inhibition in Mouse Tumors Treated with Small Doses of Radiation. Cancer Res 2020; 80:2639-2650. [PMID: 32312835 DOI: 10.1158/0008-5472.can-20-0497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
Abnormal vasculature in tumors leads to poor tissue perfusion and cytostatic drug delivery. Although drugs inducing vascular normalization, for example, angiopoietin-2 (Ang2)-blocking antibodies, have shown promising results in preclinical tumor models, clinical studies have so far shown only little efficacy. Because Ang2 is known to play a protective role in stressed endothelial cells, we tested here whether Ang2 blocking could enhance radiation-induced tumor vascular damage. Tumor-bearing mice were treated with anti-Ang2 antibodies every 3 or 4 days starting 3 days before 3 × 2 Gy or 4 × 0.5 Gy whole-body or tumor-focused radiation. Combination treatment with anti-Ang2 and radiation improved tumor growth inhibition and extended the survival of mice with melanoma or colorectal tumors. Single-cell RNA-sequencing revealed that Ang2 blocking rescued radiation-induced decreases in T cells and cells of the monocyte/macrophage lineage. In addition, anti-Ang2 enhanced radiation-induced apoptosis in cultured endothelial cells. In vivo, combination treatment decreased tumor vasculature and increased tumor necrosis in comparison with tumors treated with monotherapies. These results suggest that a combination of Ang2-blocking antibodies with radiation increases tumor growth inhibition and extends the survival of tumor-bearing mice. SIGNIFICANCE: These findings offer a preclinical rationale for further testing of the use of radiation in combination with Ang2-blocking antibodies to improve the overall outcome of cancer treatment.
Collapse
Affiliation(s)
- Pauliina Kallio
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Elina Jokinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Suvendu Das
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Sarika Heino
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Marianne Lähde
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jefim Brodkin
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Emilia A Korhonen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland. .,iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
7
|
Wang F, Peng L, Wang Y, Liu X. Silencing vascular endothelial growth factor C increases the radiosensitivity in nasopharyngeal carcinoma CNE-2 cells. J Cell Biochem 2019; 121:1182-1191. [PMID: 31478229 DOI: 10.1002/jcb.29352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/13/2019] [Indexed: 11/09/2022]
Abstract
Vascular endothelial growth factor C (VEGF-C) has been reported to be responsible for the lymphatic vessel density, tumor staging and lymph node metastasis, resulting in the failure of nasopharyngeal carcinoma (NPC) after radiotherapy. Therefore, the aim of this study was to explore the effects and the underlying mechanism of VEGF-C on the radiotherapy and in the human NPC cell lines CNE-2. In our study, VEGF-C silenced CNE-2 cells were stably established. Different small interfering VEGF-C (si-VEGFC) were transfected into CNE-2 cells and combined with 8 Gy X-ray. The proliferation, cloning ability, DNA damage, and apoptosis of CNE-2 cells were evaluated by counting kit-8 (CCK-8), colony-forming assay, comet assays, and flow cytometry, respectively. Moreover, the VEGFC knockdown involved signaling pathways in CNE-2 cells were predicted by polymerase chain reaction (PCR) array, and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Results demonstrated that silencing VEGF-C combined with radiation can significantly inhibit the proliferation and cloning ability, while increase the apoptosis and DNA damage of CNE-2 cells, thereby promote the radiosensitivity. Furthermore, the effects of silencing VEGF-C probably through activating the NF-kB signal pathway. In conclusion, the study demonstrated that VEGF-C may be a potential target to increase the radiosensitivity in NPC by activating NF-kB signaling.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China.,Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
8
|
Meher RK, Naik MR, Bastia B, Naik PK. Comparative evaluation of anti-angiogenic effects of noscapine derivatives. Bioinformation 2018; 14:236-240. [PMID: 30108421 PMCID: PMC6077819 DOI: 10.6026/97320630014236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new capillaries from pre-existing vessels, is essential for tumor progression. Synthetic derivatives of anti-cancer compound, noscapine (an opium alkaloid) such as Cl-noscapine, Br-noscapine and Folate-noscapine along with two of the reference compounds, TNP-470 and paclitaxel were examined for anti-angiogenic activities by using human umbilical vein endothelial cells (HUVECs). The noscapine derivatives showed anti-angiogenic activity albeit at high concentration compared to the reference compounds. All the tested compounds inhibited angiogenesis in a dose-dependent manner; the drug concentration causing 50% inhibition of cell survival was 11.87 μM for Cl-noscapine, 6.9 μM for Br-noscapine and 6.79 μM for folate-noscapine. Besides, all the noscapine derivatives significantly inhibited cord formation (IC50 for Cl-noscapine is 50.76 μM, for Br-noscapine is 90.08 μM and for folate-noscapine is 18.44 μM) as well as migration and invasion (IC50 value of Cl-noscapine is 28.01 μM, for Br-noscapine is 19.78 μM and for folate-noscapine is 10.76 μM) of endothelial cells. Based on these results, we speculated that the inhibitory effects on human endothelial cell proliferation of noscapine derivatives might be important for anti-angiogenesis.
Collapse
Affiliation(s)
- Rajesh K. Meher
- Department of Biotechnology & Bioinformatics, Sambalpur University, Jyoti Vihar - 768 019, Sambalpur, Odisha
| | - Manas Ranjan Naik
- Department of Pharmacology, VSS Institute of Medical Science & Research, Burla, Sambalpur, Odisha
| | - Banajit Bastia
- Environmental Toxicology & Electron Microscope Lab, ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi-110029, India
| | - Pradeep K. Naik
- Department of Pharmacology, VSS Institute of Medical Science & Research, Burla, Sambalpur, Odisha
| |
Collapse
|
9
|
Fabian KL, Storkus WJ. Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:191-211. [PMID: 29275473 DOI: 10.1007/978-3-319-67577-0_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathological angiogenesis occurs during tumor progression and leads in the formation of an abnormal vasculature in the tumor microenvironment (TME). The tumor vasculature is disorganized, tortuous and leaky, resulting in high interstitial pressure and hypoxia in the TME, all of which are events that support tumor growth and survival. Given the sustaining role of the tumor vasculature, it has become an increasingly attractive target for the development of anti-cancer therapies. Antibodies, tyrosine kinase inhibitors and cancer vaccines that target pro-angiogenic factors, angiogenesis-associated receptors or tumor blood vessel-associated antigens continue to be developed and tested for therapeutic efficacy. Preferred anti-angiogenic protocols include those that "normalize" the tumor-associated vasculature which reduce hypoxia and improve tumor blood perfusion, resulting in tumor cell apoptosis, decreased immunosuppression, and enhanced effector immune cell infiltration/tumoricidal action within the TME.
Collapse
Affiliation(s)
- Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Song SH, Kim A, Brown M, Jung C, Ko S, Ziaie B. An Implantable Wireless Interstitial Pressure Sensor With Integrated Guyton Chamber: in vivo Study in Solid Tumors. IEEE Trans Biomed Eng 2016; 63:2273-2277. [DOI: 10.1109/tbme.2016.2522460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Villegas VM, Aranguren LA, Kovach JL, Schwartz SG, Flynn HW. Current advances in the treatment of neovascular age-related macular degeneration. Expert Opin Drug Deliv 2016; 14:273-282. [PMID: 27434329 DOI: 10.1080/17425247.2016.1213240] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the most common cause of permanent central visual acuity loss in persons over 65 years of age in industrialized nations. Today, intravitreal vascular endothelial growth factor (VEGF) inhibitors are the mainstay of treatment worldwide. Areas covered: The following review covers the current treatments and challenges of wet AMD management. It also covers emerging therapies including radiation, latest generation anti-VEGF agents, and combination therapies. Expert opinion: Current neovascular AMD therapy is aimed at decreasing the VEGF effect at the choroidal neovascularization (CNV) complex. The most important existing challenges in the treatment of neovascular AMD are improving visual outcomes, decreasing the treatment burden, and minimizing geographic atrophy. Clinicians are using many treatment strategies to minimize intravitreal injections without sacrificing visual outcomes. Combination of anti-VEGF therapy with other previously available treatments that target a different pathophysiological mechanism may be a reasonable clinical strategy to minimize intravitreal injections. Many exciting novel drugs that target newly discovered pathways associated with CNV development and progression hold clinical promise. The results of ongoing randomized clinical trials will answer the important concerns surrounding new drugs and delivery devices: safety and visual outcomes.
Collapse
Affiliation(s)
- Victor M Villegas
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Luis A Aranguren
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Jaclyn L Kovach
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Stephen G Schwartz
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Harry W Flynn
- a Department of Ophthalmology, Bascom Palmer Eye Institute , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
12
|
Tran WT, Sannachi L, Papanicolau N, Tadayyon H, Al Mahrouki A, El Kaffas A, Gorjizadeh A, Lee J, Czarnota GJ. Quantitative ultrasound imaging of therapy response in bladder cancer in vivo. Oncoscience 2016; 3:122-33. [PMID: 27226985 PMCID: PMC4872650 DOI: 10.18632/oncoscience.302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/08/2016] [Indexed: 01/21/2023] Open
Abstract
Background and Aims Quantitative ultrasound (QUS) was investigated to monitor bladder cancer treatment response in vivo and to evaluate tumor cell death from combined treatments using ultrasound-stimulated microbubbles and radiation therapy. Methods Tumor-bearing mice (n=45), with bladder cancer xenografts (HT- 1376) were exposed to 9 treatment conditions consisting of variable concentrations of ultrasound-stimulated Definity microbubbles [nil, low (1%), high (3%)], combined with single fractionated doses of radiation (0 Gy, 2 Gy, 8 Gy). High frequency (25 MHz) ultrasound was used to collect the raw radiofrequency (RF) data of the backscatter signal from tumors prior to, and 24 hours after treatment in order to obtain QUS parameters. The calculated QUS spectral parameters included the mid-band fit (MBF), and 0-MHz intercept (SI) using a linear regression analysis of the normalized power spectrum. Results and Conclusions There were maximal increases in QUS parameters following treatments with high concentration microbubbles combined with 8 Gy radiation: (ΔMBF = +6.41 ± 1.40 (±SD) dBr and SI= + 7.01 ± 1.20 (±SD) dBr. Histological data revealed increased cell death, and a reduction in nuclear size with treatments, which was mirrored by changes in quantitative ultrasound parameters. QUS demonstrated markers to detect treatment effects in bladder tumors in vivo.
Collapse
Affiliation(s)
- William T Tran
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; Sheffield Hallam University, Centre for Health and Social Care Research, Sheffield UK
| | - Lakshmanan Sannachi
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; University of Toronto, Department of Medical Biophysics, Toronto Canada
| | - Naum Papanicolau
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; Ryerson University, Department of Computer Science, Toronto Canada
| | - Hadi Tadayyon
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; University of Toronto, Department of Medical Biophysics, Toronto Canada
| | - Azza Al Mahrouki
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada
| | - Ahmed El Kaffas
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada
| | - Alborz Gorjizadeh
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada
| | - Justin Lee
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; University of Toronto, Department of Radiation Oncology, Toronto Canada
| | - Gregory J Czarnota
- Sunnybrook Health Sciences Centre, Department of Radiation Oncology, Toronto Canada; University of Toronto, Department of Medical Biophysics, Toronto Canada; University of Toronto, Department of Radiation Oncology, Toronto Canada
| |
Collapse
|
13
|
Bhardwaj B, Revannasiddaiah S, Bhardwaj H, Balusu S, Shwaiki A. Molecular targeted therapy to improve radiotherapeutic outcomes for non-small cell lung carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:50. [PMID: 26904572 DOI: 10.3978/j.issn.2305-5839.2015.10.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Effective treatments for non-small cell lung carcinoma (NSCLC) remain elusive. The use of concurrent chemotherapy with radiotherapy (RT) has improved outcomes, but a significant proportion of NSCLC patients are too frail to be able to tolerate an intense course of concurrent chemoradiotherapy. The development of targeted therapies ignited new hope in enhancing radiotherapeutic outcomes. The use of targeted therapies against the epidermal growth factor receptor (EGFR) has offered slight but significant benefits in concurrent use with RT for certain patients in certain situations. However, despite theoretical promise, the use of anti-angiogenics, such as bevacizumab and endostatin, has not proven clinically safe or useful in combination with RT. However, many new targeted agents against new targets are being experimented for combined use with RT. It is hoped that these agents may provide a significant breakthrough in the radiotherapeutic management of NSCLC. The current review provides a brief discussion about the targets, the targeted therapies, the rationale for the use of targeted therapies in combination with RT, and a brief review of the existing data on the subject.
Collapse
Affiliation(s)
- Bhaskar Bhardwaj
- 1 Department of Internal medicine, University of Missouri, Kansas City, MO, USA ; 2 Department of Radiation Oncology, Government Medical College, Haldwani, Nanital, India ; 3 Department of Pulmonary Medicine and Critical Care, University of Oklahoma, Norman, OK, USA ; 4 Department of Internal Medicine, University of Missouri, Kansas City, MO, USA ; 5 Department of Hematology and Oncology, Saint Luke's Hospital, Kansas City, MO, USA
| | - Swaroop Revannasiddaiah
- 1 Department of Internal medicine, University of Missouri, Kansas City, MO, USA ; 2 Department of Radiation Oncology, Government Medical College, Haldwani, Nanital, India ; 3 Department of Pulmonary Medicine and Critical Care, University of Oklahoma, Norman, OK, USA ; 4 Department of Internal Medicine, University of Missouri, Kansas City, MO, USA ; 5 Department of Hematology and Oncology, Saint Luke's Hospital, Kansas City, MO, USA
| | - Himanshu Bhardwaj
- 1 Department of Internal medicine, University of Missouri, Kansas City, MO, USA ; 2 Department of Radiation Oncology, Government Medical College, Haldwani, Nanital, India ; 3 Department of Pulmonary Medicine and Critical Care, University of Oklahoma, Norman, OK, USA ; 4 Department of Internal Medicine, University of Missouri, Kansas City, MO, USA ; 5 Department of Hematology and Oncology, Saint Luke's Hospital, Kansas City, MO, USA
| | - Sree Balusu
- 1 Department of Internal medicine, University of Missouri, Kansas City, MO, USA ; 2 Department of Radiation Oncology, Government Medical College, Haldwani, Nanital, India ; 3 Department of Pulmonary Medicine and Critical Care, University of Oklahoma, Norman, OK, USA ; 4 Department of Internal Medicine, University of Missouri, Kansas City, MO, USA ; 5 Department of Hematology and Oncology, Saint Luke's Hospital, Kansas City, MO, USA
| | - Ali Shwaiki
- 1 Department of Internal medicine, University of Missouri, Kansas City, MO, USA ; 2 Department of Radiation Oncology, Government Medical College, Haldwani, Nanital, India ; 3 Department of Pulmonary Medicine and Critical Care, University of Oklahoma, Norman, OK, USA ; 4 Department of Internal Medicine, University of Missouri, Kansas City, MO, USA ; 5 Department of Hematology and Oncology, Saint Luke's Hospital, Kansas City, MO, USA
| |
Collapse
|
14
|
Aktan M, Koc M, Kanyilmaz G. Survival following reirradiation using intensity-modulated radiation therapy with temozolomide in selected patients with recurrent high grade gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:304. [PMID: 26697464 DOI: 10.3978/j.issn.2305-5839.2015.11.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND High grade gliomas often recur after initial treatment. Despite so many treatment options, there is no standard treatment for recurrent gliomas. The aim of this study is to offer survival following reirradiation (re-RT) using intensity-modulated radiation therapy (IMRT) with temozolomide in selected patients with recurrent high grade gliomas. METHODS We examined the medical records of 21 adult patients with recurrent high grade gliomas who were reirradiated with IMRT at the time of tumor recurrence or progression. Tumor recurrence was shown by gadolinium-enhanced magnetic resonance imaging (MRI) and diagnosis was established by pathology review. Statistical analyses were performed with SPSS version 18.0.1 using Cox regression analyses, log-rank test and Kaplan-Meier method. RESULTS Eighteen patients presented by localized recurrence, three patients with diffuse recurrence. Median radiotherapy (RT) dose was 54 Gy. About 81% patients received temozolomide with re-RT. The time interval between two courses RT was median 39.3 months (range, 9.6-140.8 months). The response was checked by MRI. About 24% patients achieved complete response (CR) and 29% patient partial response (PR). Stable disease (SD) was observed in 47% patients. Median follow-up time from diagnosis was 41.4 months (range, 16.6-145.4 months) and 12.3 months (range, 2-27.6 months) from re-RT. Median time to recurrence was 39.3 months (range, 9.6-140.8 months). Median survival after re-RT was 18 months for anaplastic astrocytoma (AA), 14.1 months for glioblastoma multiforme (GBM) (range, 11-17.2 months) (P=0.1) and 7.1 months for patients with Karnofsky performance status (KPS) <70 before re-RT and 17.4 months for KPS >70 (P=0.02). CONCLUSIONS re-RT is one of the treatment options for recurrent high grade gliomas and IMRT can be an effective treatment modality for recurrent high grade brain tumors with only mild side effects. Survival is better in patients with good performance status and in recurrent anaplastic tumors after re-RT.
Collapse
Affiliation(s)
- Meryem Aktan
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Koc
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gul Kanyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
15
|
Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015; 16:26880-913. [PMID: 26569225 PMCID: PMC4661850 DOI: 10.3390/ijms161125991] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Collapse
|
16
|
Jakob J, Simeonova A, Kasper B, Ronellenfitsch U, Wenz F, Hohenberger P. Combined radiation therapy and sunitinib for preoperative treatment of soft tissue sarcoma. Ann Surg Oncol 2015; 22:2839-45. [PMID: 26085221 DOI: 10.1245/s10434-015-4680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Antiangiogenic substances and radiation therapy (RT) may have synergistic effects and improve irradiation efficacy. We present a cohort study evaluating the toxicity of combined sunitinib and RT as neoadjuvant treatment of extremity and retroperitoneal soft tissue sarcoma (STS). METHODS Sixteen patients with locally advanced extremity (6/16) or retroperitoneal (10/16) STS were treated with continuous-dosing sunitinib (15/16: 37.5 mg daily; 1/16: 25 mg daily) and standard RT (45-50.4 Gy) preoperatively. Surgery was scheduled 5-9 weeks following neoadjuvant treatment. The primary goal of the study was to determine combined treatment toxicity according to the Common Terminology Criteria for Adverse Events. Secondary goals were the evaluation of postoperative morbidity and treatment response. RESULTS Eight of 16 patients developed grade 3, and one patient developed grade 4, hematological toxicity. One patient experienced grade 3 hand-foot syndrome. The most frequent treatment toxicities of any grade were hematological (15/16) or dermatological (9/16). Three patients had partial response, 11 had stable disease, and 2 had progressive disease according to Response Evaluation Criteria in Solid Tumors (RECIST). Fourteen of 16 patients underwent surgery; tumors were not removed in two patients because of patient refusal or intercurrent metastatic disease. The proportion of tumor necrosis exceeded 90 % in 5 of 14 patients, and 4 patients had postoperative complications requiring reintervention. CONCLUSIONS Preoperative treatment with concurrent sunitinib and RT was tolerable, and postoperative morbidity did not increase. Combined treatment with RT and sunitinib was also feasible in patients with retroperitoneal STS, and warrants further investigation.
Collapse
Affiliation(s)
- Jens Jakob
- Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| | | | | | | | | | | |
Collapse
|
17
|
Xiao H, Tong R, Ding C, Lv Z, Du C, Peng C, Cheng S, Xie H, Zhou L, Wu J, Zheng S. γ-H2AX promotes hepatocellular carcinoma angiogenesis via EGFR/HIF-1α/VEGF pathways under hypoxic condition. Oncotarget 2015; 6:2180-2192. [PMID: 25537504 PMCID: PMC4385844 DOI: 10.18632/oncotarget.2942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers. Using mRNA microarray analysis, we found that H2AX decreased under hypoxic conditions. Hypoxia is an important physiological and pathological stress that induces H2AX phosphorylation (γ-H2AX), but the regulatory mechanism of γ-H2AX remains elusive in the progress of HCC. We report here that increased γ-H2AX expression in HCC is associated with tumor size, vascular invasion, TNM stage and reduced survival rate after liver transplantation (LT). γ-H2AX knockdown was able to effectively inhibit VEGF expression in vitro and tumorigenicity and angiogenesis of HCC in vivo. The mechanism of γ-H2AX on the angiogenic activity of HCC might go through EGFR/HIF-1α/VEGF pathways under hypoxic conditions. Combined γ-H2AX, HIF-1α and EGFR has better prognostic value for HCC after LT. This study suggests that γ-H2AX is associated with angiogenesis of HCC and γ-H2AX or a combination of γ-H2AX/EGFR/HIF-1α is a novel marker in the prognosis of HCC after LT and a potential therapeutic target.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Hypoxia
- Cell Line, Tumor
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Histones/genetics
- Histones/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Transplantation
- Mice, SCID
- Microscopy, Confocal
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Oligonucleotide Array Sequence Analysis
- Signal Transduction/genetics
- Transcriptome
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Heng Xiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Chengli Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shaobing Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
18
|
Guan Z, Yu X, Wang H, Wang H, Zhang J, Li G, Cao J, Teng L. Advances in the targeted therapy of liposarcoma. Onco Targets Ther 2015; 8:125-36. [PMID: 25609980 PMCID: PMC4293924 DOI: 10.2147/ott.s72722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haiyong Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Medicine Oncology, Zhejiang Cancer Hospital, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
MacDonagh L, Gray SG, Finn SP, Cuffe S, O'Byrne KJ, Barr MP. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev 2014; 41:160-9. [PMID: 25592062 DOI: 10.1016/j.ctrv.2014.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/08/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
One of the major challenges in the treatment of lung cancer is the development of drug resistance. This represents a major obstacle in the treatment of patients, limiting the efficacy of both conventional chemotherapy and biological therapies. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and in developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in resistance to various cancer treatments. MicroRNAs are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified to date. While as little as one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance to a number of cancer treatments, thereby modulating the sensitivity of cancer cells to such therapies. Therefore, targeting miRNAs may be an attractive strategy for developing novel and more effective individualized therapies, improving drug efficiency, and for predicting patient response to different treatments. In this review, we provide an overview on the role of miRNAs in resistance to current lung cancer therapies and novel biological agents.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Department of Histopathology, St James's Hospital & Trinity College Dublin, Ireland.
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| | - Kenneth J O'Byrne
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland; Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia.
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Ireland.
| |
Collapse
|
20
|
Berezansky L, Braverman E, Idels L. Effect of treatment on the global dynamics of delayed pathological angiogenesis models. J Theor Biol 2014; 363:13-21. [PMID: 25128238 DOI: 10.1016/j.jtbi.2014.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
For three different types of angiogenesis models with variable delays, we consider either continuous or impulse therapy that eradicates tumor cells and suppresses angiogenesis. For the cancer-free solution, explicit conditions of global stability for the continuous and impulsive systems are obtained, together with delay-dependent estimates for the rates of decay for the tumor volume and pathological angiogenesis.
Collapse
Affiliation(s)
- Leonid Berezansky
- Department of Mathematics, Ben-Gurion University of Negev, Beer-Sheva 84105, Israel
| | - Elena Braverman
- Department of Math and Stats, University of Calgary, 2500 University Drive N.W., Calgary, Canada AB T2N 1N4.
| | - Lev Idels
- Department of Math, Vancouver Island University (VIU), 900 Fifth St. Nanaimo, BC, Canada V9S5J5
| |
Collapse
|
21
|
Todorich B, Yiu G, Hahn P. Current and investigational pharmacotherapeutic approaches for modulating retinal angiogenesis. Expert Rev Clin Pharmacol 2014; 7:375-91. [PMID: 24580084 DOI: 10.1586/17512433.2014.890047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinal vascular development is a carefully orchestrated developmental process during which retinal and choroidal vasculature form to provide a dual vascular supply to the neurosensory retina and retinal pigment epithelium. The most common causes of vision loss in children and adults involve at least in part perturbation of the normal vascular physiology or development. Vascular endothelial growth factor has emerged as a key molecular regulator of retinal vascular development as well as retinal and choroidal neovascularization, which underlie the pathophysiology of many retinal diseases. Over the past decade, the advent of injectable pharmacotherapeutic agents into the vitreous cavity of the eye has revolutionized our management of neovascular age-related macular degeneration and other retinal diseases and has, for the first time, offered an opportunity to improve vision rather than just slow the progression of disease processes. The transient duration of these agents, however, requires chronic treatment with repeated intraocular injections and significant treatment burden for patients and the healthcare system. Novel treatments modulating retinal angiogenesis offer the promise of improved efficacy, decreased treatment burden and improved cost-effectiveness.
Collapse
Affiliation(s)
- Bozho Todorich
- Duke University Eye Center, Erwin Road, DUMC 3802, Durham, NC 27710, USA
| | | | | |
Collapse
|
22
|
Weiss A, van Beijnum JR, Bonvin D, Jichlinski P, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. J Cell Mol Med 2014; 18:480-91. [PMID: 24450440 PMCID: PMC3955154 DOI: 10.1111/jcmm.12199] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is an effective clinical treatment for a number of different cancers. PDT can induce hypoxia and inflammation, pro-angiogenic side effects, which may counteract its angio-occlusive mechanism. The combination of PDT with anti-angiogenic drugs offers a possibility for improved anti-tumour outcome. We used two tumour models to test the effects of the clinically approved angiostatic tyrosine kinase inhibitors sunitinib, sorafenib and axitinib in combination with PDT, and compared these results with the effects of bevacizumab, the anti-VEGF antibody, for the improvement of PDT. Best results were obtained from the combination of PDT and low-dose axitinib or sorafenib. Molecular analysis by PCR revealed that PDT in combination with axitinib suppressed VEGFR-2 expression in tumour vasculature. Treatment with bevacizumab, although effective as monotherapy, did not improve PDT outcome. In order to test for tumour vessel normalization effects, axitinib was also applied prior to PDT. The absence of improved PDT outcome in these experiments, as well as the lack of increased oxygenation in axitinib-treated tumours, suggests that vascular normalization did not occur. The current data imply that there is a future for certain anti-angiogenic agents to further improve the efficacy of photodynamic anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Weiss
- Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Angiogenesis Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Bow H, Hwang LS, Schildhaus N, Xing J, Murray L, Salditch Q, Ye X, Zhang Y, Weingart J, Brem H, Tyler B. Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma. J Neurosurg 2013; 120:662-9. [PMID: 24359008 DOI: 10.3171/2013.11.jns13556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Over the past several years, there has been increasing interest in combining angiogenesis inhibitors with radiotherapy and temozolomide chemotherapy in the treatment of glioblastoma. Although the US FDA approved bevacizumab for the treatment of glioblastoma in 2009, the European Medicines Agency rejected its use due to its questionable impact on patient survival. One factor contributing to the failure of angiogenesis inhibitors to increase overall patient survival may be their inability to cross the blood-brain barrier. Here the authors examined in a 9L glioma model whether intracranial polymer-based delivery of the angiogenesis inhibitor minocycline potentiates the effects of both radiotherapy and temozolomide chemotherapy in increasing median survival. The authors also investigated whether the relative timing of minocycline polymer implantation with respect to radiotherapy affects the efficacy of radiotherapy. METHODS Minocycline was incorporated into the biodegradable polymer polyanhydride poly(1,3-bis-[p-carboxyphenoxy propane]-co-[sebacic anhydride]) (CPP:SA) at a ratio of 50:50 by weight. Female Fischer 344 rats were implanted with 9L glioma on Day 0. The minocycline polymer was then implanted on either Day 3 or Day 5 posttumor implantation. Cohorts of rats were exposed to 20 Gy focal radiation on Day 5 or were administered oral temozolomide (50 mg/kg daily) on Days 5-9. RESULTS Both minocycline polymer implantations on Days 3 and 5 increased survival from 14 days to 19 days (p < 0.001 vs control). Treatment with a combination of both minocycline polymer and radiotherapy on Day 5 resulted in a 139% increase in median survival compared with treatment with radiotherapy alone (p < 0.005). There was not a statistically significant difference in median survival between the group that received minocycline implanted on the same day as radiotherapy and the group that received minocycline polymer 2 days prior to radiotherapy. Lastly, treatment with a combination of minocycline polymer with oral temozolomide resulted in a 38% extension of median survival compared with treatment of oral temozolomide alone (p < 0.001). CONCLUSIONS These results show that minocycline delivered locally potentiates the effects of both radiotherapy and oral temozolomide in increasing median survival in a rodent glioma model. More generally, these results suggest that traditional therapy in combination with local, as opposed to systemic, delivery of angiogenesis inhibitors may be able to increase median survival for patients with glioblastoma.
Collapse
|
24
|
Jakob J, Rauch G, Wenz F, Hohenberger P. Phase I trial of concurrent sunitinib and radiation therapy as preoperative treatment for soft tissue sarcoma. BMJ Open 2013; 3:e003626. [PMID: 24048627 PMCID: PMC3780318 DOI: 10.1136/bmjopen-2013-003626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Although the introduction of multimodal treatment of soft tissue sarcoma improved local tumour control, local failure still occurs in a good number of patients. Therefore, further improvement of current treatment strategies is necessary. The proposed study treatment will combine standard external beam radiation and the orally administered receptor tyrosine kinase inhibitor sunitinib. METHODS AND ANALYSIS Patients with soft tissue sarcoma will receive sunitinib and irradiation as neoadjuvant treatment. Radiotherapy will be administered as intensity modulated radiation therapy with a total dose of 50.4 Gy in 28 fractions (5 1/2 weeks). Patients will receive sunitinib daily for 2 weeks prior to and then concurrently with irradiation. Sunitinib will be given in two dose levels. The first dose level will be 25 mg sunitinib per os daily. The second dose level will be 37.5 mg. A dose modification schedule according to a 3+3 design will be applied. Restaging and tumour resection will be performed 6 weeks after completion of sunitinib and irradiation. Primary outcome measures will be the dose-limiting toxicity and maximal tolerated dose of sunitinib administered concurrently with irradiation. Toxicity of the study treatment will be documented according to Common Terminology Criteria of Adverse Events (CTCAE) 4.0. Secondary outcome measures will be the response to the study treatment and morbidity of the tumour resection. Imaging response will be determined according to Response Evaluation Criteria in Solid Tumors (RECIST) criteria comparing MRI performed prior to and 6 weeks after completion of study treatment. Pathological response will be determined evaluating the fraction of non-viable tumour in the resection specimen. Resection morbidity will be evaluated according to CTCAE 4.0. ETHICS AND DISSEMINATION Approval was obtained from the ethics committee II of the University of Heidelberg, Germany (Reference number 2011-064F-MA). Furthermore, the study was approved by the German Federal Institute for Drugs and Medical Devices (Reference number 4037708). TRIAL REGISTRATION EUDRACT 2007-002864-87 Clinicaltrials.gov: NCT01498835.
Collapse
Affiliation(s)
- Jens Jakob
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Geraldine Rauch
- Institute of Medical Biometry and Informatics, University of Heidelberg, ImNeuenheimer Feld 305, Heidelberg, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
25
|
A review of vascular disrupting agents as a concomitant anti-tumour modality with radiation. JOURNAL OF RADIOTHERAPY IN PRACTICE 2013. [DOI: 10.1017/s1460396912000465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackgroundTumour vasculature plays an important role in the development, maintenance and sustainability of a tumour. Endothelial cells which are recruited into the tumour stroma facilitate the formation of essential blood vessels that deliver nutrients and oxygen to tumour cells. A growing body of research is showing that there are synergistic anti-tumour effects when anti-vascular agents are combined with radiation. More recent reports have described favourable radiation response as a function of vascular targeting and blood vessel breakdown, primarily through interactions of radiation with vascular endothelial cells. Vascular disrupting agents are being utilised in several forms that include molecular targeting, biophysical assault and biological interference.PurposeIn the present review, we examine current advances in anti-vascular agents to enhance tumour response when combined with radiation therapy.MethodsA comprehensive literature search was conducted on the US National Library of Medicine, National Institutes of Health (PubMed) using the following search keywords: vascular disrupting agents, radiation sensitisation, anti-angiogenic therapy, anti-vascular therapy, radiation therapy.ConclusionCurrent research suggests the applicability of vascular disrupting agents as an effective radiation sensitisation agent. Pre-clinical and clinical trials have been well developed to form the theoretical framework to apply this powerful modality to the treatment of cancer.
Collapse
|
26
|
Emerging Therapies for Neovascular Age-Related Macular Degeneration. Ophthalmology 2013; 120:S11-5. [DOI: 10.1016/j.ophtha.2013.01.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 01/08/2013] [Accepted: 01/25/2013] [Indexed: 01/18/2023] Open
|
27
|
Vihinen P, Ala-Aho R, Kähäri VM. Diagnostic and prognostic role of matrix metalloproteases in cancer. ACTA ACUST UNITED AC 2013; 2:1025-39. [PMID: 23495924 DOI: 10.1517/17530059.2.9.1025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Matrix metalloproteases (MMPs) are key players in the progression and metastasis of cancer. MMPs cleave extracellular matrix components and in this way promote tumor growth, invasion and vascularization. MMPs also affect tumor progression by regulating availability and activity of growth factors, inflammatory cytokines and chemokines. Accordingly, several MMPs have been found to serve as prognostic indicators in solid tumors. Usually the increased levels of MMPs in patients' tumor tissue or serum/plasma are associated with poor outcome. Interestingly, recent results show that certain MMPs also serve as tumor suppressors. OBJECTIVE This review discusses the latest view on MMPs as diagnostic and prognostic indicators in cancer patients. METHODS Studies with clinical samples of 70 or more patients are included in particular. In addition, the possible roles of MMPs in future molecular diagnostics and in the evaluation of therapeutic responses are discussed. CONCLUSION MMP-9 in particular has shown prognostic value in various types of tumor, and its measurement in circulation, urine or tumor tissue might help in clinical surveillance of otherwise problematic patient cases. There is upcoming new knowledge on MMPs in therapy response evaluation, in which MMPs might be useful together with CT scans and other clinically more established prognostic factors. Certain MMPs have a dual role in terms of cancer-modulating properties and thus it is essential to evaluate their expression and function in tumor cells and host environment to select validated therapy targets but spare MMP antitargets.
Collapse
Affiliation(s)
- Pia Vihinen
- Turku University Hospital, Department of Oncology and Radiotherapy, POB 52, FIN-20521 Turku, Finland +358 2 313 0804 ; +358 2 313 2809 ;
| | | | | |
Collapse
|
28
|
Meng MB, Jiang XD, Deng L, Na FF, He JZ, Xue JX, Guo WH, Wen QL, Lan J, Mo XM, Lang JY, Lu Y. Enhanced radioresponse with a novel recombinant human endostatin protein via tumor vasculature remodeling: experimental and clinical evidence. Radiother Oncol 2013; 106:130-7. [PMID: 23351845 DOI: 10.1016/j.radonc.2012.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to examine the effect of the novel recombinant human endostatin (rh-Endo) protein on tumor vasculature, and to explore and evaluate the optimal scheduling of rh-Endo and radiotherapy (RT). METHODS Tumor-perfusion parameters and hypoxia were monitored after rh-Endo treatment in 10 non-small cell lung-cancer (NSCLC) patients. Eight-week female C57BL/6J mice were randomized to receive rh-Endo or control (saline) once daily for 12 days when Lewis lung carcinoma (LLC) reached approximately 100-150 mm(3). On planned days, tumors were measured for cell apoptosis, microvessel density, pericytes, blood-vessel morphology, and tumor hypoxia. The tumor response under different combinations of rh-Endo and RT schedules was evaluated. RESULTS Tumor hypoxia was significantly reduced 5 days after rh-Endo in NSCLC patients, and a similar result was found in the LLC mouse model. The anti-tumor effect was markedly enhanced when RT was administered within the remodeling period compared to any other treatment schedule. rh-Endo treatment remodeled the tumor vasculature after 5 days by reducing microvessel density and increasing pericytic coverage of the vessel endothelium. CONCLUSION This study demonstrated decreased hypoxia in animals and patients upon rh-Endo treatment, which also enhanced the radioresponse within the vasculature-remodeling period. The optimal clinical combination of rh-Endo and RT warrants further investigation.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Scoazec JY. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 2013; 97:45-56. [PMID: 22538258 DOI: 10.1159/000338371] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/18/2012] [Indexed: 01/21/2023]
Abstract
The considerable research efforts devoted to the understanding of the mechanisms of tumor angiogenesis have resulted in the development of targeted anti-angiogenic therapies and finally in their introduction in clinical practice. Neuroendocrine tumors (NETs), which are characterized by a high vascular supply and a strong expression of VEGF-A, one of the most potent pro-angiogenic factors, are an attractive indication for these new treatments. However, several lines of evidence show that the dense vascular networks associated with low-grade NETs are more likely to be a marker of differentiation than a marker of aggressiveness, as in other epithelial tumors. These observations form the basis for the so-called 'neuroendocrine paradox', according to which the most vascularized are the most differentiated and the less angiogenic NETs. This must be kept in mind when discussing the role of anti-angiogenic strategies in the treatment of NETs. Nevertheless, several targeted therapies, with direct or indirect anti-angiogenic properties, including anti-VEGF antibodies, tyrosine kinase inhibitors (sunitinib) and mTOR inhibitors (everolimus), have recently proven to be of clinical benefit. In addition, some drugs already used in NET treatment, such as somatostatin analogues and interferon-α, may also have anti-angiogenic properties. The main challenges for the next future are to validate biomarkers for the selection of patients and the prediction of their response to refine the indications of anti-angiogenic targeted therapies and to overcome the mechanisms of resistance, which explain the limited duration of action of most of these treatments.
Collapse
Affiliation(s)
- Jean-Yves Scoazec
- Service d'Anatomie Pathologique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
30
|
Goyal S, Shah S, Khan AJ, Danish H, Haffty BG. Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with pazopanib. ISRN ONCOLOGY 2012; 2012:896202. [PMID: 23304555 PMCID: PMC3523562 DOI: 10.5402/2012/896202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022]
Abstract
Purpose. The purpose of this study was to analyze acute locoregional toxicity in patients with breast cancer receiving concurrent pazopanib and RT. Materials and Methods. Patients with breast cancer who received pazopanib in combination with radiation were identified and matched (2 : 1) to patients with breast cancer who did not receive pazopanib by use of chemotherapy, radiation field design, and radiation dose. Toxicity was scored by the Common Terminology Criteria for Adverse Events and statistical analysis was performed. Results. Grade 1 or 2 radiation dermatitis was seen in 100% and 84% of pazopanib and RT patients and matched controls respectively (P = NS). None of the patients receiving pazopanib and RT experienced ≥ grade 3 toxicity within the irradiated volume; three (16%) matched patients experienced a grade 3 skin reaction (P = 0.05). Interestingly, grade 1 or 2 hyperpigmentation was seen in 17% of pazopanib and RT patients and 60% of matched controls (P = 0.005). Conclusion. The addition of concurrent pazopanib and RT when treating the intact breast, chest wall, and associated nodal regions in breast cancer seems to be safe and well tolerated.
Collapse
Affiliation(s)
- Sharad Goyal
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, UMDNJ 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
31
|
Fernández-Martos C, Nogué M, Cejas P, Moreno-García V, Machancoses AH, Feliu J. The role of capecitabine in locally advanced rectal cancer treatment: an update. Drugs 2012; 72:1057-73. [PMID: 22621694 DOI: 10.2165/11633870-000000000-00000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preoperative infusional 5-fluorouracil (5-FU) and concurrent radiation therapy (RT) followed by total mesorectal surgery is the current standard of care for locally advanced rectal cancer (LAR). When compared with postoperative 5-FU-based chemoradiation, this strategy is associated with significantly lower rates of local relapse, lower toxicity and better compliance. Capecitabine is a rationally designed oral prodrug that is converted into 5-FU by intracellular thymidine phosphorylase. Substitution of infusional 5-FU with capecitabine is an attractive option that provides a more convenient administration schedule and, possibly, increased efficacy. Indeed, incorporation of capecitabine in combined modality neoadjuvant therapy for LAR has been under intense investigation during the last 10 years. Phase I and II clinical trials showed that a regimen consisting of capecitabine 825mg/m(2) twice daily for 7 days/week continuous oral administration in combination with RT is an active and well tolerated regimen, thereby being the preferred concurrent regimen. The definitive demonstration that efficacy of capecitabine/RT is similar to 5-FU/RT has been provided by the NSABP-R-04 and the German Margit trials. One approach to improve outcomes in rectal cancer is to deliver a second RT-sensitizing drug with effective systemic activity. Oxaliplatin and irinotecan are therefore good candidates. However, two phase III trials demonstrated that incorporation of oxaliplatin to capecitabine with RT did not improve early outcomes and, by contrast, increased toxicity. Capecitabine has also been combined with irinotecan. This regimen showed encouraging results in phase I and II clinical trials, which led to an ongoing phase III clinical trial. New strategies with induction chemotherapy with or without chemoradiation prior to surgery are currently under investigation. Whether or not capecitabine has a role in this setting is being investigated in ongoing trials. Incorporation of agents directed towards new targets, such as anti-epidermal growth factor receptor (EGFR) antibodies or antiangiogenic agents, in combination preoperative regimens, is being hampered by results of early trials in which efficacy outcomes with cetuximab were poor and an excessive rate of surgical complications with bevacizumab was observed. The lack of improvements in efficacy with the addition of cetuximab or bevacizumab in the adjuvant treatment of colon cancer led to concerns about further development of these agents in rectal cancer. The role of capecitabine in the postoperative adjuvant setting is the aim of the ongoing Dutch SCRIPT trial. The prediction of response associated with capecitabine has been based on expression of thymidylate synthase and dihydropyrimidine dehydrogenase, as well as on gene expression arrays. All these procedures require further validation and should be considered as investigational. In conclusion, capecitabine can safely and effectively replace intravenous continuous infusion of 5-FU in the preoperative chemoradiation setting for rectal cancer management. The addition of other new antineoplastic agents to a fluoropyrimidine-based regimen remains investigational.
Collapse
|
32
|
Tran WT, Iradji S, Sofroni E, Giles A, Eddy D, Czarnota GJ. Microbubble and ultrasound radioenhancement of bladder cancer. Br J Cancer 2012; 107:469-76. [PMID: 22790798 PMCID: PMC3405216 DOI: 10.1038/bjc.2012.279] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tumour vasculature is an important component of tumour growth and survival. Recent evidence indicates tumour vasculature also has an important role in tumour radiation response. In this study, we investigated ultrasound and microbubbles to enhance the effects of radiation. METHODS Human bladder cancer HT-1376 xenografts in severe combined immuno-deficient mice were used. Treatments consisted of no, low and high concentrations of microbubbles and radiation doses of 0, 2 and 8 Gy in short-term and longitudinal studies. Acute response was assessed 24 h after treatment and longitudinal studies monitored tumour response weekly up to 28 days using power Doppler ultrasound imaging for a total of 9 conditions (n=90 animals). RESULTS Quantitative analysis of ultrasound data revealed reduced blood flow with ultrasound-microbubble treatments alone and further when combined with radiation. Tumours treated with microbubbles and radiation revealed enhanced cell death, vascular normalisation and areas of fibrosis. Longitudinal data demonstrated a reduced normalised vascular index and increased tumour cell death in both low and high microbubble concentrations with radiation. CONCLUSION Our study demonstrated that ultrasound-mediated microbubble exposure can enhance radiation effects in tumours, and can lead to enhanced tumour cell death.
Collapse
Affiliation(s)
- W T Tran
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - S Iradji
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - E Sofroni
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - A Giles
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - D Eddy
- Department of Radiotherapy and Oncology, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - G J Czarnota
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Lee J, Karshafian R, Papanicolau N, Giles A, Kolios MC, Czarnota GJ. Quantitative ultrasound for the monitoring of novel microbubble and ultrasound radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1212-1221. [PMID: 22579547 DOI: 10.1016/j.ultrasmedbio.2012.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
There is a need for cancer imaging to provide "real-time" information about the metabolic and cellular responses of tumours. Quantitative ultrasound techniques have recently been demonstrated to be a potential method of assessing tumour response at the cellular level. Anti-cancer treatments administered to xenograft-bearing mice consisted of radiotherapy and a novel antivascular therapy utilizing encapsulated microbubble agents in the presence of ultrasound. Radiation dose and microbubble concentrations were varied and the treatment modalities were given in combination to assess the possible enhancement of tumour cell death. Quantitative methods were used to non-invasively assess responses. Results demonstrated statistically significant changes in backscatter parameters (midband fit, spectral intercept) in tumours treated with high doses of radiotherapy or a high concentration of microbubbles. Combined treatments demonstrated further increases in ultrasound parameters. Histopathologic assessment was used and tumour cell death was found to correlate with increases in ultrasound parameters.
Collapse
Affiliation(s)
- Justin Lee
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Feng B, Wang R, Chen LB. Review of miR-200b and cancer chemosensitivity. Biomed Pharmacother 2012; 66:397-402. [PMID: 22795796 DOI: 10.1016/j.biopha.2012.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/10/2012] [Indexed: 01/09/2023] Open
Abstract
Chemoresistance remains a major obstacle to successful cancer treatment and leads to poor prognosis of the patients, yet the underlying mechanisms have not been fully understood. MicroRNAs (miRNAs) are non-coding small RNAs of 19-22 nucleotides which could negatively regulate gene expressions mainly through 3'-untranslated region (3'UTR) binding of target mRNAs. MiR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) is a cluster of miRNAs highly correlated with epithelial-mesenchymal transition (EMT), wherein miR-200b is identified as a critical regulator of tumor invasion, metastasis, and chemosensitivity. Recent advances of miR-200b dysregulation in tumor chemoresistance were summarized. Possible mechanisms and reversion strategies were also addressed.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | | | | |
Collapse
|
35
|
Combination of bevacizumab and irradiation on uveal melanoma: an in vitro and in vivo preclinical study. Invest New Drugs 2012; 31:59-65. [PMID: 22714791 DOI: 10.1007/s10637-012-9834-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Radiotherapy (RT) is the standard treatment for uveal melanoma. However it can cause damage to the retina and optic nerve. This study examined the in vitro and in vivo effects of the anti-VEGF monoclonal antibody bevacizumab associated with radiotherapy (RT) on tumor growth and tumor proliferation and vasculature on OCM-1 human uveal melanoma cell line. METHODS The anti-proliferative effects of bevacizumab, RT and their combination were tested both in vitro (OCM-1 cells co-cultured with HUVEC cells in Transwell plates) and in vivo (OCM-1 tumor xenografts in nude mice). In addition, treatment effects in vitro on VEGF secretion, as well as treatment effects in vivo on tumor proliferation (Ki67 labelling), tumor vasculature (VEGFR2 labelling) and VEGF tumoral concentration were analyzed. RESULTS Bevacizumab given alone had a significant impact on tumor growth in vivo (and moderate effects in vitro). The bevacizumab-RT combination had additive effects in vitro (tumor cell proliferation) and in vivo (tumor growth), which translated into a significant decrease in Ki67 expression, VEGFR2 labelling and VEGF tumoral content. CONCLUSIONS The bevacizumab-RT combination could be a promising clinical option to explore for the management of human uveal melanoma, since it may allow RT dose reduction without loss of antitumor efficacy.
Collapse
|
36
|
Kleibeuker EA, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist Updat 2012; 15:173-82. [DOI: 10.1016/j.drup.2012.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023]
|
37
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 855] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
38
|
Dowlati A. Ongoing trials with bevacizumab and other antiangiogenic agents in lung cancer. Clin Lung Cancer 2011; 9 Suppl 2:S71-5. [PMID: 21885002 DOI: 10.3816/clc.2008.s.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022]
Abstract
The recent approval of bevacizumab, sunitinib, and sorafenib in a number of diseases has led to significant interest in expanding the role of antiangiogenic therapies in cancer. Specifically, bevacizumab has only received approval for a relatively selective population with advanced non-squamous non-small-cell lung cancer (NSCLC) with good performance status and without coagulopathy, brain metastases, or hemoptysis. This has significantly restricted the potential benefit bevacizumab can bring to patients with lung cancer. In order to address whether bevacizumab might be beneficial in other settings, a multitude of clinical trials are ongoing. These include questions such as the safety of bevacizumab in patients with hemoptysis, brain metastases, and squamous cell histology. The use of bevacizumab is also being addressed in locally advanced and early-stage lung cancer. The results of many of these trials will be available in the next 2-3 years. Unfortunately, as in the case of many targeted therapies, we lack a specific biomarker to predict response to these agents. In addition, although antiangiogenic trials are well under way in NSCLC, this is not the case for small-cell lung cancer, a highly angiogenic disease in which the pace of research is substantially slower.
Collapse
Affiliation(s)
- Afshin Dowlati
- Division of Hematology/Oncology, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is activated in the majority of human cancers. This pathway is known to play a key role in numerous cellular functions including proliferation, adhesion, migration, invasion, metabolism, and survival, but in the current review we focus on its role in angiogenesis. PI3K activation may occur via RAS mutation, loss of phosphatase and tensin homolog (PTEN), or by increased expression of growth factor receptors such as epidermal growth factor receptor. There is a connection between the PI3K pathway and angiogenesis. Hypoxia leads to HIF-1α stabilization and is a major stimulus for increased vascular endothelial growth factor (VEGF) production by tumor cells. However, activation of the PI3K/AKT pathway in tumor cells can also increase VEGF secretion, both by hypoxia-inducible factor 1 (HIF-1) dependent and independent mechanisms. The PI3K/AKT pathway also modulates the expression of other angiogenic factors such as nitric oxide and angiopoietins. Numerous inhibitors targeting the PI3K/AKT/mTOR pathway have been developed, and these agents have been shown to decrease VEGF secretion and angiogenesis. The effect of these inhibitors on tumor vasculature can be difficult to predict. The vasculature of tumors is aberrant, leading to sluggish bloodflow and elevated interstitial blood pressure, which can be perpetuated by the high levels of VEGF. Hence, decreasing VEGF expression can paradoxically lead to vascular normalization and improved bloodflow in some tumors. In addition to its importance in cancer, the PI3K pathway also plays an essential role in the formation of normal blood vessels during development. Embryos with kinase-dead p110α catalytic subunit of PI3K develop vascular defects. Stimulation of endothelial cells by VEGF leads to activation of the PI3K pathway within these cells, which is important for cell migration. Sustained endothelial activation of AKT1 has been shown to induce the formation of structurally abnormal blood vessels that recapitulate the aberrations of tumor vessels. Hence, the PI3K pathway plays an important role in regulating angiogenesis both in normal tissues and in cancers.
Collapse
Affiliation(s)
- Jayashree Karar
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
40
|
Angiogenesis in head and neck cancer: a review of the literature. JOURNAL OF ONCOLOGY 2011; 2012:358472. [PMID: 22131994 PMCID: PMC3216268 DOI: 10.1155/2012/358472] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/10/2011] [Indexed: 01/08/2023]
Abstract
Angiogenesis is a necessary process for tumor growth, progression and diffusion. In the last years
many efforts have been made to understand the mechanisms necessary to the formation of new
vessels in tumor tissue and how to integrate these findings in the treatment of different type of
cancer. Thanks to these studies there are today many anti-angiogenic drugs with established
activity in cancer and approved in clinical practice.
Head and neck cancer is a common tumor worldwide that often has advanced stage at diagnosis and
poor prognosis. Angiogenesis has a well recognized role in head and neck cancer progression and
resistance to drugs and radiotherapy and many clinical trials has been conducted with antiangiogenic
agents in this disease, even if they often showed limited efficacy.
In this review we summarize the main trials published about angiogenesis in head and neck cancer
with particular attention to factors involved in this process and the available data on the efficacy of
treatment with anti-angiogenic agents in this disease.
Collapse
|
41
|
Park KJ, Kano H, Iyer A, Liu X, Niranjan A, Flickinger JC, Lieberman FS, Lunsford LD, Kondziolka D. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case–control study. J Neurooncol 2011; 107:323-33. [DOI: 10.1007/s11060-011-0744-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 10/24/2011] [Indexed: 01/30/2023]
|
42
|
Zhou HB, Yin YF, Hu Y, Li X, Zou LY, Li YJ, Gu Y, Ou BQ, Fu J, Du JH, Wu G. Suppression of vascular endothelial growth factor via siRNA interference modulates the biological behavior of human nasopharyngeal carcinoma cells. Jpn J Radiol 2011; 29:615-22. [PMID: 21956366 DOI: 10.1007/s11604-011-0603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/25/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE The aim was to study the effect of vascular endothelial growth factor (VEGF) down-regulation by small interfering (si)RNA-mediated interference (RNAi) on the biological features of nasopharyngeal carcinoma cell line CNE-2. MATERIALS AND METHODS The combined plasmids pU-siVEGF and pU-siCONT were transfected into CNE-2 cells with lipofectamine. The transfected cells were placed in fresh medium containing G418. Expression of VEGF mRNA and protein were measured by reverse transcriptase-polymerase chain reaction and Western blot, respectively. The transwell chamber model was employed to test the ability of cell invasion in vitro. The distribution of cell cycle phases was determined by flow cytometry. Cell survival was assessed by clonogenic assays. RESULTS Both VEGF mRNA and protein expression were significantly decreased in the pU-siVEGF group compared with controls (P < 0.05). The cell cycle was arrested in the G(1) phase (P < 0.05). A higher apoptotic ratio and lower invasion ability were seen in the pU-siVEGF group. The D(0) (mean lethal dose) and SF(2) values were significantly lower than those in the control group (P < 0.05). CONCLUSION Delivery of siRNA targeting VEGF seems efficient in down-regulating VEGF expression and diminishing the growth, proliferation, and invasiveness of CNE-2 cells. It also enhanced the sensitivity of CNE-2 cells to radiation.
Collapse
Affiliation(s)
- Hai B Zhou
- Department of Radiation and Medical Oncology, Second Hospital of Yichang, 4 Tiyuchang Road, Yichang, Hubei 443000, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Silva RA, Moshfeghi AA, Kaiser PK, Singh RP, Moshfeghi DM. Radiation Treatment for Age-Related Macular Degeneration. Semin Ophthalmol 2011; 26:121-30. [DOI: 10.3109/08820538.2011.554486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Oz EŞ, Aydemir E, Korcum AF, Fiskin K. Thalidomide and irradiation combination therapy increases substance P levels in vitro. Exp Ther Med 2011; 2:529-535. [PMID: 22977536 DOI: 10.3892/etm.2011.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/04/2011] [Indexed: 12/30/2022] Open
Abstract
Thalidomide is an anti-angiogenic agent that is used in the treatment of cancer. However, in many cases, particularly in patients with breast cancer, thalidomide treatment alone is insufficient and must be combined with other drugs or therapies. In the clinical setting, thalidomide is most commonly used in combination with radiation therapy. However, the exact mechanisms of its effect are unkown. Radiotherapy alters the expression of substance P, which is considered a crucial pro-angiogenic peptide. To determine whether thalidomide and radiotherapy in combination overcome the limitations of each as monotherapy, we examined the effects of the combination on the growth of breast cancer cells as well as on the expression of substance P in vitro. Mouse breast cancer cells (4T1) and cells produced from metastatic lesions (4THMpc) were treated with radiotherapy (RT) (45 Gy) alone, thalidomide (Thal) (40 μg/ml) alone or combination therapy (40 μg/ml Thal + 45 Gy RT), and compared with control cells. MTS, Live/Dead and trypan blue exclusion assays were used to evaluate the cytotoxic effects of the treatments. The levels of substance P in the conditioned media and in the cell lysates were determined by a substance P ELISA kit, and changes in the protein content were analyzed by Western blotting. Thalidomide alone resulted in a significant inhibition in the growth of the 4T1 (34.1%) and 4THMpc (52.6%) cell lines. RT alone inhibited the growth of the 4T1 (19.2%) and 4THMpc (23.31%) cell lines. The combination therapy enhanced the growth inhibition noted in the 4T1 (47.9%) and 4THMpc (62.03%) cell lines. The expression of substance P in the conditioned media and in the cell lysates increased within 72 h of RT. This increase was significantly enhanced with the combination therapy. These data indicate that thalidomide inhibits breast cancer cell growth and potentiates the anti-tumor effects of radiation at appropriate doses.
Collapse
|
45
|
Abstract
Angiogenesis has become an attractive target for drug therapy because of its key role in tumor growth. An extensive array of compounds is currently in preclinical development, with many now entering the clinic and/or achieving approval from the US Food and Drug Administration. Several regulatory and signaling molecules governing angiogenesis are of interest, including growth factors (eg, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor), receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor, as well as molecules involved in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling. Pharmacologic agents have been identified that target these pathways, yet for some agents (notably thalidomide), an understanding of the specific mechanisms of antitumor action has proved elusive. The following review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy.
Collapse
Affiliation(s)
| | - William D. Figg
- To whom correspondence should be addressed: 10 Center Drive, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD 20892 USA Phone: 301-402-3622 Fax: 301-402-8606
| |
Collapse
|
46
|
Wagle N, Nghiemphu L, Lai A, Pope W, Mischel PS, Cloughesy T. Update and developments in the treatment of glioblastoma multiforme - focus on bevacizumab. Pharmgenomics Pers Med 2010; 3:79-85. [PMID: 23226044 PMCID: PMC3513210 DOI: 10.2147/pgpm.s7940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor with a relatively poor prognosis. This article reviews the current standard therapy and discusses new developments in treatment of this disease. Surgical resection followed by radiation and chemotherapy has proven to be the most effective initial therapy. Recent advancement in molecular targeted therapies has led to the Food and Drug Administration (FDA) approval of bevacizumab in the setting of recurrent glioblastoma. The molecular pathways of glioblastoma growth are highlighted in this review. While numerous molecular targets are currently being intensely investigated, vascular endothelial growth factor (VEGF) receptor targeted therapy has been the only one to have shown clinical effect. The role of bevacizumab in this context provides a dynamic breakthrough in cancer therapy. Clinical trials have demonstrated significantly increased overall survival and six month progression free survival (PFS) in recurrent glioblastoma treated with bevacizumab alone or in combination with irinotecan. The use of this agent has also dramatically changed the imaging characteristics of glioblastoma. The anti-angiogenesis effects of bevacizumab have complicated the criterion for determining tumor growth. This may lead to redefinition of progressive disease based on non-invasive monitoring.
Collapse
Affiliation(s)
- Naveed Wagle
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Leia Nghiemphu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Whitney Pope
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Paul S Mischel
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Timothy Cloughesy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
47
|
Goyal S, Rao MS, Khan A, Huzzy L, Green C, Haffty BG. Evaluation of acute locoregional toxicity in patients with breast cancer treated with adjuvant radiotherapy in combination with bevacizumab. Int J Radiat Oncol Biol Phys 2010; 79:408-13. [PMID: 20452134 DOI: 10.1016/j.ijrobp.2009.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/07/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE Preclinical studies have shown that bevacizumab combined with radiotherapy (RT) induces a radiosensitizing effect. Published reports regarding the safety of combination therapy involving bevacizumab and RT are lacking. The purpose of this study was to analyze acute locoregional toxicity in patients with breast cancer receiving concurrent bevacizumab plus RT. METHODS AND MATERIALS After institutional review board approval was obtained, patients with breast cancer who received bevacizumab were identified; these patients were then cross-referenced with patients receiving RT. Toxicity was scored by the Common Terminology Criteria for Adverse Events. Patients were matched 1:1 with those who did not receive bevacizumab. Statistical analysis was performed to analyze toxicity between the two groups. RESULTS Fourteen patients were identified to have received bevacizumab plus RT. All patients received bevacizumab during RT without delay or treatment breaks; there were no RT treatment breaks in all patients. No patient receiving bevacizumab plus RT experienced ≥Grade 3 toxicity; 3 matched control patients experienced a Grade 3 skin reaction. There was no difference in fatigue, radiation fibrosis, pneumonitis, or lymphedema between the two groups. Five patients (35%) developed reduction in ejection fraction; 2 with right-sided and 3 with left-sided treatment. Patients with left-sided treatment experienced a persistent reduction in ejection fraction compared with those receiving right-sided treatment. CONCLUSION Concurrent bevacizumab and RT did not increase acute locoregional toxicity in comparison with matched control patients who did not receive RT alone. The addition of concurrent RT when treating the intact breast, chest wall, and associated nodal regions in breast cancer seems to be safe and well tolerated.
Collapse
Affiliation(s)
- Sharad Goyal
- Department of Radiation Oncology, The Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Firat E, Heinemann F, Grosu AL, Hermann F, Niedermann G. Molecular radiobiology meets clinical radiation oncology. Int J Radiat Biol 2010; 86:252-9. [PMID: 20201653 DOI: 10.3109/09553000903419320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The 2nd Langendorff Congress in Freiburg in Breisgau (Germany) gathered basic and translational scientists as well as clinicians interested in recent developments in molecular and clinical radiobiology. The topics ranged from the most recent insight into the organisation of the DNA damage response and radiotherapeutically relevant cell death mechanisms to biological imaging for treatment planning and advances in the understanding of the molecular biological effects of particle beams. Clinical aspects of stem cell and tumour stem cell biology as well as of angiogenesis and hypoxia, the search for novel molecular radiosensitisers and potential strategies for exploitation of the immune system to further improve tumour radiotherapy were also discussed. RESULTS AND CONCLUSION This report surveys the presentations at the meeting, considering their significance in light of the literature, and documents the increasing importance of molecular radiobiology for clinical radiooncology.
Collapse
Affiliation(s)
- Elke Firat
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Sekis I, Gerner W, Willmann M, Rebuzzi L, Tichy A, Patzl M, Thalhammer JG, Saalmüller A, Kleiter MM. Effect of radiation on vascular endothelial growth factor expression in the C2 canine mastocytoma cell line. Am J Vet Res 2010; 70:1141-50. [PMID: 19719431 DOI: 10.2460/ajvr.70.9.1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To establish the radiosensitivity and effect of irradiation on vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) expression in the canine mastocytoma cell line C2. SAMPLE POPULATION Canine mastocytoma cell line C2. PROCEDURES C2 cells were irradiated with single doses of 2, 4, 6, and 8 Gy. The 3-(4, 5-di-methyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and proliferation assays with (methyl-hydrogen 3) thymidine were used for radiosensitivity experiments. Expression of VEGFR was determined via flow cytometry and apoptotic rate via annexin assay. Human and canine VEGF ELISA kits were evaluated in crossover assay experiments, and the canine kit was used thereafter. RESULTS C2 cells secreted VEGF constitutively. Radiation did not induce a significant increase in VEGF secretion, regardless of radiation dose. Consistently, radiation did not up-regulate VEGFR. Cell survival rates decreased in a dose-dependent manner. The apoptotic cell fraction had a dose-dependent increase that reached its maximum 24 to 48 hours after radiation. CONCLUSIONS AND CLINICAL RELEVANCE The C2 cell line was radiosensitive, and a fraction (up to 40%) of cells died via apoptosis in a dose-dependent manner. In response to radiation, C2 cells did not upregulate VEGF production or VEGFR. Further studies are needed to determine whether tumor control could be improved by combining radiotherapy with VEGFR inhibitors or apoptosis-modulating agents.
Collapse
Affiliation(s)
- Ivana Sekis
- Division of Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna 1210, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Basille D, Andrejak M, Bentayeb H, Kanaan M, Fournier C, Lecuyer E, Boutemy M, Garidi R, Douadi Y, Dayen C. Bronchial Fistula Associated with Sunitinib in a Patient Previously Treated with Radiation Therapy. Ann Pharmacother 2010; 44:383-6. [DOI: 10.1345/aph.1m469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: To report a case of bronchial fistula associated with sunitinib in a patient previously treated with radiation therapy. Case Summary: A 40-year-old man with renal cell cancer diagnosed in 2005 and initially treated by radical nephrectomy presented in March 2007 with a recurrence with cerebral, mediastinal, and lung metastases. A thoracic computed tomography (CT) scan showed a subcarinal tumor obstructing the bronchus intermedius. The patient was initially treated with cerebral and thoracic radiotherapy and then with sunitinib 50 mg/day (4 weeks on, 2 weeks off). Two months after the beginning of treatment, a CT scan revealed a dramatic reduction in the size of the tumor, associated with a bronchial fistula. This was confirmed by flexible bronchoscopy, which showed complete necrosis of the tumor and a large perforation of the bronchus intermedius. Sunitinib was immediately withdrawn and antibiotic prophylaxis was instituted. It was not possible to place an endobronchial stent. Two weeks later, flexible bronchoscopy revealed the reappearance of a yellowish mass protruding into the bronchus intermedius (40% obstruction). A few months later, the obstruction of the bronchus intermedius progressed to 90% and was associated with a contralateral obstruction of the left mainstem bronchus (20%). A rigid bronchoscopy was then performed to clear the obstruction and an endobronchial stent was placed, with satisfactory initial results. In February 2008, the patient presented with new bronchial obstruction under the endobronchial stent but refused a rigid bronchoscopy and died in March 2008. Discussion: Sunitinib, a multitarget tyrosine kinase inhibitor with antiangiogenic and antitumoral activities, has been approved for the treatment of advanced renal cell carcinoma. This treatment is generally well tolerated. Serious complications may occur, however. According to the Naranjo probability scale, the bronchial fistula was possibly related to sunitinib treatment. Conclusions: This is a rare case of a bronchial perforation leading to a fistula associated with sunitinib treatment after mediastinal radiation therapy. Clinicians may consider strict follow-up of patients with proximal lung metastases treated with sunitinib (CT scan and, if appropriate, placement of an endobronchial stent).
Collapse
Affiliation(s)
| | - Michel Andrejak
- Department of Research, Faculty of Medicine, Centre Hospitalier Universitaire Amiens, Amiens, France
| | | | | | - Clément Fournier
- Service d'Endoscopie Respiratoire, Clinique des Maladies Respiratoires, Centre Hospitalier Régional Universitaire Lille, Lille, France
| | | | | | | | | | | |
Collapse
|