1
|
Buendía-López S, Rubio-San-Simón A, Wu JH, Azorín-Cuadrillero D, Sanz-Miguel A, Lassaletta Á, Sirvent-Cerdá SI, Rey-Portela L, Abril JC, Moreno L, Madero-López L, García-Castro J, Bautista F. A comprehensive clinico-pathological review of a series of pediatric, adolescents and young adults with high-grade osteosarcoma: from clinics to biomarker discovery. Clin Transl Oncol 2025:10.1007/s12094-025-03901-5. [PMID: 40198505 DOI: 10.1007/s12094-025-03901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND We analyzed clinical and immunohistochemical characteristics of pediatric, adolescents and young adults with high-grade osteosarcoma (HGOS) to validate prognostic factors, identify targetable and prognostic biomarkers and define management of multiple relapses. METHODS Retrospective analysis of 67 patients with HGOS between 2001 and 2020 was studied. BTN3A2, HSP90 and GLYPICAN1 were further analyzed based on their high expression on in silico model. RESULTS Conventional osteosarcoma was the most frequent histology subtype (89.5%); 26.9% of patients had metastases at diagnosis. Proportion of limb-sparing surgery and R0 resection increased before and after 2011 (66.6% vs. 96.2%; 78.5% vs 87.5% respectively), while no treatment-related deaths occurred after 2011. 5-year OS and EFS were 61% and 56.6%, (5.4-year median follow-up (0.20-17.40). In multivariate analysis, metastatic disease was the sole independent prognostic factor. 5-year EFS and OS for patients with 1st, 2nd, and 3rd relapse were 8-12%, 0-5%, and 11.1-11.1% respectively. BTN3A2 was highly expressed at diagnosis, surgery, and relapse. CONCLUSION Metastatic disease remains the most important prognosis factor in HGOS. Improvements in surgical procedures and reduction in treatment-related mortality were observed. Survival after multiple relapses remains poor; we define figures to be used for benchmarking in clinical trials. BTN3A2 is a potential therapeutic target.
Collapse
Affiliation(s)
- Susana Buendía-López
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Alba Rubio-San-Simón
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jen-Hao Wu
- Trial and Data Centrum, Pediatric Hematology-Oncology Department, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MCSophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | | | - Ana Sanz-Miguel
- Pathology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Álvaro Lassaletta
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | - Juan Carlos Abril
- Orthopedic Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Lucas Moreno
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Division of Pediatric Hematology and Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Luis Madero-López
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Francisco Bautista
- Pediatric Hematology-Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.
- Trial and Data Centrum, Pediatric Hematology-Oncology Department, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Tatsumi Y, Masuda T, Watanabe T, Utomo RY, Zulfin UM, Meiyanto E, Ozaki T, Suenaga Y, Kamikubo Y. Antitumor effect of curcumin analog on osteosarcoma through the inhibition of p300‑mediated histone acetylation. Oncol Rep 2025; 53:47. [PMID: 39981920 DOI: 10.3892/or.2025.8880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Histone acetyltransferases (HATs), such as p300, CBP and PCAF, modulate numerous biological processes, including cellular proliferation and oncogenesis, through histone acetylation. In the present study, it was investigated whether the curcumin analogs such as pentagamavunon‑1 (PGV‑1) and chemoprevention curcumin analog‑1.1 (CCA‑1.1) could target p300 and suppress OS. Computational analysis indicated that PGV‑1 and CCA‑1.1 bind to the HAT domain of p300. Accordingly, these analogs efficiently inhibited the HAT activity of p300 in vitro and promoted OS cell apoptosis, accompanied by downregulation of acetylated histone H3 at Lys‑27 and phosphorylated oncogenic STAT3 at Tyr‑705. Finally, it was found that PGV‑1 and CCA‑1.1 but not PGV‑1, significantly attenuates the growth of OS developed on the chicken egg chorioallantoic membrane (CAM). Collectively, the present results strongly suggest that curcumin analog‑mediated targeting of p300 might provide a clue to develop an effective treatment strategy against patients with OS.
Collapse
Affiliation(s)
- Yasutoshi Tatsumi
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| | - Tatsuya Masuda
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| | - Takayoshi Watanabe
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| | - Rohmad Yudi Utomo
- Macromolecular Engineering Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ummi Maryam Zulfin
- Macromolecular Engineering Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Edy Meiyanto
- Macromolecular Engineering Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Toshinori Ozaki
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| | - Yusuke Suenaga
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| | - Yasuhiko Kamikubo
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 260‑8717, Japan
| |
Collapse
|
3
|
Woods KS, Taylor MA, Silberstein PT. Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database. Curr Oncol 2025; 32:199. [PMID: 40277756 PMCID: PMC12025863 DOI: 10.3390/curroncol32040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Osteosarcoma is the most common primary malignancy of bone. Previous studies have demonstrated rural-urban disparities in metastatic disease incidence and overall survival in high-grade osteosarcoma patients. However, there is a paucity of literature investigating disease-specific survival (DSS) disparities between rural and urban patients, which is explored herein using the SEER database. Patients with biopsy-proven cases of osteosarcoma were identified from 2000-2021. Statistical analysis was completed using SPSS version 29.0.2 and included chi-squared, Kaplan-Meier and log-rank, and stepwise Cox regressions. Statistical significance was considered at p < 0.05. Kaplan-Meier analysis revealed no significant differences in 5- and 10-year DSS between rural (55.0% and 47.0%) and urban patients (56.0% and 51.0%) (p = 0.107). Multivariable analysis further revealed no significant DSS difference between rural and urban patients (aHR: 1.03; 95% CI: 0.86-1.24; p = 0.757). This study expands upon prior research by investigating DSS between rural and urban osteosarcoma patients and finding no significant differences. While rural living is often associated with worse outcomes, important prognostic factors for osteosarcoma, including metastatic disease at presentation and tumor grade, were not significantly different between rural and urban patients in our study, possibly explaining our DSS-related findings. Factors other than geographical location likely impact outcomes, and future research should examine other ways that rural living may influence cancer care.
Collapse
Affiliation(s)
- Kate S. Woods
- School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | | | - Peter T. Silberstein
- School of Medicine, Creighton University, Omaha, NE 68178, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, Creighton University Medical Center, Omaha, NE 68124, USA
| |
Collapse
|
4
|
Wang Y, Hsu P, Hu H, Lin F, Wei X. Role of arachidonic acid metabolism in osteosarcoma prognosis by integrating WGCNA and bioinformatics analysis. BMC Cancer 2025; 25:445. [PMID: 40075313 PMCID: PMC11905593 DOI: 10.1186/s12885-024-13278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Osteosarcoma is a rare tumor with poor clinical outcomes. New therapeutic targets are urgently needed. Previous research indicates that genes abnormally expressed in osteosarcoma are significantly involved in the arachidonic acid (AA) metabolic pathway. However, the role of arachidonic acid metabolism-related genes (AAMRGs) in osteosarcoma prognosis remains unknown. METHODS Osteosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were classified into high-score and low-score groups based on AAMRGs scores obtained through ssGSEA analysis. The intersecting genes were identified from weighted gene co-expression network analysis (WGCNA), DEGs (osteosarcoma vs. normal) and DE-AAMRGs (high- vs. low-score). An AA metabolism predictive model of the five AAMRGs were established by Cox regression and the LASSO algorithm. Model performance was evaluated using Kaplan-Meier survival and receiver operating characteristic (ROC) curve analysis. In vitro experiments of the AA related biomarkers was validated. RESULTS Our study constructed an AAMRGs prognostic signature (CD36, CLDN11, STOM, EPYC, PANX3). K-M analysis indicated that patients in the low-risk group showed superior overall survival to high-risk group (p<0.05). ROC curves showed that all AUC values in the prognostic model exceeded 0.76. By ESTIMATE algorithms, we discovered that patients in high-risk groups had lower immune score, stromal score, and estimate score. Correlation analysis showed the strongest positive correlation between STOM and natural killer cells, and the highest negative association between PANX3 and central memory CD8 T cells. An AAMRGs prognostic signature was constructed for osteosarcoma prognosis. CONCLUSION The study suggested that a high level of AAMRGs might serve as a biomarker for poor prognosis in osteosarcoma and offers a potential explanation for the role of cyclooxygenase inhibitors in cancer. The five biomarkers (CD36, CLDN11, EPYC, PANX3, and STOM) were screened to construct an AAMRGs risk model with prognostic value, providing a new reference for the prognosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yaling Wang
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Peichun Hsu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Hu
- Shanghai Clinical Research Ward (SCRW), Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Lin
- Department of Oncology, Shanghai Eighth People's Hospital, Shanghai, China.
| | - Xiaokang Wei
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Cortini M, Ilieva E, Massari S, Bettini G, Avnet S, Baldini N. Uncovering the protective role of lipid droplet accumulation against acid-induced oxidative stress and cell death in osteosarcoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167576. [PMID: 39561857 DOI: 10.1016/j.bbadis.2024.167576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Extracellular acidosis stemming from altered tumor metabolism promotes cancer progression by enabling tumor cell adaptation to the hostile microenvironment. In osteosarcoma, we have previously shown that acidosis increases tumor cell survival alongside substantial lipid droplet accumulation. In this study, we explored the role of lipid droplet formation in mitigating cellular stress induced by extracellular acidosis in osteosarcoma cells, thereby enhancing tumor survival during progression. Specifically, we examined how lipid droplets shield against reactive oxygen species induced by extracellular acidosis. We demonstrated that lipid droplet biogenesis is critical for acid-exposed tumor cell survival, as it starts shortly after acid exposure (24 h) and inversely correlates with ROS levels (DCFH-DA assay), lipid peroxidation (Bodipy assay), and the antioxidant response, as also revealed by NRF2 transcript. Additionally, extracellular metabolites, such as lactate, and interaction with mesenchymal stromal cells within the tumor microenvironment intensify lipid droplet build-up in osteosarcoma cells. Critically, upon targeting two key proteins implicated in LD formation - PLIN2 and DGAT1 - cell viability significantly declined while ROS production escalated. In summary, our findings underscore the vital reliance of acid-exposed tumor cells on lipid droplet formation to scavenge oxidative stress. We conclude that the rewiring of lipid metabolism driven by microenvironmental cues is of paramount importance for the survival of metabolically altered osteosarcoma cells in acidic condition. Overall, we suggest that targeting key members of lipid droplet biogenesis may eradicate more aggressive and resistant tumor cells, uncovering potential new treatment strategies for osteosarcoma.
Collapse
Affiliation(s)
- Margherita Cortini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Elizabeta Ilieva
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Stefania Massari
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 40100 Ozzano dell'Emilia, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy; Biomedical Science, Technology and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
6
|
Hou SM, Cheng CY, Chen WL, Chang EM, Lin CY. NGF-TrkA Axis Enhances PDGF-C-Mediated Angiogenesis in Osteosarcoma via miR-29b-3p Suppression: A Potential Therapeutic Strategy Using Larotrectinib. Life (Basel) 2025; 15:99. [PMID: 39860039 PMCID: PMC11766545 DOI: 10.3390/life15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms. Analysis of GEO (GSE16088) data identified five angiogenesis markers significantly upregulated in OS tissues. In vitro experiments demonstrated that NGF enhanced HUVEC tube formation by upregulating platelet-derived growth factor C (PDGF-C) expression and suppressing microRNA-29b-3p (miR-29b-3p). The results of tube formation assays confirmed that NGF stimulation significantly increased the angiogenic capacity of MG63/NGF cells compared to MG63 cells. Furthermore, larotrectinib, a TrkA inhibitor, effectively reduced the migration and invasion abilities of MG63/NGF cells in a dose-dependent manner. These findings suggest that the NGF-TrkA axis promotes PDGF-C-mediated angiogenesis by inhibiting miR-29b-3p signaling. Larotrectinib could serve as a potential therapeutic agent targeting NGF-mediated angiogenesis in OS, offering a promising avenue for treatment.
Collapse
Affiliation(s)
- Sheng-Mou Hou
- Department of Research, Taiwan Blood Services Foundation, Taipei 111, Taiwan;
- The Director’s Office, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ching-Yuan Cheng
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Wei-Li Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - En-Ming Chang
- Department of Respiratory Care, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| |
Collapse
|
7
|
Wang Z, Kregel M, Meijers JL, Franch J, Cuijpers VMJI, Ahlers D, Karst U, Slootweg P, van der Geest IC, Leeuwenburgh SC, van den Beucken JJ. Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection. Acta Biomater 2025; 191:158-176. [PMID: 39551330 DOI: 10.1016/j.actbio.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.
Collapse
Affiliation(s)
- Zhule Wang
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Mark Kregel
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jean-Luc Meijers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Jordi Franch
- Department of Small Animal Medicine and Surgery, Veterinary School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vincent M J I Cuijpers
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - David Ahlers
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Piet Slootweg
- Department of Pathology, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Ingrid Cm van der Geest
- Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands; Department of Orthopedics, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Sander Cg Leeuwenburgh
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Jeroen Jjp van den Beucken
- Dentistry - Regenerative Biomaterials, Radboudumc, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboudumc, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Hasei J, Nakahara R, Otsuka Y, Nakamura Y, Ikuta K, Osaki S, Hironari T, Miwa S, Ohshika S, Nishimura S, Kahara N, Yoshida A, Fujiwara T, Nakata E, Kunisada T, Ozaki T. The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis. Cancers (Basel) 2024; 17:29. [PMID: 39796660 PMCID: PMC11718825 DOI: 10.3390/cancers17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. Methods: We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components. Both models used identical U-Net-based architectures, differing only in their annotation approaches. Performance was evaluated using an independent validation dataset. Results: Although both models achieved high diagnostic accuracy (AUC: 0.99 vs. 0.98), the 3C model demonstrated superior operational characteristics. At a standardized cutoff value of 0.2, the 3C model maintained balanced performance (sensitivity: 93.28%, specificity: 92.21%), whereas the 1C model showed compromised specificity (83.58%) despite high sensitivity (98.88%). Notably, at the 25th percentile threshold, both models showed identical false-negative rates despite significantly different cutoff values (3C: 0.661 vs. 1C: 0.985), indicating the ability of the 3C model to maintain diagnostic accuracy at substantially lower thresholds. Conclusions: This study demonstrated that anatomically informed three-class annotation can enhance AI model performance for rare disease detection without requiring additional training data. The improved stability at lower thresholds suggests that thoughtful annotation strategies can optimize the AI model training, particularly in contexts where training data are limited.
Collapse
Affiliation(s)
- Joe Hasei
- Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Ryuichi Nakahara
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yujiro Otsuka
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
- Milliman, Inc., Tokyo 102-0083, Japan
- Plusman LCC, Tokyo 103-0023, Japan
| | | | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, Nagoya 464-0083, Japan
| | - Shuhei Osaki
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tamiya Hironari
- Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences, Ishikawa 920-8641, Japan
| | - Shusa Ohshika
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Aomori 036-8563, Japan
| | - Shunji Nishimura
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka 589-8511, Japan
| | - Naoaki Kahara
- Department of Orthopedic Surgery, Mizushima Central Hospital, Kurashiki 712-8064, Japan
| | - Aki Yoshida
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tomohiro Fujiwara
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Eiji Nakata
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiyuki Kunisada
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Wang S, Zhang H, Chen T, Jiang W, Wang F, Yu Y, Guo B, Xu J, Yang F, Kang Q, Ma Z. Injectable hyaluronate-L- cysteine gel potentiates photothermal therapy in osteosarcoma via vorinostat-copper cell death. Mater Today Bio 2024; 29:101368. [PMID: 39659842 PMCID: PMC11629197 DOI: 10.1016/j.mtbio.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
The prognosis for osteosarcoma patients, a devastating malignancy affecting young individuals, remains grim despite multimodal therapeutic advances. Recently, the advent of cuproptosis, a novel programmed cell death, offers hope in fighting osteosarcoma. In this study, we introduce SAHAm@{[Cu(HA-Cys)2]Cl2}n, an injectable hyaluronate-L-cysteine hydrogel that integrates both copper ions (Cu2+) and vorinostat (SAHA) for the possible therapeutic effect. The Cu2+ targets the TCA cycle, inducing cuproptosis in osteosarcoma cells. While SAHA acts as both a histone deacetylase inhibitor and an ROS generator for eliminating tumor cells. The mechanism involves amplifying FDX-1 expression via SAHA modulation of the TCA cycle, which was an original discovery. Critically, the combined mechanisms and localized injection enables the hydrogel partially eradicating osteosarcoma without metastasis in rats. Therefore, this study advances cuproptosis induced photothermal therapy for promising clinical translations, shedding light on favorable prognosis for osteosarcoma.
Collapse
Affiliation(s)
- Sizhen Wang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Hanzhe Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Tianheng Chen
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Weiwei Jiang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yuhao Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Beibei Guo
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Feng Yang
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
- Department of Nuclear Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, Pharmacy School, Naval Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
10
|
Kelly T, Morse LJ, Wustrack R, Zimel M. Proximal Tibia Hemiarthroplasty Reconstruction Following Resection of Malignant Bone Tumors in Skeletally Immature Patients. JOURNAL OF THE PEDIATRIC ORTHOPAEDIC SOCIETY OF NORTH AMERICA 2024; 9:100118. [PMID: 40432682 PMCID: PMC12088368 DOI: 10.1016/j.jposna.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 05/29/2025]
Abstract
Background Reconstruction of the proximal tibia following resection of malignant bone tumors in pediatric patients is traditionally limited to osteoarticular allografts or endoprostheses. Endoprostheses typically require resection or disruption of the distal femoral physis, which can lead to a leg length discrepancy (LLD). We introduce a novel form of proximal tibia limb reconstruction using a Compress® tibia hemiarthroplasty, which spares the distal femoral physis. Methods We retrospectively reviewed 5 patients who underwent proximal tibia osteosarcoma resection and reconstruction with a custom Compress® proximal tibia hemiarthroplasty. Data on function, survival, LLD, complications, and patient-reported outcomes were collected. Results Mean age at resection was 10.4 years [range: 8.8-12.9 years]. Mean implant survival was 59 months [range: 34-83 months]. One patient developed a deep infection, and two patients required implant lengthening. Both were later converted to a rotating hinged total knee arthroplasty (RHTKA) > 58 months after index surgery. At the last follow-up, all living patients had knee range of motion from 0 to 110°, walked unassisted, and had no LLD or knee instability. Mean Toronto Extremity Salvage Score was 90 [range: 80-97]. Conclusions Proximal tibia hemiarthroplasty reconstruction after tumor resection in skeletally immature patients preserves the distal femoral physis and may potentially reduce LLD and delay conversion to an RHTKA until after skeletal maturity. Key Concepts (1)Osteosarcoma is the most common primary malignant bone tumor in children, arising most frequently around the knee.(2)Complete resection often requires excising the adjacent growth plate, creating a challenge for reconstruction in growing children to maintain function and avoid significant limb length inequality.(3)The custom expandable tibia hemiarthroplasty is a novel reconstruction option for skeletally immature patients requiring resection of the proximal tibia.(4)Although future research is needed, results of this study suggest that tibia hemiarthroplasty is a reasonable reconstruction option in growing children requiring oncologic resection of a primary bone tumor from the proximal tibia. Level of Evidence Case series, Level IV.
Collapse
Affiliation(s)
- Tyler Kelly
- School of Medicine, University of South Carolina, Greenville, SC, USA
| | - Lee J. Morse
- Department of Orthopaedic Surgery, Kaiser Oakland Medical Center, Oakland, CA, USA
| | - Rosanna Wustrack
- Department of Orthopaedic Surgery, University of California San Francisco, CA, USA
| | - Melissa Zimel
- Department of Orthopaedic Surgery, University of California San Francisco, CA, USA
| |
Collapse
|
11
|
Zheng F, Yin P, Liang K, Liu T, Wang Y, Hao W, Hao Q, Hong N. Comparison of Different Fusion Radiomics for Predicting Benign and Malignant Sacral Tumors: A Pilot Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2415-2427. [PMID: 38717515 PMCID: PMC11522258 DOI: 10.1007/s10278-024-01134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 10/30/2024]
Abstract
Differentiating between benign and malignant sacral tumors is crucial for determining appropriate treatment options. This study aims to develop two benchmark fusion models and a deep learning radiomic nomogram (DLRN) capable of distinguishing between benign and malignant sacral tumors using multiple imaging modalities. We reviewed axial T2-weighted imaging (T2WI) and non-contrast computed tomography (NCCT) of 134 patients pathologically confirmed as sacral tumors. The two benchmark fusion models were developed using fusion deep learning (DL) features and fusion classical machine learning (CML) features from multiple imaging modalities, employing logistic regression, K-nearest neighbor classification, and extremely randomized trees. The two benchmark models exhibiting the most robust predictive performance were merged with clinical data to formulate the DLRN. Performance assessment involved computing the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV), and positive predictive value (PPV). The DL benchmark fusion model demonstrated superior performance compared to the CML fusion model. The DLRN, identified as the optimal model, exhibited the highest predictive performance, achieving an accuracy of 0.889 and an AUC of 0.961 in the test sets. Calibration curves were utilized to evaluate the predictive capability of the models, and decision curve analysis (DCA) was conducted to assess the clinical net benefit of the DLR model. The DLRN could serve as a practical predictive tool, capable of distinguishing between benign and malignant sacral tumors, offering valuable information for risk counseling, and aiding in clinical treatment decisions.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Ping Yin
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Kewei Liang
- Intelligent Manufacturing Research Institute, Visual 3D Medical Science and Technology Development, Fengtai District, No. 186 South Fourth Ring Road West, Beijing, 100071, People's Republic of China
| | - Tao Liu
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Yujian Wang
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Wenhan Hao
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Qi Hao
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
12
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Hua W, Xu B, Zhang X, Chen T. -AI-assisted diagnostic potential of CT in bone oncology and its impact on clinical decision-making for intensive care. J Bone Oncol 2024; 48:100639. [PMID: 39430915 PMCID: PMC11490708 DOI: 10.1016/j.jbo.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
Objective This study evaluates the AI-assisted diagnostic potential of computed tomography (CT) for bone cancer and its influence on patient care during the pre- and post-treatment phases. It compares patient management approaches based on CT severity levels and identifies distinct CT phenotypes linked to disease severity. Methodology We retrospectively examined 50 patients diagnosed with bone cancer between December 2022 and June 2023. The CT scans were analyzed according to the Radiological Society of North America (RSNA) guidelines. This study was performed using the deep convolutional neutral network (DCNN) model to assist doctors in diagnosing bone tumors through CT scanning. Patients' management approaches were compared based on the severity levels indicated by CT scans. Results Fifty patients participated in this study, with a median age of 67.2 years, ranging from 32 to 89 years. Of them, 38 % were female and 62 % were male. In 2022, 19 individuals (13 males and 6 females, ages 32 to 84) were assessed, with a mean age of 59.9 years. In 2023, 31 individuals, aged 54 to 89 with a mean age of 71.6 years, were assessed; among them were 18 men and 13 women. SPECT scans revealed the following key diagnostic features: 85.9 % of patients exhibited bone lesions with ground-glass opacities, 88 % had multipolar involvement, 92.8 % had bilateral involvement, and 92.8 % showed peripheral involvement. The severity scores based on CT scans were significantly higher in patients requiring intensive care, with scores above 14 being more common in this group. Conclusion Distinct CT findings during the AI-assisted diagnosis and treatment of bone cancer provided prompt and sensitive examination capabilities. Notably, two CT phenotypes emerged, associated with large consolidation patterns and high severity scores, offering crucial insights into disease severity and aiding in clinical decision-making for intensive care requirements. The study underscores the importance of CT in the effective monitoring and management of bone cancer pre- and post-treatment.
Collapse
Affiliation(s)
- Wei Hua
- Department of Oncology, Northern Jiangsu People’s Hospital, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province 225000, PR China
| | - Bing Xu
- Department of Oncology, Northern Jiangsu People’s Hospital, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province 225000, PR China
| | - Xianwen Zhang
- Department of Oncology, Northern Jiangsu People’s Hospital, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province 225000, PR China
| | - Tingting Chen
- Department of Oncology, Northern Jiangsu People’s Hospital, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province 225000, PR China
| |
Collapse
|
14
|
Govindaraj S, Ganesan K, Elumalai P, Jeevitha R, Subramani A, Amanullah M, Al-Samghan AS. 2-Chloro-3-cyano-4-nitrobenzyl pyridinium bromide as a potent anti-lung cancer molecule prepared using a single-step solvent-free method. RSC Adv 2024; 14:24898-24909. [PMID: 39119280 PMCID: PMC11309018 DOI: 10.1039/d4ra03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Mono-/dimeric-substituted pyridinium and pyrazolium bromides were prepared under conventional and solvent-free silica-supported domestic microwave conditions. The atom economy, environmental product mass intensity and product mass intensity for solvent-free reactions showed significant importance for the synthesis of target molecules. 4-Nitrobenzyl-substituted pyridinium bromide showed potent anticancer properties compared with mono-/dimeric-substituted pyridinium and pyrazolium bromides against a lung cancer cell line (A-549). Molecular simulation studies were carried out for mono-/dimeric-substituted pyridinium and pyrazolium bromide against protein human CDK1/cyclinB1/CKS2 using the AutoDock program.
Collapse
Affiliation(s)
- Sadaiyan Govindaraj
- PG& Research Department of Chemistry, Presidency College Chennai 600005 India
| | - Kilivelu Ganesan
- PG& Research Department of Chemistry, Presidency College Chennai 600005 India
| | - Perumal Elumalai
- Cancer Genomics lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 602105 India
| | - Rajanathadurai Jeevitha
- Cancer Genomics lab, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 602105 India
| | - Annadurai Subramani
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College Chennai 600106 India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University Abha 61413 Kingdom of Saudi Arabia
| | - Awad Saeed Al-Samghan
- Department of Family Medicine and Community Medicine, College of Medicine, King Khalid University Abha Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Opyrchał J, Bula D, Dowgierd K, Pachuta B, Krakowczyk D, Raciborska A, Krakowczyk Ł. Case Series: Fibula Free Flap with Bone Allograft as the Gold Standard in Lower Limb-Salvage Surgery for Adolescent Patients with Primary Bone Tumors Located within Tibial Diaphysis: Technical Modifications and Short-Term Follow-Up. J Clin Med 2024; 13:4217. [PMID: 39064257 PMCID: PMC11277773 DOI: 10.3390/jcm13144217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Primary malignant bone tumors are most commonly associated with mutilating surgical procedures that can significantly disturb the motor development of a young patient and are frequently affiliated with major postoperative complications. Unfortunately, despite available autologous tissue donor sites, artificial materials are still most commonly used for the reconstruction of post-resection defects. Reconstructive microsurgery is increasingly recognized as an effective method of functional reconstruction, creating the possibility of performing limb-sparing surgery (LSS) with significant limitation of major postoperative complications at the same time. Methods: The study group consisted of 9 pediatric patients diagnosed with primary malignant bone tumor in the limb location. In order to perform microvascular reconstruction, 9 free fibula flaps were used in combination with a bone allograft (Capanna method). The functional outcome of the reconstruction was assessed on the basis of the MSTS (Musculoskeletal Tumor Society Scoring System) scale. Results: The presented analysis proves the effectiveness of this reconstructive procedure and the possibility of performing LSS with reasonable functional outcomes after appropriate patient qualification. In this study, all limbs included were spared. In all cases, the R0 surgical margins were achieved and no reports of local recurrences were reported during the follow-up. The average score on the MSTS scale was 27/30 points. Conclusions: Microvascular reconstructive surgery is an individually personalized and highly effective method of treating patients with primary bone tumors in the limb location and provides satisfactory functional outcomes.
Collapse
Affiliation(s)
- Jakub Opyrchał
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
| | - Daniel Bula
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
| | - Krzysztof Dowgierd
- Department of Clinical Pediatrics, Head and Neck Surgery Clinic for Children and Young Adults, University of Warmia and Mazury, 10-709 Olsztyn, Poland
| | - Bartosz Pachuta
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Dominika Krakowczyk
- Pediatric Surgery and Urological Department, Upper Silesian Child Health Center in Katowice, Silesian University of Medicine, 40-052 Katowice, Poland
| | - Anna Raciborska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Łukasz Krakowczyk
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
- Department of Clinical Pediatrics, Head and Neck Surgery Clinic for Children and Young Adults, University of Warmia and Mazury, 10-709 Olsztyn, Poland
| |
Collapse
|
16
|
Miao J, Chen S, Cao H, Ding Z, Li Y, Wang W, Nundlall K, Deng Y, Li J. Bruceantinol targeting STAT3 exerts promising antitumor effects in in vitro and in vivo osteosarcoma models. Mol Carcinog 2024; 63:1133-1145. [PMID: 38426797 DOI: 10.1002/mc.23714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Bruceantinol (BOL) is a quassinoid compound found in the fruits of Brucea javanica. Previous research has highlighted the manifold physiological and pharmacological activities of BOL. Notably, BOL has demonstrated antitumor cytotoxic and antibacterial effects, lending support to its potential as a promising therapeutic agent for various diseases. Despite being recognized as a potent antitumor inhibitor in multiple cancer types, its efficacy against osteosarcoma (OS) has not been elucidated. In this work, we investigated the antitumor properties of BOL against OS. Our findings showed that BOL significantly decreased the proliferation and migration of OS cells, induced apoptosis, and caused cell death without affecting the cell cycle. We further confirmed that BOL potently suppressed tumor growth in vivo. Mechanismly, we discovered that BOL directly bound to STAT3, and prevent the activation of STAT3 signaling at low nanomolar concentrations. Overall, our study demonstrated that BOL potently inhibited the growth and metastasis of OS, and efficiently suppressed STAT3 signaling pathway. These results suggest that BOL could be a promising therapeutic candidate for OS.
Collapse
Affiliation(s)
- Jinglei Miao
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Hongqing Cao
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhiyu Ding
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Weiguo Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Keshav Nundlall
- Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Jinsong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
17
|
Lampis S, Galardi A, Di Paolo V, Di Giannatale A. Organoids as a new approach for improving pediatric cancer research. Front Oncol 2024; 14:1414311. [PMID: 38835365 PMCID: PMC11148379 DOI: 10.3389/fonc.2024.1414311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.
Collapse
Affiliation(s)
- Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
18
|
Agrawal AC, Saini D, Nanda R. Serum Osteopontin as a Potential Marker for Metastasis and Prognosis in Primary Osteogenic Sarcoma: A Systematic Review. Cureus 2024; 16:e60544. [PMID: 38887353 PMCID: PMC11181102 DOI: 10.7759/cureus.60544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, poses significant challenges in diagnosis and prognosis. It is a painful medical burden, and treating it is still a difficult issue. Osteopontin (OPN), a multifunctional extracellular matrix protein, has emerged as a promising biomarker in this context. This systematic review explores the role of OPN as a diagnostic and prognostic marker in OS, highlighting its potential in enhancing early detection, monitoring disease progression, and predicting patient outcomes. Various studies have demonstrated elevated levels of OPN in OS patients, correlating with tumor aggressiveness, metastatic potential, and poor prognosis. In addition, OPN's involvement in tumor microenvironment regulation and metastatic processes underscores its clinical relevance as a biomarker. For this systematic review, comprehensive literature searches were conducted in the PubMed databases for research published between the database's establishment and November 11, 2022. Out of the nine studies that were available for analysis, a higher level of OPN in primary osteogenic sarcoma patients indicates a poorer prognosis and higher incidence of metastasis. OS has not shown commensurable progress with concerns to treatment approches and survical outcomes. However, the discovery of a biological marker that can predict metastasis and severity will be a groundbreaking development for advancements in OS diagnosis and treatment. Therefore, understanding the intricate interplay between OPN and OS pathogenesis holds promise for improving patient management and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alok C Agrawal
- Orthopedics, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Dikshant Saini
- Orthopedic Surgery, All India Institute of Medical Sciences, Raipur, Raipur, IND
| | - Rachita Nanda
- Biochemistry, All India Institute of Medical Sciences, Raipur, Raipur, IND
| |
Collapse
|
19
|
Fernando-Canavan L, Abraham P, Devlin N, Tran-Duy A. Health-related quality of life in patients with extremity bone sarcoma after surgical treatment: a systematic review. Qual Life Res 2024; 33:1157-1174. [PMID: 38079025 DOI: 10.1007/s11136-023-03554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/26/2024]
Abstract
PURPOSE We conducted a systematic review of studies reporting on measurement of health-related quality of life (HRQoL), with a special focus on the use of the preference-weighted instruments, in patients with extremity bone sarcoma treated with limb-salvage surgery or amputation. METHODS We searched MedLine, Embase, Cochrane Library and Web of Science for English-language studies reporting on HRQoL of patients with bone sarcoma from inception to 28 August 2023. All records found were independently reviewed by two reviewers. We used the Newcastle-Ottawa Scale (NOS) and the CONSORT 2010 checklist to assess the quality of the cohort and randomised studies, respectively. RESULTS The search identified 1225 records, of which 16 studies were included for data extraction. Only one study used a preference-weighted instrument for measuring HRQoL in a small sample of patients (n = 28). Ten studies used the generic SF-36 questionnaire, but no preference-weighted HRQoL based on SF-6D was derived from the SF-36 scores. Most studies comparing HRQoL between amputation and limb-salvage surgery reported no significant differences. Twelve cohort studies scored six or more out of nine points based on the NOS. The only randomised study scored 54% on the CONSORT 2010 checklist. CONCLUSIONS The approaches used to measure HRQoL were inconsistent and outcome scores varied substantially. Only one study used preference-weighted instruments for HRQoL measurement. Future research into the surgical treatment of extremity bone sarcoma should consider the use of preference-weighted instruments to measure HRQoL, which will therefore enable economic evaluation for the growing orthopaedic armamentarium of novel surgical interventions. REGISTRATION This systematic review was registered with the PROSPERO International prospective register of systematic reviews (CRD42021282380).
Collapse
Affiliation(s)
- Liam Fernando-Canavan
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Patrick Abraham
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Nancy Devlin
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - An Tran-Duy
- Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
20
|
Zheng B, Sun X, Zhang L, Qu G, Ren C, Yan P, Zhou C, Yue B. Inhibition of anlotinib-induced autophagy attenuates invasion and migration by regulating epithelial-mesenchymal transition and cytoskeletal rearrangement through ATG5 in human osteosarcoma cells. Braz J Med Biol Res 2024; 57:e13152. [PMID: 38381883 PMCID: PMC10880891 DOI: 10.1590/1414-431x2023e13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
The cure rates for osteosarcoma have remained unchanged in the past three decades, especially for patients with pulmonary metastasis. Thus, a new and effective treatment for metastatic osteosarcoma is urgently needed. Anlotinib has been reported to have antitumor effects on advanced osteosarcoma. However, both the effect of anlotinib on autophagy in osteosarcoma and the mechanism of anlotinib-mediated autophagy in pulmonary metastasis are unclear. The effect of anlotinib treatment on the metastasis of osteosarcoma was investigated by transwell assays, wound healing assays, and animal experiments. Related proteins were detected by western blotting after anlotinib treatment, ATG5 silencing, or ATG5 overexpression. Immunofluorescence staining and transmission electron microscopy were used to detect alterations in autophagy and the cytoskeleton. Anlotinib inhibited the migration and invasion of osteosarcoma cells but promoted autophagy and increased ATG5 expression. Furthermore, the decreases in invasion and migration induced by anlotinib treatment were enhanced by ATG5 silencing. In addition, Y-27632 inhibited cytoskeletal rearrangement, which was rescued by ATG5 overexpression. ATG5 overexpression enhanced epithelial-mesenchymal transition (EMT). Mechanistically, anlotinib-induced autophagy promoted migration and invasion by activating EMT and cytoskeletal rearrangement through ATG5 both in vitro and in vivo. Our results demonstrated that anlotinib can induce protective autophagy in osteosarcoma cells and that inhibition of anlotinib-induced autophagy enhanced the inhibitory effects of anlotinib on osteosarcoma metastasis. Thus, the therapeutic effect of anlotinib treatment can be improved by combination treatment with autophagy inhibitors, which provides a new direction for the treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangchen Sun
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guojian Qu
- Department of General Surgery (adult), Qingdao Women and Children's Hospital, Qingdao, China
| | - Chongmin Ren
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Yan
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Sakamoto A, Noguchi T, Matsuda S. Extending the usefulness of the Stryker Growing Prosthesis in pediatric patients. J Surg Case Rep 2024; 2024:rjae066. [PMID: 38370597 PMCID: PMC10871759 DOI: 10.1093/jscr/rjae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Osteosarcoma is a highly invasive primary bone tumor that predominantly occurs in childhood and adolescence. The Stryker Growing Prosthesis provides a means of reconstructing large bone defects resulting from bone resection in skeletally immature patients. This device can be expanded as the patient grows. The possible length of extension depends on the length of the prosthesis. Because further expansion was not possible, by turning the adjustable part of the extension back to zero and adding a new permanent extension allow the prosthesis to be further adjusted as growth ensues. Using this method/device only, a separate endoprosthesis was required to be attached onto the extension. Therefore, the applicable cases are limited, because of the fact that extensive resection usually means total femoral replacement is best indicated. However, this method is still useful for reducing the number of revision surgeries in such cases. This reduces costs and increases savings for insurers/countries.
Collapse
Affiliation(s)
- Akio Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Chandrasekaran R, Krishnan M, Chacko S, Gawade O, Hasan S, Joseph J, George E, Ali N, AlAsmari AF, Patil S, Jiang H. Assessment of anticancer properties of cumin seed ( Cuminum cyminum) against bone cancer. Front Oncol 2023; 13:1322875. [PMID: 38125945 PMCID: PMC10730939 DOI: 10.3389/fonc.2023.1322875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.
Collapse
Affiliation(s)
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Anna University, Tiruchirappalli, India
| | - Sonu Chacko
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Omkar Gawade
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sheik Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Evelin George
- Department of Biochemistry, JSS Academy of Higher Education, Mysuru, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Haoli Jiang
- Department of Orthopedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
23
|
Gonzalez MR, Bedi A, Karczewski D, Lozano-Calderon SA. Are Pathologic Fractures in Patients With Osteosarcoma Associated With Worse Survival Outcomes? A Systematic Review and Meta-analysis. Clin Orthop Relat Res 2023; 481:2433-2443. [PMID: 37184541 PMCID: PMC10642876 DOI: 10.1097/corr.0000000000002687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathologic fractures occur in 5% to 10% of patients with osteosarcoma, and prior studies have suggested they are prognostically important. However, because they represent an uncommon event in the setting of an already rare disease, most studies fail to reach conclusive findings, and there is no agreement about how best to treat pathologic fractures. QUESTIONS/PURPOSES (1) Is the occurrence of a pathologic fracture in patients with osteosarcoma associated with poorer overall survivorship? (2) Is the occurrence of a pathologic fracture in patients with osteosarcoma associated with poorer local recurrence-free survival or metastasis-free survival? (3) Is the surgical approach (amputation or limb salvage) associated with differences in local recurrence rates in patients with osteosarcoma with pathologic fractures? METHODS This systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Our study was registered in PROSPERO (ID: 380459). A search of the PubMed and Embase databases resulted in 625 and 747 titles, respectively. After application of the inclusion and exclusion criteria, 21 articles were finally included. Quality assessment of all studies was performed using the Newcastle-Ottawa Quality Assessment Scale. The Risk of Bias In Non-Randomized Studies of Interventions tool was used in the 11 articles that evaluated the effect of an intervention (amputation or limb salvage) on local recurrence rates. The relative risk (RR) was calculated to compare outcomes in patients with osteosarcoma with pathologic fractures and those without. Heterogeneity among studies was calculated using the I 2 statistic. The pooled RR was calculated using the fixed-effects or random-effects model depending on study heterogeneity. The fragility index and the ratio between the fragility index and the total number of participants for each outcome was additionally calculated to assess the robustness of our results. A total of 7604 patients with osteosarcoma, 12% of whom (885) had pathologic fractures, were included in our analysis. RESULTS Pathologic fractures in patients with osteosarcoma were associated with lower 3-year (RR 1.53 [95% CI 1.29 to 1.82]; p < 0.001) and 5-year overall survival (RR 1.27 [95% CI 1.16 to 1.40]; p < 0.001). No difference in recurrence rates was found between patients with osteosarcoma with pathologic fractures and those without (RR 1.22 [95% CI 0.91 to 1.64]; p = 0.18). However, having a pathologic fracture was associated with an increased risk of developing metastasis (RR 1.33 [95% CI 1.08 to 1.63]; p = 0.01). Treatment with limb salvage surgery was not associated with a higher rate of local recurrence (RR 1.58 [95% CI 0.88 to 2.85]; p = 0.13). CONCLUSION In light of these findings, surgeons should be aware that after appropriate case selection, patients with osteosarcoma and pathologic fractures undergoing limb salvage surgery may have similar rates of local recurrence to those undergoing amputation. Therefore, a pathologic fracture may no longer be an absolute contraindication for limb salvage surgery. Future studies adjusting for potential confounders such as tumor size, tumor location, and response to neoadjuvant therapy would provide further insight into the effect of pathologic fractures on our assessed outcomes. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
Affiliation(s)
- Marcos R. Gonzalez
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angad Bedi
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel Karczewski
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago A. Lozano-Calderon
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Hou Y, Wang J, Wang J. Engineered biomaterial delivery strategies are used to reduce cardiotoxicity in osteosarcoma. Front Pharmacol 2023; 14:1284406. [PMID: 37854721 PMCID: PMC10579615 DOI: 10.3389/fphar.2023.1284406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Chemotherapy drugs play an integral role in OS treatment. Preoperative neoadjuvant chemotherapy and postoperative conventional adjuvant chemotherapy improve survival in patients with OS. However, the toxic side effects of chemotherapy drugs are unavoidable. Cardiotoxicity is one of the common side effects of chemotherapy drugs that cannot be ignored. Chemotherapy drugs affect the destruction of mitochondrial autophagy and mitochondria-associated proteins to cause a decrease in cardiac ejection fraction and cardiomyocyte necrosis, which in turn causes heart failure and irreversible cardiomyopathy. Biomaterials play an important role in nanomedicine. Biomaterials act as carriers to deliver chemotherapy drugs precisely around tumor cells and continuously release carriers around the tumor. It not only promotes anti-tumor effects but also reduces the cardiotoxicity of chemotherapy drugs. In this paper, we first introduce the mechanism by which chemotherapy drugs commonly used in OS cause cardiotoxicity. Subsequently, we introduce biomaterials for reducing cardiotoxicity in OS chemotherapy. Finally, we prospect biomaterial delivery strategies to reduce cardiotoxicity in OS.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| |
Collapse
|
25
|
Zhang S, Ren H, Sun HT, Cao S. Cytotoxic Effects of Castalin Nanoparticles Against Osteosarcoma. Appl Biochem Biotechnol 2023; 195:5355-5364. [PMID: 35226253 DOI: 10.1007/s12010-022-03846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/01/2022]
Abstract
The size-dependent bioactivities of castalin were analyzed by comparing the cytotoxic effects of native castalin and castalin nanoparticles on osteosarcoma in vitro and in vivo. In vitro experiments indicated that castalin nanoparticles induced apoptosis of an osteosarcoma cell line more efficiently than native castalin. The more potent effects of castalin nanoparticles, relative to native castalin, were confirmed in vivo using a xenograft osteosarcoma model. Caco-2 cell transport studies showed that permeation of castalin nanoparticles was higher than native castalin. The higher bioactivity and superior bioavailability of castalin nanoparticles could potentially be utilised to develop novel therapies for osteosarcoma.
Collapse
Affiliation(s)
- Shouqiang Zhang
- Department of Orthopaedic & Trauma Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Hui Ren
- Department of Cardiothoracic Surgery, Xinwen Mining Group Central Hospital, Xintai City, 271200, Shandong, China
| | - Han Ting Sun
- Department of Orthopaedic Surgery, ZouPing Hospital of TCM, ZouPing City, 256200, Shandong, China
| | - Songhua Cao
- Department of Hand Surgery/Foot & Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| |
Collapse
|
26
|
Veys C, Boulouard F, Benmoussa A, Jammes M, Brotin E, Rédini F, Poulain L, Gruchy N, Denoyelle C, Legendre F, Galera P. MiR-4270 acts as a tumor suppressor by directly targeting Bcl-xL in human osteosarcoma cells. Front Oncol 2023; 13:1220459. [PMID: 37719019 PMCID: PMC10501397 DOI: 10.3389/fonc.2023.1220459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
Chondrosarcomas and osteosarcomas are malignant bone tumors with a poor prognosis when unresectable or metastasized. Moreover, radiotherapy and chemotherapy could be ineffective. MiRNAs represent an alternative therapeutic approach. Based on high-throughput functional screening, we identified four miRNAs with a potential antiproliferative effect on SW1353 chondrosarcoma cells. Individual functional validations were then performed in SW1353 cells, as well as in three osteosarcoma cell lines. The antiproliferative and cytotoxic effects of miRNAs were evaluated in comparison with a positive control, miR-342-5p. The cytotoxic effect of four selected miRNAs was not confirmed on SW1353 cells, but we unambiguously revealed that miR-4270 had a potent cytotoxic effect on HOS and MG-63 osteosarcoma cell lines, but not on SaOS-2 cell line. Furthermore, like miR-342-5p, miR-4270 induced apoptosis in these two cell lines. In addition, we provided the first report of Bcl-xL as a direct target of miR-4270. MiR-4270 also decreased the expression of the anti-apoptotic protein Mcl-1, and increased the expression of the pro-apoptotic protein Bak. Our findings demonstrated that miR-4270 has tumor suppressive activity in osteosarcoma cells, particularly through Bcl-xL downregulation.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Flavie Boulouard
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Abderrahim Benmoussa
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Manon Jammes
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
| | - Emilie Brotin
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Françoise Rédini
- UMR 1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, INSERM, Nantes University, Nantes, France
| | - Laurent Poulain
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | - Nicolas Gruchy
- Normandie Univ., UNICAEN, BIOTARGEN, Caen, France
- Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Caen University Hospital, Caen, France
| | - Christophe Denoyelle
- Normandie Univ., UNICAEN, Federative Structure Normandie Oncology, US Platon, ImpedanCELL Platform, Caen, France
- Normandie Univ., UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), Caen, France
- UNICANCER, Comprehensive Cancer Center F. Baclesse, Caen, France
| | | | | |
Collapse
|
27
|
Xu S, Tan S, Guo L. Patient-Derived Organoids as a Promising Tool for Multimodal Management of Sarcomas. Cancers (Basel) 2023; 15:4339. [PMID: 37686615 PMCID: PMC10486520 DOI: 10.3390/cancers15174339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The management of sarcomas, a diverse group of cancers arising from connective tissues, presents significant challenges due to their heterogeneity and limited treatment options. Patient-derived sarcoma organoids (PDSOs) have emerged as a promising tool in the multimodal management of sarcomas, offering unprecedented opportunities for personalized medicine and improved treatment strategies. This review aims to explore the potential of PDSOs as a promising tool for multimodal management of sarcomas. We discuss the establishment and characterization of PDSOs, which realistically recapitulate the complexity and heterogeneity of the original tumor, providing a platform for genetic and molecular fidelity, histological resemblance, and functional characterization. Additionally, we discuss the applications of PDSOs in pathological and genetic evaluation, treatment screening and development, and personalized multimodal management. One significant advancement of PDSOs lies in their ability to guide personalized treatment decisions, enabling clinicians to assess the response and efficacy of different therapies in a patient-specific manner. Through continued research and development, PDSOs hold the potential to revolutionize sarcoma management and drive advancements in personalized medicine, biomarker discovery, preclinical modeling, and therapy optimization. The integration of PDSOs into clinical practice can ultimately improve patient outcomes and significantly impact the field of sarcoma treatment.
Collapse
Affiliation(s)
- Songfeng Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen 518116, China;
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - ShihJye Tan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Blvd, Biology Building 402, Shenzhen 518055, China
| | - Ling Guo
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Blvd, Biology Building 402, Shenzhen 518055, China
| |
Collapse
|
28
|
Cheng S, Shao H, Yin D, Zhou J, Jian L, Xie J, Zhang Y, Wang D, Peng F. Molecular Mechanism Underlying the Action of a Celastrol-Loaded Layered Double Hydroxide-Coated Magnesium Alloy in Osteosarcoma Inhibition and Bone Regeneration. ACS Biomater Sci Eng 2023; 9:4940-4952. [PMID: 37530388 DOI: 10.1021/acsbiomaterials.3c00357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Osteosarcoma (OS) is a malignant bone tumor that threatens human health. Surgical removal of the tumor and followed by implantation with a graft is the golden standard for its clinical treatment. However, avoiding recurrence by enhancing the antitumor properties of the implants and improving osteogenesis around the implants remain a challenge. Here, we developed a layered double hydroxide (LDH)-coated magnesium (Mg) alloy and loaded it with celastrol. The celastrol-loaded Mg alloy exhibited enhanced corrosion resistance and sustained release of celastrol. In vitro cell culture suggested that the modified Mg alloy loaded with an appropriate amount of celastrol significantly inhibited the proliferation and migration of bone tumor cells while having little influence on normal cells. A mechanistic study revealed that the celastrol-loaded Mg alloy upregulated reactive oxygen species (ROS) generation in bone tumor cells, resulting in mitochondrial dysfunction due to reduced membrane potential, thereby inducing bone tumor cell apoptosis. Furthermore, it was found that celastrol-induced autophagy in tumor cells inhibited cell apoptosis in the initial 6 h. After ≥12 h of culture, inhibition of the PI3K-Akt-mTOR signaling pathway was noted, resulting in excessive autophagy in tumor cells, finally causing cell apoptosis. The celatsrol-loaded Mg alloy also exhibited effective antitumor properties in a subcutaneous tumor model. In vitro tartrate-resistant acid phosphatase (TRAP) staining and gene expression results revealed that the modified Mg alloy reduced the viability of osteoclasts, inducing a potential pathway for the increased bone regeneration around the modified Mg alloy seen in vivo. Together, the results of our study show that the celatsrol-loaded Mg alloy might be a promising implant for treating OS.
Collapse
Affiliation(s)
- Shi Cheng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Hongwei Shao
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Dong Yin
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jielong Zhou
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Linjia Jian
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Juning Xie
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yu Zhang
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| | - Donghui Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- GuangDong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangzhou 510080, China
| |
Collapse
|
29
|
Liu G, Liu B, Liu B, Tang L, Liu Z, Dai H. Cytokines as Prognostic Biomarkers in Osteosarcoma Patients: A Systematic Review and Meta-analysis. J Interferon Cytokine Res 2023; 43:335-343. [PMID: 37566475 DOI: 10.1089/jir.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Osteosarcoma is the most prevalent type of primary bone malignancy in children and adolescents. The effect of cytokines on osteosarcoma prognosis has been studied and reported. This meta-analysis aimed to assess the prognostic value of cytokines as osteosarcoma biomarkers. Databases including PubMed, Embase, and Cochrane Library were searched for studies on the prognostic value of cytokines in osteosarcoma. From the eligible studies, data on overall survival (OS), disease-free survival, and metastasis-free survival (MFS) were extracted. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. A total of 11 studies involving 755 patients were included in this analysis. High macrophage migration inhibitory factor (MIF) expression in tumors was significantly associated with shortened OS (HR = 2.01, 95% CI: 1.18-3.42, P = 0.010) and MFS (HR = 2.51, 95% CI: 1.47-4.01, P = 0.001). Elevated T cell immunoglobulin and mucin domain-3 (Tim-3) levels in serum correlated with increased risk of disease progression in patients with osteosarcoma (HR = 3.14, 95% CI: 2.88-3.03, P < 0.001). However, interleukin 6 (IL-6) and tumor necrosis factor were not substantially associated with osteosarcoma prognosis. Owing to a paucity of research, other relevant cytokines [interferon-α/β receptor, tissue factor, macrophage inhibitory cytokine 1 (MIC-1), and IL-23] could not be combined. In conclusion, MIF levels in tumors and Tim-3 levels in serum can be potential biomarkers of poor prognosis in osteosarcoma. To confirm this finding and implement these biomarkers into clinical applications, additional large-scale, high-quality studies are needed.
Collapse
Affiliation(s)
- Gang Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Ben Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - BinBin Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Liyuan Tang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Zhiwei Liu
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| | - Haiyang Dai
- Fourth Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
30
|
Gong T, Lu M, Min L, Luo Y, Tu C. Reconstruction of a 3D-printed endoprosthesis after joint-preserving surgery with intraoperative physeal distraction for childhood malignancies of the distal femur. J Orthop Surg Res 2023; 18:534. [PMID: 37496022 PMCID: PMC10373418 DOI: 10.1186/s13018-023-04037-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Joint-salvage surgery has been proposed in children with metaphysis malignancy of the distal femur. However, there is still some drawbacks regarding to the surgical technique and endoprosthetic design. In this study, we evaluated the efficacy of a joint-sparing surgical technique for the distal femur in pediatric patients using intraoperative physeal distraction and reconstruction of a 3D-printed endoprosthesis. METHODS We retrospectively analyzed pediatric patients with distal femoral malignancy who underwent intraoperative physeal distraction and 3D-printed endoprosthetic reconstruction. Clinically, we evaluated functional outcomes using the 1993 version of the Musculoskeletal Tumor Society (MSTS-93) score pre- and post-operation. Complications were also recorded. RESULTS Seven children with a median age of 11 years (range 8-15 years) were finally included in our study. The median follow-up time was 30 months (range 27-59 months). The median postoperative functional MSTS-93 score was increased compared with the preoperative scores. The bone-implant interface showed good osseointegration. One patient developed deep infection and another had lung metastasis after surgery. Endoprosthetic complications were not observed. CONCLUSION We recommended that joint-preserving surgery with intraoperative physeal distraction and a 3D-printed endoprosthesis for reconstruction as an option for malignancies of the distal femur in selected pediatric patients.
Collapse
Affiliation(s)
- Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
31
|
Basoli S, Cosentino M, Traversari M, Manfrini M, Tsukamoto S, Mavrogenis AF, Bordini B, Donati DM, Errani C. The Prognostic Value of Serum Biomarkers for Survival of Children with Osteosarcoma of the Extremities. Curr Oncol 2023; 30:7043-7054. [PMID: 37504371 PMCID: PMC10378558 DOI: 10.3390/curroncol30070511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Osteosarcoma is a highly aggressive malignant bone tumor that affects mainly adolescents and young adults. We analyzed serum biomarkers for their prognostic significance in children with osteosarcoma. METHODS In this retrospective study, we investigated the prognostic factors in 210 children who were treated for appendicular osteosarcoma, including patient age and sex, tumor site and size (≥8 cm or <8 cm), presence of metastasis, chemotherapy-induced tumor necrosis, serum levels of alkaline phosphatase (AP), C-reactive protein, serum hemoglobin, lactate dehydrogenase, erythrocyte sedimentation rate (ESR), leukocyte counts, platelet count, and neutrophil-lymphocyte ratio. RESULTS A multivariate Cox regression model showed that high level of AP [HR of 1.73; 95% CI, 1.02 to 2.94], poor chemotherapy-induced tumor necrosis [HR of 2.40; 95% CI, 1.41 to 4.08] and presence of metastases at presentation [HR of 3.71; 95% CI, 2.19 to 6.29] were associated with poor prognosis at 5 years (p < 0.05). Inadequate surgical margins [HR 11.28; 95% CI, 1.37 to 92.79] and high levels of ESR [HR 3.58; 95% CI, 1.29 to 9.98] showed a greater risk of local recurrence at 5 years follow-up (p < 0.05). CONCLUSIONS AP and ESR can identify osteosarcoma-diagnosed children with a greater risk of death and local recurrence, respectively.
Collapse
Affiliation(s)
- Stefano Basoli
- Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo Oncologico, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Monica Cosentino
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Matteo Traversari
- Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo Oncologico, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Marco Manfrini
- Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo Oncologico, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Andreas F Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 41 Ventouri Street, Holargos, 15562 Athens, Greece
| | - Barbara Bordini
- Laboratorio di Tecnologia Medica, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo Oncologico, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Costantino Errani
- Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo Oncologico, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| |
Collapse
|
32
|
Yan CF, Xia J, Qun WS, Bing WY, Guo WJ, Yong HG, Sheng SJ, Lei ZG. Tumor-associated macrophages-derived exo-let-7a promotes osteosarcoma metastasis via targeting C15orf41 in osteosarcoma. ENVIRONMENTAL TOXICOLOGY 2023; 38:1318-1331. [PMID: 36919336 DOI: 10.1002/tox.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Osteosarcoma (OS) immune environment is complexed and the immune factors-related to OS progression need to be explored. Tumor-associated macrophages (TAMs) are regarded as immune suppressive and tumor-promoting cells. However, the underlying mechanisms through which TAMs function are still fragmentary. Here, we aim to explore the underlying mechanisms by which TAMs regulate OS progression. METHODS TAMs from OS tissues were isolated by flow cytometry. Exosomes derived from TAMs were separated using ultracentrifugation and western blotting. Transmission electron microscopy (TEM), and flow cytometry were constructed to characterize TAMs-derived exosomes. Additionally, the differential MicroRNAs (miRNAs) and genes were detected through RNA sequencing, and further validated using real-time PCR (RT-PCR). OS cell metastasis ability was assessed using transwell invasion and scratch wound healing assays. MiRNAs mimic and lentiviral vectors were utilized to explore the effects on OS progression. RESULTS Exosome secreted by TAMs accelerated the OS metastasis. Let-7a level was upregulated in TAMs derived exosomes, which downregulated C15orf41 by targeting 3'-untranslated region (UTR). Furthermore, overexpressing let-7a enhanced invasion and migration by blocking the transcription of C15orf41. In consistent, up-regulating let-7a promoted OS progression and made the prognosis to be worse, which can be reversed by C15orf41 overexpression. CONCLUSION This study highlighted the critical role of TAMs-derived exosomes in OS progression and explored the potential value of the let-7a/C15orf41 axis as an indicator or target for OS.
Collapse
Affiliation(s)
- Chen-Fei Yan
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wang-Si Qun
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Yi Bing
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wu-Jian Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Huang-Gang Yong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Jing Sheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhao-Guang Lei
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Yang D, Chen Y, He ZNT, Wang Y, Ke C, Luo Y, Wang S, Ma Q, Chen M, Yang Q, Zhang Z. Indoleamine 2,3-dioxygenase 1 promotes osteosarcoma progression by regulating tumor-derived exosomal miRNA hsa-miR-23a-3p. Front Pharmacol 2023; 14:1194094. [PMID: 37284323 PMCID: PMC10239870 DOI: 10.3389/fphar.2023.1194094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Osteosarcoma (OS) is the most common primary malignant tumor originating in bone. Immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) participates in tumor immune tolerance and promotes tumor progression, while the study of IDO1 in OS is limited. Methods: Immunohistochemistry analysis was performed to test the expression of IDO1 and Ki67. The relationship between IDO1 or Ki67 positive count and clinical stage of the patient was analyzed. Laboratory test indexes including serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), white blood cell (WBC) count and C-reactive protein (CRP) at diagnosis of OS patients were collected. The relationship between positive count of IDO1 and Ki67 or laboratory test indexes was analyzed by Pearson's correlation analysis. IDO1 stably overexpressed cell lines of these cells (MG63 OE, 143B OE and hFOB1.19 OE) were constructed and validated by Western blot and Elisa. Exosomes were isolated from conditioned culture media of these cells and were identified by Zetaview nanoparticle tracking analyzer. Next-generation sequencing was conducted to identify miRNAs enriched in exosomes. Differentially expressed miRNAs (DE miRNAs) were verified in clinical samples and cell lines by qPCR. Biological processes and cell components analysis of DE miRNAs was conducted by GO enrichment analysis using the protein interaction network database. Results: Immunosuppressive enzyme IDO1 was highly expressed in tumor tissues. 66.7% (6/9) of the tissues showed moderately or strongly positive immunostaining signal of IDO1, and 33.3% (3/9) were weakly positive. The expression of IDO1 was positively related to Ki67 and associated with prognostic-related clinical features of OS patients. Overexpression of IDO1 significantly affected the exosome-derived miRNA subsets from MG63, 143B and hFOB1.19 cells. A total of 1244 DE miRNAs were identified, and hsa-miR-23a-3p was further screened as key DE miRNA involved in the progression of OS. GO analysis of target genes of the DE miRNA results showed that target enrichment in the functions of immune regulation and tumor progression. Discussion: Our results indicate that IDO1 has the potential to promote the progression of OS that is related to miRNAs mediated tumor immunity. Targeting IDO1-mediated hsa-miR-23a-3p may be a potential therapeutic strategy for OS treatment.
Collapse
Affiliation(s)
- Dan Yang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yinxian Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghui Ke
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qichao Ma
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziming Zhang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
35
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
36
|
Baracani R, Bhaskaran M, Davis SM, Morford L, Luffer-Atlas D. PDGFRα monoclonal antibody: Assessment of toxicity in juvenile mice administered a murine surrogate antibody of olaratumab. Birth Defects Res 2023; 115:782-796. [PMID: 36916488 DOI: 10.1002/bdr2.2169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Olaratumab (Lartruvo™) is a recombinant human IgG1 monoclonal antibody that specifically binds PDGFRα. In order to support use of Lartruvo in pediatric patients, a definitive juvenile animal study in neonatal mice was conducted with a human anti-mouse PDGFRα antibody analog of olaratumab (LSN3338786). METHODS A pilot study was used to set doses for the definitive juvenile mouse study. In the definitive study, juvenile mice were administered vehicle, 50, 100, or 150 mg/kg LSN3338786 by subcutaneous (SC) injection every 3 days between postnatal days (PND) 1 and 49, for a total of 17 doses. Blood samples were collected on PND 49 for antibody analysis and toxicokinetic evaluation. Tissues were collected on PND 52 for histopathologic examination. RESULTS Results of the pilot study indicated that dosing neonatal mice starting on PND 1 via SC administration every 3 days was logistically feasible, produced exposures consistent with prior animal studies, and the selected dose levels were well tolerated by juvenile mice. In the definitive juvenile study, there were no LSN3338786-related deaths, clinical findings, and no effects on mean body weights, body weight gains, or food consumption. Additionally, there were no adverse LSN3338786-related hematology findings, and no macroscopic, organ weight, or microscopic findings of note. The highest dose evaluated, 150 mg/kg, was considered the NOAEL for juvenile toxicity. CONCLUSIONS In conclusion, the juvenile animal studies did not identify any new toxicities or increased sensitivities for the intended pediatric patient population. The use of the surrogate antibody approach in a standard rodent model enabled the de-risking of theoretical concerns for toxicity in pediatric patients due to disruption of the PDGFRα pathway during early human development, such as pulmonary development.
Collapse
Affiliation(s)
| | - Manoj Bhaskaran
- Lilly Research Laboratories, Corporate Center, Indianapolis, Indiana, USA
| | | | - LaRonda Morford
- Lilly Research Laboratories, Corporate Center, Indianapolis, Indiana, USA
| | - Debra Luffer-Atlas
- Lilly Research Laboratories, Corporate Center, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Ning B, Liu Y, Huang T, Wei Y. Autophagy and its role in osteosarcoma. Cancer Med 2023; 12:5676-5687. [PMID: 36789748 PMCID: PMC10028045 DOI: 10.1002/cam4.5407] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 02/16/2023] Open
Abstract
Osteosarcoma (OS) is the most common bone malignancy and preferably occurs in children and adolescents. Despite significant advances in surgery and chemotherapy for OS over the past few years, overall survival rates of OS have reached a bottleneck. Thus, extensive researches aimed at developing new therapeutic targets for OS are urgently needed. Autophagy, a conserved process which allows cells to recycle altered or unused organelles and cellular components, has been proven to play a critical role in multiple biological processes in OS. In this article, we summarized the association between autophagy and proliferation, metastasis, chemotherapy, radiotherapy, and immunotherapy of OS, revealing that autophagy-related genes and pathways could serve as potential targets for OS therapy.
Collapse
Affiliation(s)
- Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
38
|
The synergistic anticancer effect of CBD and DOX in osteosarcoma. Clin Transl Oncol 2023:10.1007/s12094-023-03119-3. [PMID: 36848028 DOI: 10.1007/s12094-023-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Osteosarcoma is a malignant tumor that can present with pain in the bones, joints, and local masses. The incidence is highest in adolescents, and the most common sites are the distal femur, proximal tibia and proximal humerus metaphyseal. Doxorubicin is the first-line chemotherapeutic agent for the treatment of osteosarcoma, but it has many side effects. Cannabidiol is a non-psychoactive plant cannabinoid cannabinol (CBD) that has been shown to be effective against osteosarcoma; however, the molecular targets and mechanisms of CBD action in osteosarcoma remain unclear. METHODS Cell proliferation, migration, invasion and colony formation were analyzed using two drugs alone or in combination to evaluate their inhibitory effects on the malignant characteristics of OS cells. Apoptosis and the cell cycle were detected by flow cytometry. The synergistic inhibitory effect of doxorubicin/cannabidiol on tumors was also detected in nude mouse xenotransplantation models. RESULTS Through analysis of two osteosarcoma cell lines, MG63 and U2R, it was found that the cannabidiol/doxorubicin combination treatment synergistically inhibited growth, migration and invasion and induced apoptosis, blocking G2 stagnation in OS cells. Further mechanistic exploration suggests that the PI3K-AKT-mTOR pathway and MAPK pathway play an important role in the synergistic inhibitory effect of the two drugs in osteosarcoma. Finally, in vivo experimental results showed that the cannabidiol/doxorubicin combination treatment significantly reduced the number of tumor xenografts compared to cannabidiol alone or doxorubicin alone. CONCLUSIONS Our findings in this study suggest that cannabidiol and doxorubicin have a synergistic anticancer effect on OS cells, and their combined application may be a promising treatment strategy for OS.
Collapse
|
39
|
Li C, Feng C, Xu R, Jiang B, Li L, He Y, Tu C, Li Z. The emerging applications and advancements of Raman spectroscopy in pediatric cancers. Front Oncol 2023; 13:1044177. [PMID: 36814817 PMCID: PMC9939836 DOI: 10.3389/fonc.2023.1044177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Although the survival rate of pediatric cancer has significantly improved, it is still an important cause of death among children. New technologies have been developed to improve the diagnosis, treatment, and prognosis of pediatric cancers. Raman spectroscopy (RS) is a non-destructive analytical technique that uses different frequencies of scattering light to characterize biological specimens. It can provide information on biological components, activities, and molecular structures. This review summarizes studies on the potential of RS in pediatric cancers. Currently, studies on the application of RS in pediatric cancers mainly focus on early diagnosis, prognosis prediction, and treatment improvement. The results of these studies showed high accuracy and specificity. In addition, the combination of RS and deep learning is discussed as a future application of RS in pediatric cancer. Studies applying RS in pediatric cancer illustrated good prospects. This review collected and analyzed the potential clinical applications of RS in pediatric cancers.
Collapse
Affiliation(s)
- Chenbei Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruiling Xu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Buchan Jiang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu He
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chao Tu
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Xie T, Feng W, He M, Zhan X, Liao S, He J, Qin Z, Li F, Xu J, Liu Y, Wei Q. Analysis of scRNA-seq and bulk RNA-seq demonstrates the effects of EVI2B or CD361 on CD8 + T cells in osteosarcoma. Exp Biol Med (Maywood) 2023; 248:130-145. [PMID: 36511103 PMCID: PMC10041056 DOI: 10.1177/15353702221142607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a common primary malignant tumor of the bone in children and adolescents. The five-year survival rate is estimated to be ~70% based on the currently available treatment modalities. It is well known that tumor-infiltrating immune cells (TIICs) that are the most important components in the tumor microenvironment can exert a killing effect on tumor cells. Therefore, in the present study, 85 RNA-sequencing OS samples were categorized into high- and low-immune score groups with ESTIAMATE. Based on the immune score groups, 474 differentially expressed genes (DEGs) were acquired using the LIMMA package of R language. Subsequently, 86 DEGs were taken through univariate COX regression analysis, of which 14 were screened out by least absolute shrinkage and selection operator regression analysis. Furthermore, multivariate COX regression analysis was performed to obtain 4 DEGs. Finally, ecotropic virus integration site 2B (EVI2B) or CD361 gene was screened out via Kaplan-Meier analysis. In addition, CIBERSORT algorithm was used to evaluate the proportion of 22 kinds of TIICs in OS. Correlation analysis revealed that the high expression level of EVI2B can elevate the infiltrated proportion of CD8+ T cells. Moreover, analysis of single cell RNA-sequencing transcriptome datasets and immunohistochemical staining uncovered that EVI2B was mainly expressed on CD8+ T cells and that EVI2B could promote the expression of granzyme A and K of CD8+ T cells to exhibit a potent killing effect on tumor cells. Therefore, EVI2B was identified as a protective immune-related gene and contributed to good prognosis in OS patients.
Collapse
Affiliation(s)
- Tianyu Xie
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenyu Feng
- Department of Orthopaedic, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Mingwei He
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinli Zhan
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shijie Liao
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Juliang He
- Department of Bone and Soft Tissue, Affiliated Tumour Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhaojie Qin
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Feicui Li
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- Department of Spine and Bone Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Traumatic Orthopaedic, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
41
|
Tang W, Zhang Y, Zhang H, Zhang Y. Vascular Niche Facilitates Acquired Drug Resistance to c-Met Inhibitor in Originally Sensitive Osteosarcoma Cells. Cancers (Basel) 2022; 14:cancers14246201. [PMID: 36551686 PMCID: PMC9776923 DOI: 10.3390/cancers14246201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents characterized by drug resistance and poor prognosis. As one of the key oncogenes, c-Met is recognized as a promising therapeutic target for OS. In this report, we show that c-Met inhibitor PF02341066 specifically killed OS cells with highly phosphorylated c-Met in vitro. However, the inhibitory effect of PF02341066 was abrogated in vivo due to interference from the vascular niche. OS cells adjacent to microvessels or forming vascular mimicry suppressed c-Met expression and phosphorylation. Moreover, VEGFR2 was activated in OS cells and associated with acquired drug resistance. Dual targeting of c-Met and VEGFR2 could effectively shrink the tumor size in a xenograft model. c-Met-targeted therapy combined with VEGFR2 inhibition might be beneficial to achieve an ideal therapeutic effect in OS patients. Together, our results confirm the pivotal role of tumor heterogeneity and the microenvironment in drug response and reveal the molecular mechanism underlying acquired drug resistance to c-Met-targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- Correspondence: ; Tel.: +86-20-3933-2955
| |
Collapse
|
42
|
Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther 2022; 40:103093. [PMID: 36031143 DOI: 10.1016/j.pdpdt.2022.103093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is an aggressive malignant bone tumour with high mortality. A poor prognosis is noted in patients with distal metastases or multidrug resistance. As an emerging antitumor strategy, photodynamic therapy (PDT) mediated by visible and near infrared light has attracted intensive attention given its target selectivity, remote controllability, minimal or non-invasive features. However, PDT also has obvious limitations. Specifically, due to the limited penetration of light, it is mainly used in the clinical treatment of superficial malignant tumours, such as musculoskeletal sarcomas and melanoma, but it has not been applied to the clinical treatment of deep malignant bone tumours except for a very small number of experiments on deep canine OS models. MATERIALS AND METHODS We searched for studies that focused on the effectiveness and safety of PDT for OS based on in vitro experiments and animal models in the last decade. A systematic search was conducted using electronic databases, including PubMed, ClinicalTrials.gov, and the Cochrane Library. INCLUSION CRITERIA (1) original research articles about PDT for OS; (2) articles in English; (3) in vitro or animal model research; and (4) detailed information, including cell name, fluence, irradiation wavelength, time of incubation with PS, duration between PS treatment and irradiation, and duration between irradiation and viability assays. EXCLUSION CRITERIA (1) study was a review/systemic review article, patent, letter, or conference abstract/paper; (2) articles were not published in English; (3) studies containing overlapping or insufficient data. RESULTS We identified 201 publications, and 44 articles met the inclusion criteria and were included in the synthesis. Unfortunately, there are no relevant clinical reports of the use of PDT in the treatment of human OS. In these studies, 8 studies only employed in vivo experiments to evaluate the efficiency of PDT in an OS animal model, 19 studies exclusively performed in vitro viability assays of cells treated with PDT under different conditions, and 17 studies included in vitro cell experiments and in vivo animal OS models to evaluate the effect of PDT on OS in vivo and in vitro. All studies have shown that PDT is cytotoxic to OS cells or can inhibit the growth of OS in heterologous or homologous animal OS models but exhibits minimal cytotoxicity at a certain range of dosages. CONCLUSION Based on this systematic review, PDT can eradicate OS cells in cell culture and there is some evidence for efficacy in animal models. However, the ability for PDT to control human OS is unclear, the animal and human reports do not show evidence of human OS control, they just do show feasibility. The major issues concerning the potential for treatment of osteosarcoma with PDT are that adequate light should be transmitted to tumor loci and if the disease is caught before metastasis and irradiation of tumor sites is feasible, curative potential is there. Otherwise, PDT may be mainly palliative. To determine whether PDT can safely and efficiently be used in the clinical treatment of OS, many preclinical orthotopic animal OS models and OS models of multiple systemic metastases must be performed and interstitial PDT or intraoperative PDT may be a good and potential candidate for human OS treatment. If these problems can be well solved, PDT may be a potentially effective strategy for the treatment of OS patients.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xu
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Yu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeyu Yang
- Rotex Tech.Ltd.Co. Room 1104, floor 11, building 6, No. 599, Shijicheng South Road, high tech Zone, Chengdu, Sichuan, China.
| | - Hui Zhang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
43
|
Zhang X, Chen H, Zhang Y, Huang Q, Feng J, Xing H, Fu X, Yan X, Zhang Y, Xu Q, Liang J. HA-DOPE-Modified Honokiol-Loaded Liposomes Targeted Therapy for Osteosarcoma. Int J Nanomedicine 2022; 17:5137-5151. [PMID: 36345507 PMCID: PMC9636865 DOI: 10.2147/ijn.s371934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common bone cancer with a high risk of metastasis, high growth rate, and poor prognosis. Honokiol (HNK) is a general ingredient of traditional Chinese medicine, with a potential anti-tumor effect. However, HNK is insoluble in water and lacks drug targeting, which limits its clinical application. To improve the OS therapeutic effect of HNK, we used HNK-loaded liposomes modified with hyaluronic acid-phospholipid conjugates (HA-DOPE) to treat OS based on the HA interaction with CD44. Methods The HNK-loaded liposomes were prepared via thin-film hydration and sonication. HA-DOPE was used to combine the HNK-loaded liposomes (HA-DOPE@Lips/HNK) via sonication and co-extrusion. HA-DOPE@Lips/HNK were characterized with respect to size, zeta potential, polymer dispersity index (PDI), and stability, and transmission electron microscopy was performed. Cellular uptake, cell viability, cell apoptosis, cell cycle, and mitochondrial activity were utilized to evaluate the antitumor effect in vitro. The biodistribution, xenograft tumor growth inhibition, and safety of HA-DOPE@Lips/HNK were evaluated in 143B OS xenograft mice in vivo. Results The particle size, PDI, and zeta potential of HA-DOPE@Lips/HNK were 146.20±0.26 nm, 0.20±0.01, and −38.45±0.98 mV, respectively. The encapsulation rate and drug loading were 80.14±0.32% and 3.78±0.09%, respectively. HA-DOPE@Lips/HNK could inhibit cell proliferation, cause apoptosis, block the cell cycle and disrupt mitochondrial activity. HA-DOPE@Lips/HNK specially delivered the drug into the tumor and inhibited tumor growth, and showed no obvious toxicity to normal tissues. Conclusion HA-DOPE@Lips/HNK could deliver HNK into the tumor site and had a good antitumor ability in vitro and in vivo. In addition, HA-DOPE@Lips/HNK increased the antitumor effects of HNK. Thus, it provides a promising nanocarrier to improve drug delivery in OS therapy.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Huaen Chen
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Yang Zhang
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Qijing Huang
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Jianjia Feng
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Haoyu Xing
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Xiaguo Fu
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Xiufang Yan
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Yingying Zhang
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Qin Xu
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Jianming Liang
- Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
- Correspondence: Jianming Liang, Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China, Email
| |
Collapse
|
44
|
Jian M, Sun X, Cheng G, Zhang H, Li X, Song F, Liu Z, Wang Z. Discovery of Phenolic Matrix Metalloproteinase Inhibitors by Peptide Microarray for Osteosarcoma Treatment. JOURNAL OF NATURAL PRODUCTS 2022; 85:2424-2432. [PMID: 36122348 DOI: 10.1021/acs.jnatprod.2c00626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of the abnormal upregulation of matrix metalloproteinase (MMP) activities in tumors, MMP inhibitors (MMPIs) are validated anticancer drug candidates. We identified several MMPIs including mangiferin as an MMP-9 inhibitor with a half maximal inhibitory concentration (IC50) value of 250 nM, isosilybin as an MMP-13 inhibitor with an IC50 value of 250 nM, and isoliquiritigenin as a broad-spectrum MMPI (with IC50 values of 16 nM for MMP-1, 10 nM for MMP-2, 81 nM for MMP-3, 8 nM for MMP-7, 10 nM for MMP-9, and 14 nM for MMP-13) through studying the interactions of 6 MMPs secreted by U-2OS cells with 51 phenolic natural products on the peptide microarray platform. In addition, the inhibitory mechanisms of as-discovered MMPIs were evaluated by a molecular docking simulation. The antitumor efficiencies of MMPIs were demonstrated by both a cell scratch test and growth suppression of mouse-born OS tumors. The results of the cell scratch test suggested that isoliquiritigenin significantly inhibited the migration of U-2OS cells. In addition, administration of isoliquiritigenin significantly reduced the tumor size (by about 80%) and prolonged the survival time (by more than 70 days). This study suggests that the discovery of MMPIs from phenolic natural products is a meaningful way to screen anticancer agents.
Collapse
Affiliation(s)
- Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Guorong Cheng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Fengrui Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
45
|
Li M, Song Q, Bai Y, Hua F, Wu T, Liu J. Comprehensive analysis of cuproptosis in immune response and prognosis of osteosarcoma. Front Pharmacol 2022; 13:992431. [PMID: 36263140 PMCID: PMC9573992 DOI: 10.3389/fphar.2022.992431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Copper-induced cell death, a form of apoptosis, has been extensively investigated in human diseases. Recent studies on the mechanisms underlying copper-induced cell death have provided innovative insights into copper-related toxicity in cells, and this form of programmed cell death was termed cuproptosis. Herein, we conducted a comprehensive analysis to determine the specific role of cuproptosis in osteosarcoma. Using consensus clustering analysis, patients with osteosarcoma from the TARGET database were classified into subgroups with distinct cuproptosis-based molecular patterns. Accordingly, these patients displayed diverse clinicopathological features, survival outcomes, tumor microenvironment (TME) characteristics, immune-related scores, and therapeutic responses. Furthermore, we constructed a cuproptosis-based risk signature and nomogram, as well as developed a cuproptosis score for improved patient characterization. The prognostic model and cuproptosis score were well validated and confirmed to efficiently distinguish high- and low-risk patients, thereby affording great predictive value. Finally, we verified the abnormal expression of prognostic CUG in OS patients by immunohistochemistry. In conclusion, we suggest that cuproptosis may play an important role in regulating the tumor microenvironment features, tumor progression and the long-term prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Mingzhe Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfeng Bai
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jun Liu,
| |
Collapse
|
46
|
METTL3 upregulates COPS5 expression in osteosarcoma in an m 6A-related manner to promote osteosarcoma progression. Exp Cell Res 2022; 420:113353. [PMID: 36100071 DOI: 10.1016/j.yexcr.2022.113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 12/11/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs (mRNAs). Although m6A mRNA modification has been frequently observed in osteosarcoma, the roles and underlying mechanisms of m6A modification are not yet fully elucidated. In this study, an m6A regulator, METTL3, showed to be dramatically up-regulated within osteosarcoma tissues and cells than non-cancerous healthy samples and human normal osteoblasts, respectively. In vitro, knockdown of METTL3 suppressed the viability of osteosarcomas, and their abilities to migrate and invade; in vivo, knockdown of METTL3 repressed tumor growth within xenotransplant tumor model. METTL3 upregulates COPS5 expression may be through promoting COPS5 methylation to stabilize COPS5 mRNA. The expression level of COPS5 also showed to be up-regulated within osteosarcoma tissue samples and cells. COPS5 knockdown caused no changes in METTL3 effects on METTL3 expression but partially eliminated METTL3 effects on COPS5 expression. METTL3 overexpression promoted, whereas COPS5 knockdown inhibited the malignant behaviors of osteosarcoma cells; COPS5 knockdown partially eliminated the effects of METTL3 overexpression on osteosarcoma cells. Conclusively, METTL3 and COPS5 serve as oncogenic regulators in osteosarcoma. METTL3 upregulates COPS5 expression in osteosarcoma in an m6A-related manner.
Collapse
|
47
|
Feng Z, Ou Y, Hao L. The roles of glycolysis in osteosarcoma. Front Pharmacol 2022; 13:950886. [PMID: 36059961 PMCID: PMC9428632 DOI: 10.3389/fphar.2022.950886] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic reprogramming is of great significance in the progression of various cancers and is critical for cancer progression, diagnosis, and treatment. Cellular metabolic pathways mainly include glycolysis, fat metabolism, glutamine decomposition, and oxidative phosphorylation. In cancer cells, reprogramming metabolic pathways is used to meet the massive energy requirement for tumorigenesis and development. Metabolisms are also altered in malignant osteosarcoma (OS) cells. Among reprogrammed metabolisms, alterations in aerobic glycolysis are key to the massive biosynthesis and energy demands of OS cells to sustain their growth and metastasis. Numerous studies have demonstrated that compared to normal cells, glycolysis in OS cells under aerobic conditions is substantially enhanced to promote malignant behaviors such as proliferation, invasion, metastasis, and drug resistance of OS. Glycolysis in OS is closely related to various oncogenes and tumor suppressor genes, and numerous signaling pathways have been reported to be involved in the regulation of glycolysis. In recent years, a vast number of inhibitors and natural products have been discovered to inhibit OS progression by targeting glycolysis-related proteins. These potential inhibitors and natural products may be ideal candidates for the treatment of osteosarcoma following hundreds of preclinical and clinical trials. In this article, we explore key pathways, glycolysis enzymes, non-coding RNAs, inhibitors, and natural products regulating aerobic glycolysis in OS cells to gain a deeper understanding of the relationship between glycolysis and the progression of OS and discover novel therapeutic approaches targeting glycolytic metabolism in OS.
Collapse
|
48
|
Rossi M, Cappadone C, Picone G, Bisi A, Farruggia G, Belluti F, Blasi P, Gobbi S, Malucelli E. Natural-like Chalcones with Antitumor Activity on Human MG63 Osteosarcoma Cells. Molecules 2022; 27:molecules27123751. [PMID: 35744886 PMCID: PMC9229256 DOI: 10.3390/molecules27123751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Osteosarcoma (OS) is a malignant disease characterized by poor prognosis due to a high incidence of metastasis and chemoresistance. Recently, Licochalcone A (Lic-A) has been reported as a promising agent against OS. Starting from chalcones selected from a wide in-house library, a new series was designed and synthetized. The antitumor activity of the compounds was tested on the MG63 OS cell line through the innovative Quantitative Phase Imaging technique and MTT assay. To further investigate the biological profile of active derivatives, cell cycle progression and apoptosis induction were evaluated. An earlier and more consistent arrest in the G2-M phase with respect to Lic-A was observed. Moreover, apoptosis was assessed by Annexin V staining as well as by the detection of typical morphological features of apoptotic cells. Among the selected compounds, 1e, 1q, and 1r proved to be the most promising antitumor molecules. This study pointed out that an integrated methodological approach may constitute a valuable platform for the rapid screening of large series of compounds.
Collapse
Affiliation(s)
- Martina Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.B.); (F.B.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.B.); (F.B.)
| | - Paolo Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.B.); (F.B.)
- Correspondence:
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (M.R.); (C.C.); (G.P.); (G.F.); (P.B.); (E.M.)
| |
Collapse
|
49
|
Ling F, Lu Q. S100 calcium-binding protein A10 contributes to malignant traits in osteosarcoma cells by regulating glycolytic metabolism via the AKT/mTOR pathway. Bioengineered 2022; 13:12298-12308. [PMID: 35579448 PMCID: PMC9276053 DOI: 10.1080/21655979.2022.2071022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As an aggressive musculoskeletal malignancy, osteosarcoma (OSa) is popular among young adults and teenagers worldwide. S100 calcium-binding protein A10 (S100A10) functioned as a novel tumor-promoting protein in several human cancers. However, its role in OSa remains obscure. In this study, gene and protein levels were respectively determined by RT-qPCR or Western blotting. OSa cell proliferation, apoptosis, and metastasis were evaluated via CCK-8, colony formation, flow cytometry, and Transwell assays. To assess the glycolysis level, glucose consumption and lactate production were detected. It was found S100A10 was highly expressed in OSa tissues and cell lines. Besides, S100A10 facilitated proliferation and metastasis, and inhibited apoptosis in OSa cells. In addition, S100A10 regulated OSa cell proliferation, metastasis and apoptosis via mediating the glycolysis process. Furthermore, S100A10-mediated AKT/mTOR signaling accelerated glycolysis, thereby promoting malignant behaviors in OSa cells. Taken together, our findings indicated that S100A10 might promote malignant phenotypes of OSa cells by accelerating glycolysis and activating the AKT/mTOR signaling, providing a promising target for OSa treatment.
Collapse
Affiliation(s)
- Feng Ling
- Department of Trauma Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Qifeng Lu
- Department of Trauma Orthopaedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| |
Collapse
|
50
|
Genome-wide CRISPR screen identified Rad18 as a determinant of doxorubicin sensitivity in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:154. [PMID: 35459258 PMCID: PMC9034549 DOI: 10.1186/s13046-022-02344-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor mostly occurring in children and adolescents, while chemotherapy resistance often develops and the mechanisms involved remain challenging to be fully investigated. Methods Genome-wide CRISPR screening combined with transcriptomic sequencing were used to identify the critical genes of doxorubicin resistance. Analysis of clinical samples and datasets, and in vitro and in vivo experiments (including CCK-8, apoptosis, western blot, qRT-PCR and mouse models) were applied to confirm the function of these genes. The bioinformatics and IP-MS assays were utilized to further verify the downstream pathway. RGD peptide-directed and exosome-delivered siRNA were developed for the novel therapy strategy. Results We identified that E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin-resistance in OS. Further exploration revealed that Rad18 interact with meiotic recombination 11 (MRE11) to promote the formation of the MRE11-RAD50-NBS1 (MRN) complex, facilitating the activation of the homologous recombination (HR) pathway, which ultimately mediated DNA damage tolerance and leaded to a poor prognosis and chemotherapy response in patients with OS. Rad18-knockout effectively restored the chemotherapy response in vitro and in vivo. Also, RGD-exosome loading chemically modified siRad18 combined with doxorubicin, where exosome and chemical modification guaranteed the stability of siRad18 and the RGD peptide provided prominent targetability, had significantly improved antitumor activity of doxorubicin. Conclusions Collectively, our study identifies Rad18 as a driver of OS doxorubicin resistance that promotes the HR pathway and indicates that targeting Rad18 is an effective approach to overcome chemotherapy resistance in OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02344-y.
Collapse
|