1
|
Yang S, Yang X, Hou Z, Zhu L, Yao Z, Zhang Y, Chen Y, Teng J, Fang C, Chen S, Jia M, Liu Z, Kang S, Chen Y, Li G, Niu Y, Cai Q. Rationale for immune checkpoint inhibitors plus targeted therapy for advanced renal cell carcinoma. Heliyon 2024; 10:e29215. [PMID: 38623200 PMCID: PMC11016731 DOI: 10.1016/j.heliyon.2024.e29215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianrui Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zekai Hou
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liang Zhu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhili Yao
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Yanzhuo Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Teng
- Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng Fang
- Taihe County People's Hospital, Anhui, China
| | - Songmao Chen
- Department of Urology, Fujian Provincial Hospital, Fujian, China
- Provincial Clinical Medical College of Fujian Medical University, Fujian, China
| | - Mingfei Jia
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Zhifei Liu
- Department of Urology, Tangshan People's Hospital, Hebei, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Zhu H, Wang X, Lu S, Jianqiang W, Ou K, Li N. Bibliometric analysis on the progress of immunotherapy in renal cell carcinoma from 2003-2022. Hum Vaccin Immunother 2023; 19:2243669. [PMID: 37649456 PMCID: PMC10472859 DOI: 10.1080/21645515.2023.2243669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 09/01/2023] Open
Abstract
The incidence and mortality rates of renal cell carcinoma (RCC) have been increasing annually due to obesity and environmental pollution. Although immunotherapy of RCC has been studied for decades, few comprehensive bibliometric analyses exist on the treatment. Therefore, the purpose of this bibliometric analysis was to identify scientific achievements of the global research on RCC immunotherapy from 2003 to 2022 and discuss research trends. Data were retrieved from the Clarivate Web of Science Core Collection using a set retrieval strategy. The Bibliometrics tool Cite Space 6.2 R2 (Chaomei Chen, Drexel University) was used to analyze 4,841 articles. The USA had the most publications (n = 1,864); Harvard University was identified as the leading institution (n = 264); and Dr. Toni K. Choueiri, was the most productive researcher in the field (n = 55). Keyword analysis showed that nivolumab, immune checkpoint inhibitors, tumor microenvironment, everolimus, cabozantinib, resistance, pembrolizumab and ipilimumab were the main hotspots and frontier directions of RCC. By analyzing the results of bibliometrics, national and international researchers can better understand the current research status of RCC immunotherapy and identify new directions for future research. However, the analysis also identified pockets of insularity, highlighting a need for greater collaboration and cooperation among researchers to advance the field of RCC immunotherapy.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, P. R. China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, P. R. China
| | - Shihao Lu
- Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, P. R. China
| | - Wu Jianqiang
- Department of Urology, Xuzhou City Hospital of TCM, Xuzhou, Jiangsu, P. R. China
| | - Kongbo Ou
- Department of Urology, Xuzhou City Hospital of TCM, Xuzhou, Jiangsu, P. R. China
| | - Na Li
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
3
|
Lu H, Ye Q, Zheng C, Fan L, Xia X. Efficacy and safety analysis of TACE + sunitinib vs. sunitinib in the treatment of unresectable advanced renal cell carcinoma: a retrospective study. BMC Cancer 2023; 23:270. [PMID: 36964538 PMCID: PMC10037847 DOI: 10.1186/s12885-023-10754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Since renal cell carcinoma(RCC) is insensitive to conventional chemoradiotherapy, molecularly targeted drugs are commonly used treatments for unresectable advanced RCC. The aim of this study was to explore the efficacy and safety of TACE + sunitinib vs. sunitinib in the treatment of unresectable advanced RCC. METHODS This study included 98 patients with unresectable advanced RCC who were treated in Union Hospital from January 2015 to December 2018, and they met the criteria. They were divided into two groups: TACE + Sunitinib group (N = 47) and Sunitinib group (N = 51). We conducted a retrospective study to analyze the efficacy and safety of the two groups of patients. RESULTS (1)TACE + Sunitinib group: 4 patients (8.5%) achieved CR, 27 patients (57.5%) achieved PR, 9 patients (19.1%) achieved SD, and 7 patients (14.9%) achieved PD. Sunitinib group, 0 patients (0%) achieved CR, 20 patients (39.2%) achieved PR, 14 patients (27.5%) achieved SD, and 17 patients (33.3%) achieved PD. (P = 0.017) (2)ORR: TACE + sunitinib group, 66.0%; sunitinib group, 39.2%. (P = 0.009) (3)DCR: TACE + sunitinib group, 85.1%; sunitinib group, 66.7%. (P = 0.038) (4) In the TACE + sunitinib group, mPFS was 15.6 months, mOS was 35.0 months; in the sunitinib group, the mPFS was 10.9 months, mOS was 25.7 months. (P < 0.001) (5) The incidence of abdominal pain, fever, and vomiting was higher in the TACE + sunitinib group than in the sunitinib group (abdominal pain: 55.3% vs. 13.7%; fever: 61.7% vs. 7.8%; vomiting: 40.4% vs. 19.6%; P < 0.05). The technical success rate of TACE in TACE + Sunitinib group is 100%. CONCLUSIONS The TACE + sunitinib group had higher ORR and DCR, longer OS and PFS than the sunitinib alone group. TACE combined with sunitinib can play a complementary role and is a safe and effective treatment for advanced RCC.
Collapse
Affiliation(s)
- Haohao Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Ye
- Huazhong University of Science and Technology Hospital, Luoyu Road #1037, Wuhan, 430071, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Li Fan
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
4
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
5
|
Jahangir M, Yazdani O, Kahrizi MS, Soltanzadeh S, Javididashtbayaz H, Mivefroshan A, Ilkhani S, Esbati R. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 2022; 22:401. [PMID: 36510217 PMCID: PMC9743549 DOI: 10.1186/s12935-022-02816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Mohammadsaleh Jahangir
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Sara Soltanzadeh
- grid.411705.60000 0001 0166 0922Department of Radiation Oncology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Javididashtbayaz
- grid.411768.d0000 0004 1756 1744Baran Oncology Clinic, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Azam Mivefroshan
- grid.412763.50000 0004 0442 8645Department of Adult Nephrology, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Ilkhani
- grid.411600.2Department of Surgery and Vascular Surgery, Shohada-ye-Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Romina Esbati
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Bai S, Wu Y, Yan Y, Shao S, Zhang J, Liu J, Hui B, Liu R, Ma H, Zhang X, Ren J. Construct a circRNA/miRNA/mRNA regulatory network to explore potential pathogenesis and therapy options of clear cell renal cell carcinoma. Sci Rep 2020; 10:13659. [PMID: 32788609 PMCID: PMC7423896 DOI: 10.1038/s41598-020-70484-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most representative subtype of renal cancer. CircRNA acts as a kind of ceRNA to play a role in regulating microRNA (miRNA) in many cancers. However, the potential pathogenesis role of the regulatory network among circRNA/miRNA/mRNA is not clear and has not been fully explored. CircRNA expression profile data were obtained from GEO datasets, and the differentially expressed circRNAs (DECs) were identified through utilizing R package (Limma) firstly. Secondly, miRNAs that were regulated by these circRNAs were predicted by using Cancer-specific circRNA database and Circular RNA Interactome. Thirdly, some related genes were identified by intersecting targeted genes, which was predicted by a web tool (miRWalk) and differentially expressed genes, which was obtained from TCGA datasets. Function enrichment was analyzed, and a PPI network was constructed by Cytoscape software and DAVID web set. Subsequently, ten hub-genes were screened from the network, and the overall survival time in patients of ccRCC with abnormal expression of these hub-genes were completed by GEPIA web set. In the last, a circRNA/miRNA/mRNA regulatory network was constructed, and potential compounds and drug which may have the function of anti ccRCC were forecasted by taking advantage of CMap and PharmGKB datasets. Six DECs (hsa_circ_0029340, hsa_circ_0039238, hsa_circ_0031594, hsa_circ_0084927, hsa_circ_0035442, hsa_circ_0025135) were obtained and six miRNAs (miR-1205, miR-657, miR-587, miR-637, miR-1278, miR-548p) which are regulated by three circRNAs (hsa_circ_0084927, hsa_circ_0035442, hsa_circ_0025135) were also predicted. Then 497 overlapped genes regulated by these six miRNAs above had been predicted, and function enrichment analysis revealed these genes are mainly linked with some regulation functions of cancers. Ten hub-genes (PTGER3, ADCY2, APLN, CXCL5, GRM4, MCHR1, NPY5R, CXCR4, ACKR3, MTNR1B) have been screened from a PPI network. PTGER3, ADCY2, CXCL5, GRM4 and APLN were identified to have a significant effect on the overall survival time of patients with ccRCC. Furthermore, one compound (josamycin) and four kinds of drugs (capecitabine, hmg-coa reductase inhibitors, ace Inhibitors and bevacizumab) were confirmed as potential therapeutic options for ccRCC by CMap analysis and pharmacogenomics analysis. This study implies the potential pathogenesis of the regulatory network among circRNA/miRNA/mRNA and provides some potential therapeutic options for ccRCC.
Collapse
Affiliation(s)
- Shuheng Bai
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - YinYing Wu
- Department of Chemotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yanli Yan
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shuai Shao
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiangzhou Zhang
- Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiaxin Liu
- Medical School, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Beina Hui
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Rui Liu
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Hailin Ma
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xiaozhi Zhang
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Juan Ren
- Department of Radiotherapy, Oncology Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
8
|
Wei C, Wang S, Ye Z, Chen Z. Efficacy of targeted therapy for advanced renal cell carcinoma: a systematic review and meta-analysis of randomized controlled trials. Int Braz J Urol 2018; 44:219-237. [PMID: 29211397 PMCID: PMC6051488 DOI: 10.1590/s1677-5538.ibju.2017.0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
We conducted a systematic review and meta-analysis of the literature on the efficacy of the targeted therapies in the treatment of advanced RCC and, via an indirect comparison, to provide an optimal treatment among these agents. A systematic search of Medline, Scopus, Cochrane Library and Clinical Trials unpublished was performed up to Jan 1, 2015 to identify eligible randomized trials. Outcomes of interest assessing a targeted agent included progression free survival (PFS), overall survival (OS) and objective response rate (ORR). Thirty eligible randomized controlled studies, total twentyfourth trails (5110 cases and 4626 controls) were identified. Compared with placebo and IFN-α, single vascular epithelial growth factor (receptor) tyrosine kinase inhibitor and mammalian target of rapamycin agent (VEGF(r)-TKI & mTOR inhibitor) were associated with improved PFS, improved OS and higher ORR, respectively. Comparing sorafenib combination vs sorafenib, there was no significant difference with regard to PFS and OS, but with a higher ORR. Comparing single or combination VEGF(r)-TKI & mTOR inhibitor vs BEV + IFN-α, there was no significant difference with regard to PFS, OS, or ORR. Our network ITC meta-analysis also indicated a superior PFS of axitinib and everolimus compared to sorafenib. Our data suggest that targeted therapy with VEGF(r)-TKI & mTOR inhibitor is associated with superior efficacy for treating advanced RCC with improved PFS, OS and higher ORR compared to placebo and IFN-α. In summary, here we give a comprehensive overview of current targeted therapies of advanced RCC that may provide evidence for the adequate targeted therapy selecting.
Collapse
Affiliation(s)
- Chao Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Abstract
The humanized monoclonal antibody bevacizumab (Avastin(®)) has been available in the EU since 2005. Results of phase III trials demonstrate that adding intravenous bevacizumab to antineoplastic agents improves progression-free survival and/or overall survival in patients with advanced cancer, including when used as first- or second-line therapy in metastatic colorectal cancer, as first-line therapy in advanced nonsquamous non-small cell lung cancer, as first-line therapy in metastatic renal cell carcinoma, as first-line therapy in metastatic breast cancer, and as first-line therapy in epithelial ovarian, fallopian tube or primary peritoneal cancer or in recurrent, platinum-sensitive or platinum-resistant disease. Results of these studies are supported by the findings of routine oncology practice studies conducted in real-world settings. The tolerability profile of bevacizumab is well defined and adverse events associated with its use (e.g. hypertension, proteinuria, haemorrhage, wound healing complications, arterial thromboembolism, gastrointestinal perforation) are generally manageable. In conclusion, bevacizumab remains an important option for use in patients with advanced cancer.
Collapse
Affiliation(s)
- Gillian M Keating
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand.
| |
Collapse
|
10
|
Liu C, Alwarappan S, Badr HA, Zhang R, Liu H, Zhu JJ, Li CZ. Live cell integrated surface plasmon resonance biosensing approach to mimic the regulation of angiogenic switch upon anti-cancer drug exposure. Anal Chem 2014; 86:7305-10. [PMID: 25005895 PMCID: PMC4372114 DOI: 10.1021/ac402659j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
In this work, we report a novel surface
plasmon resonance (SPR)
based live-cell biosensing platform to measure and compare the binding
affinity of vascular endothelial growth factor (VEGF) to vascular
endothelial growth factor receptor (VEGFR) and VEGF to bevacizumab.
Results have shown that bevacizumab binds VEGF with a higher association
rate and affinity compared to VEGFR. Further, this platform has been
employed to mimic the in vivo condition of the VEGF–VEGFR
angiogenic switch. Competitive binding to VEGF between VEGFR and bevacizumab
was monitored in real-time using this platform. Results demonstrated
a significant blockage of VEGF–VEGFR binding by bevacizumab.
From the results, it is evident that the proposed strategy is simple
and highly sensitive for the direct and real-time measurements of
bevacizumab drug efficacy to the VEGF–VEGFR angiogenic switch
in living SKOV-3 cells.
Collapse
Affiliation(s)
- Chang Liu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University , Miami, Florida, 33174, United States
| | | | | | | | | | | | | |
Collapse
|
11
|
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J, Selvaraj P. Immunotherapeutic strategies for cancer treatment: a novel protein transfer approach for cancer vaccine development. Med Res Rev 2012; 32:1197-1219. [PMID: 23059764 DOI: 10.1002/med.20237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer cells have developed numerous ways to escape immune surveillance and gain unlimited proliferative capacity. Currently, several chemotherapeutic agents and radiotherapy, either alone or in combination, are being used to treat malignancies. However, both of these therapies are associated with several limitations and detrimental side effects. Therefore, recent scientific investigations suggest that immunotherapy is among the most promising new approaches in modern cancer therapy. The focus of cancer immunotherapy is to boost both acquired and innate immunity against malignancies by specifically targeting tumor cells, and leaving healthy cells and tissues unharmed. Cellular, cytokine, gene, and monoclonal antibody therapies have progressively become promising immunotherapeutic approaches that are being tested for several cancers in preclinical models as well as in the clinic. In this review, we discuss recent advances in these immunotherapeutic approaches, focusing on new strategies that allow the expression of specific immunostimulatory molecules on the surface of tumor cells to induce robust antitumor immunity.
Collapse
Affiliation(s)
- Rangaiah Shashidharamurthy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
12
|
Porta C, Bracarda S. 3rd Pavia international symposium on advanced kidney cancer. Expert Opin Pharmacother 2012; 13:445-53. [PMID: 22263875 DOI: 10.1517/14656566.2012.651461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kidney cancers' natural history has radically changed in the past few years, due to the development of novel targeted agents. Despite these improvements, several unanswered questions still remain on the table, regarding the best first-line treatment, the ideal sequence of treatments, the management of specific subgroups of patients (e.g., elderly patients or those with comorbidities) and the relevance of prognostic factors, among many others. To foster discussions among clinicians and investigators working in this field, and to exchange different viewpoints concerning the newest advances in kidney cancer pathogenesis and treatment, the 3rd Pavia International Symposium on Advanced Kidney cancer was held in Pavia (Italy) between 30 June and 1 July 2011. The aim of this report is to summarize the most significant advances in the different disciplines applied to advanced kidney cancer, which were presented and discussed during the meeting, and how these advances will be changing the perspective of patients with this disease.
Collapse
Affiliation(s)
- Camillo Porta
- I.R.C.C.S. San Matteo University Hospital Foundation, Medical Oncology , 27100 Pavia , Italy
| | | |
Collapse
|
13
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Riese DJ. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery? Expert Opin Drug Discov 2011; 6:185-193. [PMID: 21532939 PMCID: PMC3083243 DOI: 10.1517/17460441.2011.547468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION: Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. AREAS COVERED: Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. EXPERT OPINION: While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and -independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics.
Collapse
Affiliation(s)
- David J Riese
- George Fulton Gilliland & Olga Hooser Gilliland Franklin Professor, Associate Dean for Research and Graduate Programs, Auburn University Harrison School of Pharmacy, 2316 Walker Building, Auburn, AL 36849-5501
| |
Collapse
|
15
|
Bello E, Colella G, Scarlato V, Oliva P, Berndt A, Valbusa G, Serra SC, D'Incalci M, Cavalletti E, Giavazzi R, Damia G, Camboni G. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res 2011; 71:1396-405. [PMID: 21212416 DOI: 10.1158/0008-5472.can-10-2700] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor angiogenesis is a degenerate process regulated by a complex network of proangiogenic factors. Existing antiangiogenic drugs used in clinic are characterized by selectivity for specific factors. Antiangiogenic properties might be improved in drugs that target multiple factors and thereby address the inherent mechanistic degeneracy in angiogenesis. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) family members and their cognate receptors are key players in promoting tumor angiogenesis. Here we report the pharmacologic profile of E-3810, a novel dual inhibitor of the VEGF and FGF receptors. E-3810 potently and selectively inhibited VEGF receptor (VEGFR)-1, -2, and -3 and FGF receptor (FGFR)-1 and -2 kinases in the nanomolar range. Ligand-dependent phosphorylation of VEGFR-2 and FGFR-1 was suppressed along with human vascular endothelial cell growth at nanomolar concentrations. In contrast, E-3810 lacked cytotoxic effects on cancer cell lines under millimolar concentrations. In a variety of tumor xenograft models, including early- or late-stage subcutaneous and orthotopic models, E-3810 exhibited striking antitumor properties at well-tolerated oral doses administered daily. We found that E-3810 remained active in tumors rendered nonresponsive to the general kinase inhibitor sunitinib resulting from a previous cycle of sunitinib treatment. In Matrigel plug assays performed in nude mice, E-3810 inhibited basic FGF-induced angiogenesis and reduced blood vessel density as assessed by histologic analysis. Dynamic contrast-enhanced magnetic resonance imaging analysis confirmed that E-3810 reduced the distribution of angiogenesis-sensitive contrast agents after only 5 days of treatment. Taken together, our findings identify E-3810 as a potent antiangiogenic small molecule with a favorable pharmacokinetic profile and broad spectrum antitumor activity, providing a strong rationale for its clinical evaluation.
Collapse
Affiliation(s)
- Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, and E.O.S. S.p.A., Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Del Vecchio M, Mortarini R, Canova S, Di Guardo L, Pimpinelli N, Sertoli MR, Bedognetti D, Queirolo P, Morosini P, Perrone T, Bajetta E, Anichini A. Bevacizumab plus fotemustine as first-line treatment in metastatic melanoma patients: clinical activity and modulation of angiogenesis and lymphangiogenesis factors. Clin Cancer Res 2010; 16:5862-72. [PMID: 21030496 DOI: 10.1158/1078-0432.ccr-10-2363] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the clinical and biological activity of the association of bevacizumab and fotemustine as first-line treatment in advanced melanoma patients. EXPERIMENTAL DESIGN Previously untreated, metastatic melanoma patients (n = 20) received bevacizumab (at 15 mg/kg every 3 weeks) and fotemustine (100 mg/m² by intravenous administration on days 1, 8, and 15, repeated after 4 weeks) in a multicenter, single-arm, open-label, phase II study. Primary endpoint was the best overall response rate; other endpoints were toxicity, time to progression (TTP), and overall survival (OS). Serum cytokines, angiogenesis, and lymphangiogenesis factors were monitored by multiplex arrays and by in vitro angiogenesis assays. Effects of fotemustine on melanoma cells, in vitro, on vascular endothelial growth factor (VEGF)-C release and apoptosis were assessed by ELISA and flow cytometry, respectively. RESULTS One complete response, 2 partial responses (PR), and 10 patients with stable disease were observed. TTP and OS were 8.3 and 20.5 months, respectively. Fourteen patients experienced adverse events of toxicity grade 3-4. Serum VEGF-A levels in evaluated patients (n = 15) and overall serum proangiogenic activity were significantly inhibited. A significant reduction in VEGF-C levels was found in several post-versus pretherapy serum samples. In vitro, fotemustine inhibited VEGF-C release by melanoma cells without inducing significant cell death. Serum levels of interleukin (IL)-10 and IL-12p70 showed the highest levels in sera of PR patients, compared with patients with stable or progressive disease whereas IL-23 showed the opposite pattern. CONCLUSIONS The combination of bevacizumab plus fotemustine has clinical activity in advanced melanoma and promotes systemic modulation of angiogenesis and lymphangiogenesis factors.
Collapse
Affiliation(s)
- Michele Del Vecchio
- Unit of Medical Oncology 2, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|