1
|
Chen Y, Qu B, Zheng K, Liu Y, Lu L, Zhang X. Global research landscape and trends of cancer stem cells from 1997 to 2023: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38125. [PMID: 38758889 PMCID: PMC11098227 DOI: 10.1097/md.0000000000038125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Cancer stem cells (CSCs) are a subset of cells with self-renewal ability and tumor generating potential. Accumulated evidence has revealed that CSCs were shown to contribute to tumorigenesis, metastasis, recurrence and resistance to chemoradiotherapy. Therefore, CSCs were regarded as promising therapeutic targets in cancer. This study is the first to reveal the development process, research hotspots, and trends of entire CSCs research field through bibliometric methods. All relevant publications on CSCs with more than 100 citations (notable papers) and the 100 most cited papers (top papers) during 1997 to 2023 were extracted and analyzed. Cancer research published the largest number of papers (184 papers). The USA accounted for the most publications (1326 papers). Rich, JN was the author with the most publications (56 papers) and the highest M-index (3.111). The most contributive institution was the University of Texas System (164 papers). Before 2007, research mainly focused on the definition and recognition of CSCs. Between 2007 and 2016, with the emergence of the terms such as "sonic hedgehog," "metabolism," "oxidative phosphorylation," and "epithelial mesenchymal transition," research began to shift toward exploring the mechanisms of CSCs. In 2016, the focus transitioned to the tumor microenvironment and the ecological niches. The analysis of papers published in major journals since 2021 showed that "transcription," "inhibition," and "chemoresistance" emerged as new focused issues. In general, the research focus has gradually shifted from basic biology to clinical transformation. "Tumor microenvironment" and "chemo-resistance" should be given more attention in the future.
Collapse
Affiliation(s)
- Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Keke Zheng
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Yanhao Liu
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
2
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
3
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
5
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Liu HQ, Sun LX, Yu L, Liu J, Sun LC, Yang ZH, Shu X, Ran YL. HSP90, as a functional target antigen of a mAb 11C9, promotes stemness and tumor progression in hepatocellular carcinoma. Stem Cell Res Ther 2023; 14:273. [PMID: 37759328 PMCID: PMC10523703 DOI: 10.1186/s13287-023-03453-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Identification of promising targeted antigens that exhibited cancer-specific expression is a crucial step in the development of novel antibody-targeted therapies. We here aimed to investigate the anti-tumor activity of a novel monoclonal antibody (mAb) 11C9 and identify the antibody tractable target in the hepatocellular cancer stem cells (HCSCs). METHODS The identification of the targeted antigen was conducted using SDS-PAGE, western blot, mass spectrometry, and co-immunoprecipitation. Silence of HSP90 was induced by siRNA interference. Positive cells were sorted by fluorescence-activated cell sorting. Double-immunofluorescent (IF) staining and two-color flow cytometry detected the co-expression. Self-renewal, invasion, and drug resistance were assessed by sphere formation, matrigel-coated Transwell assay, and CCK-8 assay, respectively. Tumorigenicity was evaluated in mouse xenograft models. RNA-seq and bioinformatics analysis were performed to explore the mechanism of mAb 11C9 and potential targets. RESULTS MAb 11C9 inhibited invasion and self-renewal abilities of HCC cell lines and reversed the cisplatin resistance. HSP90 (~ 95 kDa) was identified as a targeted antigen of mAb 11C9. Tissue microarrays and online databases revealed that HSP90 was overexpressed in HCC and associated with a poor prognosis. FACS and double-IF staining showed the co-expression of HSP90 and CSCs markers (CD90 and ESA). In vitro and in vivo demonstrated the tumorigenic potentials of HSP90. The inhibition of HSP90 by siRNA interference or 17-AAG inhibitor both decreased the number of invasion, sphere cells, and CD90+ or ESA+ cells, as well as reversed the resistance. Bioinformatics analysis and western blot verified that HSP90 activated Wnt/β-catenin signaling. CONCLUSIONS The study preliminarily revealed the anti-tumor activity of mAb 11C9. More importantly, we identified HSP90 as a targeted antigen of mAb 11C9, which functions as an oncogene in phenotype shaping, stemness maintenance, and therapeutic resistance by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hui-Qi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Li-Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Jun Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Li-Chao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Zhi-Hua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| | - Xiong Shu
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035 People’s Republic of China
| | - Yu-Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021 People’s Republic of China
| |
Collapse
|
8
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
9
|
Downstream Targets of VHL/HIF-α Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers (Basel) 2023; 15:cancers15041316. [PMID: 36831657 PMCID: PMC9953937 DOI: 10.3390/cancers15041316] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
The clear cell variant of renal cell carcinoma (ccRCC) is the most common renal epithelial malignancy and responsible for most of the deaths from kidney cancer. Patients carrying inactivating mutations in the Von Hippel-Lindau (VHL) gene have an increased proclivity to develop several types of tumors including ccRCC. Normally, the Hypoxia Inducible Factor alpha (HIF-α) subunits of the HIF heterodimeric transcription factor complex are regulated by oxygen-dependent prolyl-hydroxylation, VHL-mediated ubiquitination and proteasomal degradation. Loss of pVHL function results in elevated levels of HIF-α due to increased stability, leading to RCC progression. While HIF-1α acts as a tumor suppressor, HIF-2α promotes oncogenic potential by driving tumor progression and metastasis through activation of hypoxia-sensitive signaling pathways and overexpression of HIF-2α target genes. One strategy to suppress ccRCC aggressiveness is directed at inhibition of HIF-2α and the associated molecular pathways leading to cell proliferation, angiogenesis, and metastasis. Indeed, clinical and pre-clinical data demonstrated the effectiveness of HIF-2α targeted therapy in attenuating ccRCC progression. This review focuses on the signaling pathways and the involved genes (cyclin D, c-Myc, VEGF-a, EGFR, TGF-α, GLUT-1) that confer oncogenic potential downstream of the VHL-HIF-2α signaling axis in ccRCC. Discussed as well are current treatment options (including receptor tyrosine kinase inhibitors such as sunitinib), the medical challenges (high prevalence of metastasis at the time of diagnosis, refractory nature of advanced disease to current treatment options), scientific challenges and future directions.
Collapse
|
10
|
Pillai S, Roy N. Plasticity of Cancer Stem Cell. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:101-117. [DOI: 10.1007/978-981-99-3185-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
lncRNA ZFAS1 Promotes HMGCR mRNA Stabilization via Binding U2AF2 to Modulate Pancreatic Carcinoma Lipometabolism. J Immunol Res 2022; 2022:4163198. [PMID: 35846429 PMCID: PMC9286883 DOI: 10.1155/2022/4163198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Being one of the most lethal malignant tumors worldwide, pancreatic carcinoma (PC) shows strong invasiveness and high mortality. In tumorigenesis and progression, the role played by long-chain noncoding RNAs (lncRNAs) cannot be ignored. This article mainly probes into the function of lncRNA ZFAS1 in PC. ZFAS1 expression in PC and normal counterparts retrieved from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) database was analysed by GEPIA2. Its expression profile in clinical specimens and human PC cell strains was quantified using qRT-PCR. Measurements of BxPC-3 cell multiplication and invasiveness employed CCK-8, plate clone formation test, and Transwell chamber assay. ZFAS1's impact on lipid content in BxPC-3 cells was detected. RNA pulldown and RIP assays analyzed the interaction of ZFAS1 with U2AF2 and HMGCR in BxPC-3 cells. Finally, the impacts of U2AF2 and HMGCR on the biological behavior of BxPC-3 were observed. ZFAS1 was kept at a high level in PC tissues versus the normal counterparts. ZFAS1 gene knockout remarkably suppressed PC cell multiplication and invasiveness and decreased the contents of free fatty acids, total cholesterol, triglycerides, and phospholipids. Mechanistically, ZFAS1 stabilized HMGCR mRNA through U2AF2, thus increasing HMGCR expression and promoting PC lipid accumulation. Meanwhile, reduced PC cell viability and invasiveness were observed after downregulating U2AF2 and HMGCR. As an oncogene of PC, ZFAS1 can modulate lipometabolism and stabilize HMGCR mRNA expression by binding with U2AF2 in PC, which is a candidate target for PC diagnosis and treatment.
Collapse
|
12
|
Ju F, Atyah MM, Horstmann N, Gul S, Vago R, Bruns CJ, Zhao Y, Dong QZ, Ren N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther 2022; 13:233. [PMID: 35659296 PMCID: PMC9166529 DOI: 10.1186/s13287-022-02904-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] Open
Abstract
Distinct regions harboring cancer stem cells (CSCs) have been identified within the microenvironment of various tumors, and as in the case of their healthy counterparts, these anatomical regions are termed "niche." Thus far, a large volume of studies have shown that CSC niches take part in the maintenance, regulation of renewal, differentiation and plasticity of CSCs. In this review, we summarize and discuss the latest findings regarding CSC niche morphology, physical terrain, main signaling pathways and interactions within them. The cellular and molecular components of CSCs also involve genetic and epigenetic modulations that mediate and support their maintenance, ultimately leading to cancer progression. It suggests that the crosstalk between CSCs and their niche plays an important role regarding therapy resistance and recurrence. In addition, we updated diverse therapeutic strategies in different cancers in basic research and clinical trials in this review. Understanding the complex heterogeneity of CSC niches is a necessary pre-requisite for designing superior therapeutic strategies to target CSC-specific factors and/or components of the CSC niche.
Collapse
Affiliation(s)
- Feng Ju
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Manar M. Atyah
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Nellie Horstmann
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Christiane J. Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Qiong-Zhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199 China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199 China
| |
Collapse
|
13
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, Bryl R, Mozdziak P, Kempisty B, Piotrowska-Kempisty H. Ovarian Cancer and Cancer Stem Cells-Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers (Basel) 2021; 13:cancers13164178. [PMID: 34439332 PMCID: PMC8394875 DOI: 10.3390/cancers13164178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ovarian cancer is still a high-risk, metastatic disease, often diagnosed at a late stage. Difficulties in its treatment are associated with high resistance to chemotherapy and recurrence. Responsible for the malignant features of cancer are considered to be cancer stem cells (CSCs), which generate new cells by modifying various signaling pathways. Signaling pathways are crucial for the regulation of epithelial-mesenchymal transition, metastasis, and self-renewal of CSCs. New therapies based on the use of inhibitors that block CSC growth and proliferation signals are being investigated. The current histological classification of ovarian tumors, their epidemiology, and the recent knowledge of ovarian CSCs, with particular emphasis on their molecular basis, are important considerations. Abstract Despite the increasing development of medicine, ovarian cancer is still a high-risk, metastatic disease that is often diagnosed at a late stage. In addition, difficulties in its treatment are associated with high resistance to chemotherapy and frequent relapse. Cancer stem cells (CSCs), recently attracting significant scientific interest, are considered to be responsible for the malignant features of tumors. CSCs, as the driving force behind tumor development, generate new cells by modifying different signaling pathways. Moreover, investigations on different types of tumors have shown that signaling pathways are key to epithelial-mesenchymal transition (EMT) regulation, metastasis, and self-renewal of CSCs. Based on these established issues, new therapies are being investigated based on the use of inhibitors to block CSC growth and proliferation signals. Many reports indicate that CSC markers play a key role in cancer metastasis, with hopes placed in their targeting to block this process and eliminate relapses. Current histological classification of ovarian tumors, their epidemiology, and the most recent knowledge of ovarian CSCs, with particular emphasis on their molecular background, are important aspects for consideration. Furthermore, the importance of signaling pathways involved in tumor growth, development, and metastasis, is also presented.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paul Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| |
Collapse
|
15
|
Shu X, Cao KY, Liu HQ, Yu L, Sun LX, Yang ZH, Wu CA, Ran YL. Alpha-enolase (ENO1), identified as an antigen to monoclonal antibody 12C7, promotes the self-renewal and malignant phenotype of lung cancer stem cells by AMPK/mTOR pathway. Stem Cell Res Ther 2021; 12:119. [PMID: 33579362 PMCID: PMC7881626 DOI: 10.1186/s13287-021-02160-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.
Collapse
Affiliation(s)
- Xiong Shu
- Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China
| | - Kai-Yue Cao
- Department of Pathology, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Hui-Qi Liu
- Department of Basic Medical Science, Medical School of Qinghai University, Xining, People's Republic of China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Li-Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Zhi-Hua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Cheng-Ai Wu
- Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China.
| | - Yu-Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China.
| |
Collapse
|
16
|
Wang D, Xie D, Bi L, Wang Y, Zou C, Chen L, Geng H, Qian W, Li Y, Sun H, Wang X, Lu Y, Yu D, Zhong C. Benzidine promotes the stemness of bladder cancer stem cells via activation of the Sonic hedgehog pathway. Oncol Lett 2021; 21:146. [PMID: 33552265 PMCID: PMC7798036 DOI: 10.3892/ol.2020.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Substantial evidence suggests that cancer stem cells (CSCs) are the main cause of the initiation, progression and recurrence of tumors. Benzidine has been identified as a risk factor for bladder cancer. The aim of the present study was to investigate the effects of benzidine on bladder CSCs (BCSCs) and the possible mechanism underlying its action. The bladder cancer cell lines UM-UC-3 and EJ were maintained in serum-free medium and cells forming three-dimensional spheres were characterized as BCSCs. The sphere-forming cells were exposed to different concentrations of benzidine and vismodegib, and western blotting was performed to evaluate the expression of markers associated with CSCs and the Sonic hedgehog (SHH) signaling pathway. Flow cytometry was used to detect the distribution of cells in different phases of the cell cycle, and immunofluorescence staining was used to detect the protein expression of CD44. The results revealed that the levels of BCSC markers, namely CD133, CD44, aldehyde dehydrogenase 1-A1, Nanog and octamer-binding transcription factor-4, in the cell spheres were markedly elevated compared with those in cells cultured in serum-supplemented medium. Furthermore, benzidine increased the expression of BCSC markers and promoted the sphere-forming ability of the cells. In addition, it was observed that benzidine activated the SHH pathway, while inhibition of the Shh pathway using vismodegib diminished the promoting effects of benzidine on BCSCs. The findings of the present study indicate that benzidine promoted the stemness of BCSCs via activation of the SHH pathway, which may support further exploration of the molecular basis of the association between benzidine exposure and bladder oncogenesis.
Collapse
Affiliation(s)
- Dengdian Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Dongdong Xie
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Ci Zou
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Lei Chen
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Weiwei Qian
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuan Li
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongliang Sun
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xin Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Youlu Lu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
17
|
Li W, Li Y, Cui Y, Li S, Zhu Y, Shang C, Song G, Liu Z, Xiu Z, Cong J, Li T, Li X, Sun L, Jin N. Anti-tumour effects of a dual cancer-specific oncolytic adenovirus on Breast Cancer Stem cells. J Cell Mol Med 2020; 25:666-676. [PMID: 33305893 PMCID: PMC7812255 DOI: 10.1111/jcmm.16113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptin can specifically kill cancer cells but has no toxicity to normal cells. Human telomerase reverse transcriptase (hTERT) can act as a tumour‐specific promoter by triggering the expression of certain genes in tumour cells. This study aims to investigate the inhibitory effects and to explore the inhibitory pathway of a dual cancer‐specific recombinant adenovirus (Ad‐apoptin‐hTERTp‐E1a, Ad‐VT) on breast cancer stem cells. Breast cancer cell spheres were obtained from MCF‐7 cells through serum‐free suspension culture. The cell spheres were detected by flow cytometry for CD44+ CD24− cell subsets. The stemness of MCF‐7‐CSC cells was confirmed by in vivo tumorigenesis experiments. The inhibitory effect of the recombinant adenoviruses on MCF‐7‐CSC cells was evaluated by CCK‐8 assay. In addition, the stemness of adenovirus‐infected MCF‐7‐CSC cells was analysed by testing the presence of CD44+ CD24− cell subsets. The ability of the recombinant adenovirus to induce MCF‐7‐CSC cell apoptosis was detected by staining JC‐1, TMRM and Annexin V. Our results showed that a significantly higher proportion of the CD44+ CD24− cell subsets was present in MCF‐7‐CSC cells with a significantly increased expression of stem cell marker proteins. The MCF‐7‐CSC cells, whlist exhibited a strong tumorigenic ability with a certain degree of stemness in mice, were shown to be strongly inhibited by recombinant adenovirus Ad‐VT through cell apoptosis. In addition, Ad‐VT was shown to exert a killing effect on BCSCs. These results provide a new theoretical basis for the future treatment of breast cancer.
Collapse
Affiliation(s)
- Wenjie Li
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yingli Cui
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.,Department of Gynecologic Oncology, First Hospital of Jilin University, Changchun, China
| | - Shanzhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Gaojie Song
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Zirui Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Jianan Cong
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Tingyu Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xiao Li
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lili Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.,Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, China
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
18
|
Lee SH, Reed-Newman T, Anant S, Ramasamy TS. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells. Stem Cell Rev Rep 2020; 16:1185-1207. [DOI: 10.1007/s12015-020-10031-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY, Islam F. Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Rev Rep 2020; 16:397-412. [PMID: 31965409 DOI: 10.1007/s12015-019-09942-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. Graphical Abstract .
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Alfred K Y Lam
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
20
|
Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin β4. Carbohydr Polym 2020; 239:116168. [PMID: 32414450 DOI: 10.1016/j.carbpol.2020.116168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Great efforts have been paid to develop methodologies for cancer stem-like cell (CSLC) isolation in anti-cancer research. The major obstacle lies in the lack of generic biomarkers for different cancer types and the requirement of complicated immuno-labeling procedures. The purpose of this study is to establish a label-free platform for CSLC isolation using pH-responsive chitosan. Based on the adhesive heterogeneity, 15.7 ± 1.9 % of human non-small cell lung cancer (NSCLC) cell line A549 detached from the chitosan substrate following medium pH elevation from 6.99 to 7.65 within 1 h. As a result, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including self-renewal, invasive and metastatic potential, therapeutic-resistance, colony formation in vitro, as well as nude mice xenograft in vivo for tumorigenesis, in comparison with their high-adhesive counterpart. Furthermore, integrin β4 is decisive in controlling CSLC detachment of NSCLC. Conclusively, this pH-dependent isolation provides new insights into biomaterial-based CSLC isolation.
Collapse
|
21
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
22
|
Lee IC. Cancer-on-a-chip for Drug Screening. Curr Pharm Des 2019; 24:5407-5418. [DOI: 10.2174/1381612825666190206235233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
:
The oncology pharmaceutical research spent a shocking amount of money on target validation and
drug optimization in preclinical models because many oncology drugs fail during clinical trial phase III. One of
the most important reasons for oncology drug failures in clinical trials may due to the poor predictive tool of
existing preclinical models. Therefore, in cancer research and personalized medicine field, it is critical to improve
the effectiveness of preclinical predictions of the drug response of patients to therapies and to reduce costly failures
in clinical trials. Three dimensional (3D) tumor models combine micro-manufacturing technologies mimic
critical physiologic parameters present in vivo, including complex multicellular architecture with multicellular
arrangement and extracellular matrix deposition, packed 3D structures with cell–cell interactions, such as tight
junctions, barriers to mass transport of drugs, nutrients and other factors, which are similar to in vivo tumor tissues.
These systems provide a solution to mimic the physiological environment for improving predictive accuracy
in oncology drug discovery.
:
his review gives an overview of the innovations, development and limitations of different types of tumor-like
construction techniques such as self-assemble spheroid formation, spheroids formation by micro-manufacturing
technologies, micro-dissected tumor tissues and tumor organoid. Combination of 3D tumor-like construction and
microfluidic techniques to achieve tumor on a chip for in vitro tumor environment modeling and drug screening
were all included. Eventually, developmental directions and technical challenges in the research field are also
discussed. We believe tumor on chip models have provided better sufficient clinical predictive power and will
bridge the gap between proof-of-concept studies and a wider implementation within the oncology drug development
for pathophysiological applications.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dormancy occurs when cells remain viable but stop proliferating. When most of a cancer population undergoes this phenomenon, the result is called tumor dormancy, and when a single cancer cell undergoes this process, it is termed quiescence. Cancer stem cells (CSCs) share several overlapping characteristics and signaling pathways with dormant cancer cells, including therapy resistance, and an ability to metastasize and evade the immune system. Cancer cells can be broadly grouped into dormancy-competent CSCs (DCCs), cancer-repopulating cells (CRCs), dormancy-incompetent CSCs and disseminated tumor cells (DTCs). The settings in which cancer cells exploit the dormancy phase to survive and adapt are: (i) primary cancer dormancy; (ii) metastatic dormancy; (iii) therapy-induced dormancy; and (iv) immunologic dormancy. Dormancy, therapy resistance and plasticity of CSCs are fundamentally interconnected processes mediated through mechanisms involving reversible genetic alterations. Niches including metastatic, bone marrow, and perivascular are known to harbor dormant cancer cells. Mechanisms of dormancy induction are complex and multi-factorial and can involve angiogenic switching, addictive oncogene inhibition, immunoediting, anoikis, therapy, autophagy, senescence, epigenetic, and biophysical regulation. Therapy can have opposing effects on cancer cells with respect to dormancy; some therapies can induce dormancy, while others can reactivate dormant cells. There is a lack of consensus relative to the value of therapy-induced dormancy, i.e., some researchers view dormancy induction as a beneficial strategy as it can lead to metastasis inhibition, while others argue that reactivating dormant cancer cells and then eliminating them through therapy are a better approach. More focused investigations of intrinsic cell kinetics and environmental dynamics that promote and maintain cancer cells in a dormant state, and the long-term consequences of dormancy are critical for improving current therapeutic treatment outcomes.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
24
|
张 丹, 何 大, 李 典, 唐 波, 胡 东, 郭 文, 王 璋, 沈 炼, 魏 光. [Cancer stem-like cell-derived exosomes promotes the proliferation and invasion of human umbilical cord blood-derived mesenchymal stem cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1440-1447. [PMID: 30613011 PMCID: PMC6744204 DOI: 10.12122/j.issn.1673-4254.2018.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Piwil2-induced cancer stem-like cell (Piwil2-iCSC)-derived exosomes on the proliferation,migration and invasion of human umbilical cord blood-derived mesenchymal stem cells (hucMSCs). METHODS Piwil2-iCSC-derived exosomes were isolated by ultracentrifugation and identified using transmission electron microscopy,nanoparticle tracking analysis and Western blotting.Exosome uptake assay was used to identify the pathway that Piwil2-iCSCderived exosomes utilized.HucMSCs were divided into control group,PBS intervention group and exosome intervention group,and CCK-8 assay,wound healing assay,Transwell assay,Western blotting and cell karyotype analysis were used to observe the proliferation,migration,invasion,expression levels of MMP2 and MMP9 proteins,and chromosome structure of hucMSCs. RESULTS The diameter of Piwil2-iCSC-derived exosomes ranged from 50 nm to 100 nm,and most of them were oval or spherical capsules rich in CD9,CD63 and Piwil2 proteins.Exosomal uptake assay showed that the exosomes executed theirs functions after entering the cells.Compared with the control cells and PBS-treated cells,hucMSCs treated with the exosomes showed significantly increased number of proliferating cells (P<0.05) with accelerated healing rate (P<0.05 at 24 h;P<0.01 at 48 h),increased invasive cells (P<0.01),enhanced protein expressions of MMP2(P<0.05 vs PBS group;P<0.01 vs control group) and MMP9(P<0.05),but their karyotype still remained 46XY without any abnormalities. CONCLUSIONS Piwil2-iCSC-derived exosomes can promote the proliferation,migration and invasion but does not cause cancer-like heterogeneity changes in hucMSCs.
Collapse
Affiliation(s)
- 丹 张
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 大维 何
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 典 李
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 波 唐
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 东 胡
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 文浩 郭
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 璋 王
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 炼桔 沈
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 光辉 魏
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| |
Collapse
|
25
|
Exosomes Regulate the Transformation of Cancer Cells in Cancer Stem Cell Homeostasis. Stem Cells Int 2018; 2018:4837370. [PMID: 30344611 PMCID: PMC6174755 DOI: 10.1155/2018/4837370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In different biological model systems, exosomes are considered mediators of cell-cell communication between different cell populations. Exosomes, as extracellular vesicles, participate in physiological and pathological processes by transmitting signaling molecules such as proteins, nucleic acids, and lipids. The tumor's microenvironment consists of many types of cells, including cancer stem cells and mesenchymal cells. It is well known that these cells communicate with each other and thereby regulate the progression of the tumor. Recent studies have provided evidence that exosomes mediate the interactions between different types of cells in the tumor microenvironment, providing further insight into how these cells interact through exosome signaling. Cancer stem cells are a small kind of heterogeneous cells that existed in tumor tissues or cancer cell lines. These cells possess a stemness phenotype with a self-renewal ability and multipotential differentiation which was considered the reason for the failure of conventional cancer therapies and tumor recurrence. However, a highly dynamic equilibrium was found between cancer stem cells and cancer cells, and this indicates that cancer stem cells are no more special target and blocking the transformation of cancer stem cells and cancer cells seem to be a more significant therapy strategy. Whether exosomes, as an information transforming carrier between cells, regulated cancer cell transformation in cancer stem cell dynamic equilibrium and targeting exosome signaling attenuated the formation of cancer stem cells and finally cure cancers is worthy of further study.
Collapse
|
26
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
27
|
Recent advances and perspectives on capture and concentration of label-free rare cells for biomedical science and engineering research. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Dzobo K, Senthebane DA, Rowe A, Thomford NE, Mwapagha LM, Al-Awwad N, Dandara C, Parker MI. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:681-691. [PMID: 27930094 DOI: 10.1089/omi.2016.0152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| | - Lamech M Mwapagha
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nasir Al-Awwad
- 4 Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University , Albaha, Saudi Arabia
| | - Collet Dandara
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| | - M Iqbal Parker
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
29
|
Lee YC, Chang WW, Chen YY, Tsai YH, Chou YH, Tseng HC, Chen HL, Wu CC, Chang-Chien J, Lee HT, Yang HF, Wang BY. Hsp90α Mediates BMI1 Expression in Breast Cancer Stem/Progenitor Cells through Facilitating Nuclear Translocation of c-Myc and EZH2. Int J Mol Sci 2017; 18:ijms18091986. [PMID: 28914785 PMCID: PMC5618635 DOI: 10.3390/ijms18091986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the correct folding and functionality of its client protein. Numerous Hsp90-client proteins are involved in cancer development. Thus, Hsp90 inhibitors have potential applications as anti-cancer drugs. We previously discovered that Hsp90α expression increased in breast cancer stem cells (BCSCs), which can initiate tumorigenesis and metastasis and resist treatment. In the present study, we further demonstrated that 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an inhibitor of Hsp90, could suppress the self-renewal of BCSCs by downregulating B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a polycomb family member with oncogenic activity in breast cancer. Through immunoprecipitation analysis, we found that BMI1 did not interact with Hsp90α and that the downregulation of BMI1 by 17-DMAG was mediated by the inhibition of c-Myc and enhancement of zeste homolog 2 (EZH2) expression. The transcriptional and BMI1 promoter-binding activities of c-Myc in BCSCs were inhibited by 17-DMAG treatment. The overexpression of EZH2 attenuated the inhibitory effect of 17-DMAG on BMI1 and c-Myc expression. Furthermore, Hsp90α could be co-immunoprecipitated with c-Myc and EZH2 and bind to the BMI1 promoter. Treatment with 17-DMAG decreased the nuclear expression of EZH2 and c-Myc but not that of Hsp90α. In conclusion, our data suggested that Hsp90α could positively regulate the self-renewal of BCSCs by facilitating the nuclear translocation of c-Myc and EZH2 to maintain BMI1 expression.
Collapse
Affiliation(s)
- Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yi-Ying Chen
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yu-Hung Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsin-Lin Chen
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chun-Chieh Wu
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Ju Chang-Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei 11529, Taiwan.
| | - Huei-Fan Yang
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Nursing, Chung shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua City 50006, Taiwan.
- School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40201, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
30
|
Induced Pluripotent Stem Cell-conditioned Medium Suppressed Melanoma Tumorigenicity Through the Enhancement of Natural-Killer Cellular Immunity. J Immunother 2016; 39:153-9. [PMID: 27023059 DOI: 10.1097/cji.0000000000000117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can secrete cytokines that are involved in T-cell development and affect cytotoxic activity. To assess the effect of iPSC-conditioned medium on tumorigenicity, we retrieved splenocytes from B6 mice and cocultured them with or without irradiated B16 melanoma cells, mouse interleukin-2 (mIL-2), or iPSC-conditioned medium. Splenocyte cytotoxicity assays against B16 melanoma cells [as cytotoxic T lymphocyte (CTL) activity] and P815 cells [as natural killer (NK) activity] were performed. IL-10 and interferon-γ concentrations were measured. An in vivo subcutaneous B16 melanoma growth model was performed in B6 mice and treated with iPSC-conditioned medium. The lymphocyte subpopulation depletion test was performed to determine effectors against B16 melanoma cells. We found that unstimulated splenocytes had little cytotoxic activity. Without tumor cells, mIL-2 could augment iPSC-conditioned medium-treated CTL and NK activities (P<0.01). With irradiated tumor cells, mIL-2 treatment of splenocytes could not enhance CTL or NK activity, but iPSC-conditioned medium could enhance CTL and NK activity (P<0.001). Irradiated tumor cells induced mice splenocytes to secrete more IL-10, similar to mIL-2 treatment, but not iPSC-conditioned medium treatment. mIL-2 had better efficacy than conditioned medium in inducing splenocyte interferon-γ production. The CTL and NK cell depletion test showed that the immunostimulating effect of iPSC-conditioned medium on splenocytes was through the enhancement of NK cellular activity (P<0.05). The subcutaneous melanoma growth model showed that B16-bearing mice treated with an iPSC-conditioned medium intraperitoneal injection had a decreased tumor growth rate (P<0.01). Our study suggests that iPSC-conditioned medium had a protective effect against tumor-induced immunosuppression through the enhancement of host NK cellular activity.
Collapse
|
31
|
Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 2016; 51:1-9. [DOI: 10.1016/j.ctrv.2016.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|
32
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
33
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
34
|
G9a/RelB regulates self-renewal and function of colon-cancer-initiating cells by silencing Let-7b and activating the K-RAS/β-catenin pathway. Nat Cell Biol 2016; 18:993-1005. [PMID: 27525719 DOI: 10.1038/ncb3395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Epigenetic reprogramming has been associated with the functional plasticity of cancer-initiating cells (CICs); however, the regulatory pathway has yet to be elucidated. A siRNA screen targeting known epigenetic genes revealed that G9a profoundly impairs the chemo-resistance, self-renewal and metastasis of CICs obtained from patients with colorectal cancer (CRC). Patients with elevated G9a were shown to face a high risk of relapse and poor survival rates. From a mechanistic perspective, G9a binds with and stabilizes RelB, thereby recruiting DNA methyltransferase 3 on the Let-7b promoter and repressing its expression. This leads to the activation of the K-RAS/β-catenin pathway and regulates self-renewal and function of CICs. These findings indicate that the G9a/RelB/Let-7b axis acts as a critical regulator in the maintenance of CIC phenotypes and is strongly associated with negative clinical outcomes. Thus, these findings may have diagnostic as well as therapeutic implications for the treatment of chemotherapy-resistant or metastatic CRC.
Collapse
|
35
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
36
|
Abstract
Prostate cancer (P-Ca) remains a leading cause of cancer-related death in men. Lately, increasing evidence for a hierarchically organized cancer stem cell (CSC) model emerged for different tumors entities, including P-Ca. CSCs are defined by several characteristics including self-renewal, pluripotency and tumorigenicity and are thought to be responsible for tumor recurrence, metastasis and cancer related death. In this review we discuss the recent research in the field of CSCs, its limitations and therapeutical implications in general and specifically in P-Ca.
Collapse
Affiliation(s)
- Felix Moltzahn
- Department of Urology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
37
|
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2016; 16:225-38. [PMID: 25748930 DOI: 10.1016/j.stem.2015.02.015] [Citation(s) in RCA: 1156] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets.
Collapse
Affiliation(s)
- Vicki Plaks
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Niwen Kong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
38
|
Lee IC, Chuang CC, Wu YC. Niche Mimicking for Selection and Enrichment of Liver Cancer Stem Cells by Hyaluronic Acid-Based Multilayer Films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22188-22195. [PMID: 26379083 DOI: 10.1021/acsami.5b04436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cancer stem cells (CSCs) represent a subpopulation of tumor cells that exhibit capacities for self-renewal, tumor initiation, disease relapse or metastasis, and resistance to chemotherapy and radiotherapy. However, the major obstacle associated with the use of CSCs is the difficulty in their isolation and enrichment. According to recent studies, CSCs share similar properties with normal stem cells, and it has been observed that hyaluronan (HA) plays a key factor in CSCs niches and that HA-mediated CD44 interaction promotes tumor progression. Therefore, HA-based multilayer films were used to fabricate sequential surface properties variation and to mimic CSC niches. A quartz crystal microbalance was used to investigate the layer-by-layer adsorption of PAH/HA multilayer films. Colony formation was observed on a series of poly(allylamine hydrochloride) PAH/HA multilayer films, and cytotoxicity and cell viability were evaluated by MTT, LDH and live/dead assay. It was observed that the cells isolated from (PAH/HA)3 displayed the best colony formation ability and that the expression of CD133/CD44 double positive cells was up-regulated to approximately 70% after 7 days of culture. Furthermore, the cells isolated from (PAH/HA)3 displayed higher chemo-resistance than the control group. The stem-cell-related genes expression of selected cells from (PAH/HA)3 after 7 days of culture was significantly different from that of the control group. In conclusion, this study provides a label-free selection and enrichment system that could serve as a new strategy for the future development of CSC selection and drug evaluation in cancer therapy.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University , No. 259, Wenhua First Road, Guishan District, Taoyuan 33302, Taiwan
| | - Chun-Chieh Chuang
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University , No. 259, Wenhua First Road, Guishan District, Taoyuan 33302, Taiwan
| | - Yu-Chieh Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University , No. 259, Wenhua First Road, Guishan District, Taoyuan 33302, Taiwan
| |
Collapse
|
39
|
Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle 2015; 13:3506-18. [PMID: 25483087 DOI: 10.4161/15384101.2014.958407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selective targeting of cancer stem cells (CSCs), implicated in tumor relapse, holds great promise in the treatment of colorectal cancer. Overexpression of C-terminal binding protein (CtBP), an NADH dependent transcriptional regulator, is often observed in colon cancer. Of note, TCF-4 signaling is also up-regulated in colonic CSCs. We hypothesized that CtBP, whose dehydrogenase activity is amenable to pharmacological inhibition by 4-methylthio-2-oxobutyric acid (MTOB), positively regulates TCF-4 signaling, leading to CSC growth and self-renewal. CSCs demonstrated significant upregulation of CtBP1 and CtBP2 levels (mRNA and protein) and activity partly due to increased NADH/NAD ratio, as well as increased TCF/LEF transcriptional activity, compared to respective controls. Depletion of CtBP2 inhibited, while its overexpression enhanced, CSC growth (1° spheroids) and self-renewal (2°/3° spheroids). Similarly, MTOB caused a robust inhibition of spheroid growth and self-renewal in a dose dependent manner. MTOB displayed significantly greater selectivity for growth inhibition in the spheroids, at least in part through induction of apoptosis, compared to monolayer controls. Moreover, MTOB inhibited basal as well as induced (by GSK-3β inhibitor) TCF/LEF activity while suppressing mRNA and protein levels of several β-catenin target genes (CD44, Snail, C-MYC and LGR5). Lastly, CtBP physically interacted with TCF-4, and this interaction was significantly inhibited in the presence of MTOB. The above findings point to a novel role of CtBPs in the promotion of CSC growth and self-renewal through direct regulation of TCF/LEF transcription. Moreover, small molecular inhibition of its function can selectively target CSCs, presenting a novel approach for treatment of colorectal cancer focused on targeting of CSCs.
Collapse
Affiliation(s)
- Jagrut Patel
- a Hunter Holmes McGuire VA Medical Center ; Richmond , VA USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
For many decades, fundamental cancer research has relied on two-dimensional in vitro cell culture models. However, these provide a poor representation of the complex three-dimensional (3D) architecture of living tissues. The more recent 3D culture systems, which range from ridged scaffolds to semiliquid gels, resemble their natural counterparts more closely. The arrangement of the cells in 3D systems allows better cell-cell interaction and facilitates extracellular matrix secretion, with concomitant effects on gene and protein expression and cellular behavior. Many studies have reported differences between 3D and 2D systems as regards responses to therapeutic agents and pivotal cellular processes such as cell differentiation, morphology, and signaling pathways, demonstrating the importance of 3D culturing for various cancer cell lines.
Collapse
|
41
|
Wu CH, Hong BH, Ho CT, Yen GC. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2432-2441. [PMID: 25686711 DOI: 10.1021/acs.jafc.5b00002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Breast cancer stem cells (BCSCs) constitute a small fraction of the primary tumor that can self-renew and become a drug-resistant cell population, thus limiting the treatment effects of chemotherapeutic drugs. The present study evaluated the cytotoxic effects of five phytochemicals including 6-gingerol (6-G), 6-shogaol (6-S), 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-HF), nobiletin (NOL), and pterostilbene (PTE) on MCF-7 breast cancer cells and BCSCs. The results showed that 6-G, 6-S, and PTE selectively killed BCSCs and had high sensitivity for BCSCs isolated from MCF-7 cells that expressed the surface antigen CD44(+)/CD24(-). 6-S and PTE induced cell necrosis phenomena such as membrane injury and bleb formation in BCSCs and inhibited mammosphere formation. In addition, 6-S and PTE increased the sensitivity of isolated BCSCs to chemotherapeutic drugs and significantly increased the anticancer activity of paclitaxel. Analysis of the underlying mechanism showed that 6-S and PTE decreased the expression of the surface antigen CD44 on BCSCs and promoted β-catenin phosphorylation through the inhibition of hedgehog/Akt/GSK3β signaling, thus decreasing the protein expression of downstream c-Myc and cyclin D1 and reducing BCSC stemness.
Collapse
Affiliation(s)
- Chi-Hao Wu
- School of Nutrition and Health Sciences, Taipei Medical University , 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
42
|
Patel N, Baranwal S, Patel BB. A strategic approach to identification of selective inhibitors of cancer stem cells. Methods Mol Biol 2015; 1229:529-541. [PMID: 25325978 DOI: 10.1007/978-1-4939-1714-3_41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cancer stem-like cells (CSC) have been implicated in resistance to conventional chemotherapy as well as invasion and metastasis resulting in tumor relapse in majority of epithelial cancers including colorectal cancer. Hence, targeting CSC by small molecules is likely to improve therapeutic outcomes. Glycosaminoglycans (GAGs) are long linear polysaccharide molecules with varying degrees of sulfation that allows specific GAG-protein interaction which plays a key role in regulating cancer hallmarks such as cellular growth, angiogenesis, and immune modulation. However, identifying selective CSC-targeting GAG mimetic has been marred by difficulties associated with isolating and enriching CSC in vitro. Herein, we discuss two distinct methods, spheroid growth and EMT-transformed cells, to enrich CSC and set up medium- and high-throughput screen to identify selective CSC-targeting agents.
Collapse
Affiliation(s)
- Nirmita Patel
- Hunter Holmes McGuire VA Medical Center, 980230, Richmond, VA, 23249, USA
| | | | | |
Collapse
|
43
|
Wamsley JJ, Kumar M, Allison DF, Clift SH, Holzknecht CM, Szymura SJ, Hoang SA, Xu X, Moskaluk CA, Jones DR, Bekiranov S, Mayo MW. Activin upregulation by NF-κB is required to maintain mesenchymal features of cancer stem-like cells in non-small cell lung cancer. Cancer Res 2014; 75:426-35. [PMID: 25432175 DOI: 10.1158/0008-5472.can-13-2702] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Soluble growth factors and cytokines within the tumor microenvironment aid in the induction of the epithelial-to-mesenchymal transition (EMT). Although EMT promotes the development of cancer-initiating cells (CIC), cellular mechanisms by which cancer cells maintain mesenchymal phenotypes remain poorly understood. Work presented here indicates that induction of EMT stimulates non-small cell lung cancer (NSCLC) to secrete soluble factors that function in an autocrine fashion. Using gene expression profiling of all annotated and predicted secreted gene products, we find that NF-κB activity is required to upregulate INHBA/Activin, a morphogen in the TGFβ superfamily. INHBA is capable of inducing and maintaining mesenchymal phenotypes, including the expression of EMT master-switch regulators and self-renewal factors that sustain CIC phenotypes and promote lung metastasis. Our work demonstrates that INHBA mRNA and protein expression are commonly elevated in primary human NSCLC and provide evidence that INHBA is a critical autocrine factor that maintains mesenchymal properties of CICs to promote metastasis in NSCLC.
Collapse
Affiliation(s)
- J Jacob Wamsley
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Manish Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - David F Allison
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Sheena H Clift
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Caitlyn M Holzknecht
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Szymon J Szymura
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Stephen A Hoang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Xiaojiang Xu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | | | - David R Jones
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia. Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
44
|
Abstract
The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.
Collapse
Affiliation(s)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Hao YB, Yi SY, Ruan J, Zhao L, Nan KJ. New insights into metronomic chemotherapy-induced immunoregulation. Cancer Lett 2014; 354:220-6. [DOI: 10.1016/j.canlet.2014.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
|
46
|
Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 2014; 5:360. [PMID: 25120546 PMCID: PMC4114188 DOI: 10.3389/fimmu.2014.00360] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation. Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow straight into overt tumors. These criteria would be fulfilled by CSCs. Stem cells are pluripotent, immune-privileged, and long-living, but depend on specialized niches. Thus, latent tumors may be maintained by a niche-constrained reservoir of long-living CSCs that are exempt from immunosurveillance while niche-independent and more immunogenic daughter cells are constantly eliminated. The small subpopulation of CSCs is often held responsible for tumor initiation, metastasis, and recurrence. Experimentally, this hypothesis was supported by the observation that only this subset can propagate tumors in non-obese diabetic/scid mice, which lack T and B cells. Yet, the concept was challenged when an unexpectedly large proportion of melanoma cells were found to be capable of seeding complex tumors in mice which further lack NK cells. Moreover, the link between stem cell-like properties and tumorigenicity was not sustained in these highly immunodeficient animals. In humans, however, tumor-propagating cells must also escape from immune-mediated destruction. The ability to persist and to initiate neoplastic growth in the presence of immunosurveillance – which would be lost in a maximally immunodeficient animal model – could hence be a decisive criterion for CSCs. Consequently, integrating scientific insight from stem cell biology and tumor immunology to build a new concept of “CSC immunology” may help to reconcile the outlined contradictions and to improve our understanding of tumorigenesis.
Collapse
Affiliation(s)
- Valentin S Bruttel
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| |
Collapse
|
47
|
Ishimoto T, Sawayama H, Sugihara H, Baba H. Interaction between gastric cancer stem cells and the tumor microenvironment. J Gastroenterol 2014; 49:1111-20. [PMID: 24652101 DOI: 10.1007/s00535-014-0952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related deaths worldwide. Cancer stem cells (CSCs) are selectively capable of tumor initiation and are implicated in tumor relapse and metastasis, thus, governing the prognosis of GC patients. Stromal cells and extracellular matrix adjacent to cancer cells are known to form a supportive environment for cancer progression. CSC properties are also regulated by their microenvironment through cell signaling and related factors. This review presents the current findings regarding the influence of the tumor microenvironment on GC stem cells, which will support the development of novel therapeutic strategies for patients with GC.
Collapse
Affiliation(s)
- Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | | | | | | |
Collapse
|
48
|
Lee CH, Wu YT, Hsieh HC, Yu Y, Yu AL, Chang WW. Epidermal growth factor/heat shock protein 27 pathway regulates vasculogenic mimicry activity of breast cancer stem/progenitor cells. Biochimie 2014; 104:117-26. [PMID: 24950183 DOI: 10.1016/j.biochi.2014.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022]
Abstract
Tumor vascularization, which is mainly contributed by angiogenesis and vascularization, is necessary for tumor maintenance and progression. Vasculogenic mimicry (VM), vascular-like channels which are lack of the involvement of endothelial cells, has been observed in aggressive cancers and also involves in tumor vascularization. Breast cancer stem/progenitor cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24(-)CD44(+), high aldehyde dehydrogenase activity (ALDH(+)) or could be enriched by mammosphere cultivation. These cells have been proven to be associated with tumor vascularization. Here we investigated the molecular mechanisms in VM activity of BCSCs. By periodic acid-Schiff or hematoxylin-eosin stain, we found that there were VM structures in two xenografted human breast cancer tissues established from CD24(-)CD44(+) or ALDH(+) cells. Only ALDH(+) or mammosphere-forming BCSCs could form tube structures on matrigel-coated surface as similar as microvascular endothelial cells. Inhibition of the phosphorylation of epidermal growth factor receptor (EGFR) by gefitinib or knockdown of EGFR by lentiviral shRNA abolished the in vitro VM activity of BCSCs. By quercetin treatment, a plant flavonoid compound which is known to suppress heat shock proteins, or siRNA-mediated gene silencing, both Hsp27 expression and VM capability of BCSCs were suppressed. Forced expression of phosphor-mimic form of Hsp27 in ALDH(+) BCSCs could overcome the inhibitory effect of gefitinib. In conclusion, our data demonstrate that VM activity of BCSCs is mediated by EGF/Hsp27 signaling and targeting this pathway may benefit to breast cancer therapy.
Collapse
Affiliation(s)
- Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Yu-Ting Wu
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.
| | - Hung-Chun Hsieh
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.
| | - Yun Yu
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.
| | - Alice L Yu
- Center of Stem Cells and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taoyuan County, Taiwan; Department of Pediatrics, University of California in San Diego, San Diego, USA.
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
49
|
Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol 2014; 35:3945-3951. [PMID: 24420150 DOI: 10.1007/s13277-013-1561-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/16/2013] [Indexed: 12/14/2022] Open
Abstract
Despite recent progresses in tumor therapy and increased knowledge in tumor biology, tumor remains a common and lethal disease worldwide. Cancer stem cells (CSCs) are a subset of cancer cells with a stem cell-like ability, which may drive tumor growth and recurrence and are resistant to many current anticancer treatments. Solid tumors are regarded as "organs" which are comprised of cancer cells and the tumor stroma. The tumor microenvironment makes up the stroma of the tumor, which occupies the majority of the tumor mass, including the extracellular matrix (ECM), mesenchymal stem cells (MSCs), endothelial cells, immune cells, and, what is more, networks of cytokines and growth factors. The microenvironment or niche surrounding CSCs largely governs their cellular fate. Recent work has revealed that the microenvironment supports CSC self-renewal and simultaneously serves as a physical barrier to drug delivery. The tumor microenvironment plays pivotal roles in each stage of tumor development. Knowledge about the interactions of CSCs with their microenvironment would seem to be of most importance for developing new treatment strategies.
Collapse
Affiliation(s)
- Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
50
|
McCloskey CW, Goldberg RL, Carter LE, Gamwell LF, Al-Hujaily EM, Collins O, Macdonald EA, Garson K, Daneshmand M, Carmona E, Vanderhyden BC. A new spontaneously transformed syngeneic model of high-grade serous ovarian cancer with a tumor-initiating cell population. Front Oncol 2014; 4:53. [PMID: 24672774 PMCID: PMC3957277 DOI: 10.3389/fonc.2014.00053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Improving screening and treatment options for patients with epithelial ovarian cancer has been a major challenge in cancer research. Development of novel diagnostic and therapeutic approaches, particularly for the most common subtype, high-grade serous ovarian cancer (HGSC), has been hampered by controversies over the origin of the disease and a lack of spontaneous HGSC models to resolve this controversy. Over long-term culture in our laboratory, an ovarian surface epithelial (OSE) cell line spontaneously transformed OSE (STOSE). The objective of this study was to determine if the STOSE cell line is a good model of HGSC. STOSE cells grow faster than early passage parental M0505 cells with a doubling time of 13 and 48 h, respectively. STOSE cells form colonies in soft agar, an activity for which M0505 cells have negligible capacity. Microarray analysis identified 1755 down-regulated genes and 1203 up-regulated genes in STOSE compared to M0505 cells, many associated with aberrant Wnt/β-catenin and Nf-κB signaling. Upregulation of Ccnd1 and loss of Cdkn2a in STOSE tumors is consistent with changes identified in human ovarian cancers by The Cancer Genome Atlas. Intraperitoneal injection of STOSE cells into severe combined immunodeficient and syngeneic FVB/N mice produced cytokeratin+, WT1+, inhibin-, and PAX8+ tumors, a histotype resembling human HGSC. Based on evidence that a SCA1+ stem cell-like population exists in M0505 cells, we examined a subpopulation of SCA1+ cells that is present in STOSE cells. Compared to SCA1- cells, SCA1+ STOSE cells have increased colony-forming capacity and form palpable tumors 8 days faster after intrabursal injection into FVB/N mice. This study has identified the STOSE cells as the first spontaneous murine model of HGSC and provides evidence for the OSE as a possible origin of HGSC. Furthermore, this model provides a novel opportunity to study how normal stem-like OSE cells may transform into tumor-initiating cells.
Collapse
Affiliation(s)
- Curtis W. McCloskey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reuben L. Goldberg
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauren E. Carter
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lisa F. Gamwell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ensaf M. Al-Hujaily
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Olga Collins
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth A. Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kenneth Garson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Manijeh Daneshmand
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|