1
|
Letafati A, Mehdigholian Chaijani R, Edalat F, Eslami N, Askari H, Askari F, Shirvani S, Talebzadeh H, Tarahomi M, MirKhani N, Karimi F, Norouzi M, Mozhgani SH. Advances in epigenetic treatment of adult T-cell leukemia/lymphoma: a comprehensive review. Clin Epigenetics 2025; 17:39. [PMID: 40025589 PMCID: PMC11871821 DOI: 10.1186/s13148-025-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infection causes the uncommon and deadly cancer known as adult T-cell leukemia/lymphoma (ATLL), which affects mature T cells. Its clinical appearance is varied, and its prognosis is often miserable. Drug resistance to conventional therapies confers significant therapeutic challenges in the management of ATLL. This review discusses the emerging role of epigenetic medical advances in the treatment of ATLL, focusing on DNA methyltransferase inhibitors, histone deacetylase inhibitors, histone methyltransferase inhibitors, and BET inhibitors. Indeed, several classes of epigenetic therapies currently exhibit trailed efficacy in preclinical and clinical studies: DNA methyltransferase inhibitors like azacitidine and decitabine reexpression of silenced tumor suppressors; histone deacetylase inhibitors like vorinostat and romidepsin induce cell cycle arrest and apoptosis; bromodomain and extra-terminal inhibitors like JQ1 disrupt oncogenic signaling pathways. Whereas preclinical and early clinical data indicate modest to good efficacy for such treatments, significant challenges remain. Here, we discuss the current state of understanding of epigenetic dysregulation in ATLL and appraise the evidence supporting the use of these epi-drugs. However, despite the opened doors of epigenetic treatment, much more research is required with regard to showing the best combinations of drugs and their resistance mechanisms, the minimization of adverse effects, and how this hope will eventually be translated into benefit for the patient with ATLL.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahime Edalat
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nazila Eslami
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Hanieh Askari
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Farideh Askari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Sara Shirvani
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Hamed Talebzadeh
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Mahdiyeh Tarahomi
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nila MirKhani
- Department of Microbiology, Faculty of Science, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Faeze Karimi
- Department of Medical Laboratory, Shahrood University of Medical Sciences, Shahrood, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
2
|
Tahghighi A, Seyedhashemi E, Mohammadi J, Moradi A, Esmaeili A, Pornour M, Jafarifar K, Ganji SM. Epigenetic marvels: exploring the landscape of colorectal cancer treatment through cutting-edge epigenetic-based drug strategies. Clin Epigenetics 2025; 17:34. [PMID: 39987205 PMCID: PMC11847397 DOI: 10.1186/s13148-025-01844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). The difference between epigenetic changes and genetic mutations is that the former could be reversed or prevented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy and combination with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Javad Mohammadi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Arash Moradi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Aria Esmaeili
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kimia Jafarifar
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shahla Mohammad Ganji
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
3
|
Liu X, Li W, Liu Y, Wang X, Shi Q, Yang W, Tu J, Wang Y, Sheng C, Liu N. Discovery of new fungal jumonji H3K27 demethylase inhibitors for the treatment of Cryptococcus neoformans and Candida auris infections. Eur J Med Chem 2025; 281:117028. [PMID: 39536495 DOI: 10.1016/j.ejmech.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Invasive fungal infections have become a serious public health problem. To tackle the challenges of limited efficacy in antifungal therapy and severe drug resistance, antifungal drugs with new mechanisms of action are urgently needed. Our previous study identified JIB-04 to be an inhibitor of fungal histone demethylase (HDM). To promote target validation and inhibitor design, herein a series of new JIB-04 derivatives were designed and synthesized. After the establishment of structure-activity relationship, compound A4 was identified to possess potent antifungal activity against Cryptococcus neoformans and Candida auris. Compared to lead compound JIB-04, compound A4 was a more potent HDM inhibitor and exhibited better water solubility, virulence factors inhibitory activity and in vivo antifungal potency. Collectively, this study further confirmed that fungal HDMs were potential antifungal targets and compound A4 was a promising antifungal lead compound.
Collapse
Affiliation(s)
- Xin Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wang Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yang Liu
- Department of Pharmacy, NO.971 Hospital of the People's Liberation Army Navy, 22 Minjiang Road, Qingdao, Shandong, 266071, China
| | - Xiaoqing Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Qiao Shi
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yan Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
4
|
Sharip A, Rakhimova S, Molkenov A, Ashenova A, Kozhamkulov U, Akhmetollayev I, Zinovyev A, Zhukov Y, Omarov M, Tuleutaev M, Rakhmetova V, Terwilliger JD, Lee JH, Zhumadilov Z, Akilzhanova A, Kairov U. Transcriptome profiling and analysis of patients with esophageal squamous cell carcinoma from Kazakhstan. Front Genet 2024; 15:1249751. [PMID: 38562378 PMCID: PMC10982404 DOI: 10.3389/fgene.2024.1249751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Central Asia, often diagnosed at advanced stages. Understanding population-specific patterns of ESCC is crucial for tailored treatments. This study aimed to unravel ESCC's genetic basis in Kazakhstani patients and identify potential biomarkers for early diagnosis and targeted therapies. ESCC patients from Kazakhstan were studied. We analyzed histological subtypes and conducted in-depth transcriptome sequencing. Differential gene expression analysis was performed, and significantly dysregulated pathways were identified using KEGG pathway analysis (p-value < 0.05). Protein-protein interaction networks were constructed to elucidate key modules and their functions. Among Kazakhstani patients, ESCC with moderate dysplasia was the most prevalent subtype. We identified 42 significantly upregulated and two significantly downregulated KEGG pathways, highlighting molecular mechanisms driving ESCC pathogenesis. Immune-related pathways, such as viral protein interaction with cytokines, rheumatoid arthritis, and oxidative phosphorylation, were elevated, suggesting immune system involvement. Conversely, downregulated pathways were associated with extracellular matrix degradation, crucial in cancer invasion and metastasis. Protein-protein interaction network analysis revealed four distinct modules with specific functions, implicating pathways in esophageal cancer development. High-throughput transcriptome sequencing elucidated critical molecular pathways underlying esophageal carcinogenesis in Kazakhstani patients. Insights into dysregulated pathways offer potential for early diagnosis and precision treatment strategies for ESCC. Understanding population-specific patterns is essential for personalized approaches to ESCC management.
Collapse
Affiliation(s)
- Aigul Sharip
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Askhat Molkenov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Ashenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yuri Zhukov
- Multidisciplinary Medical Center, Astana, Kazakhstan
| | - Marat Omarov
- Multidisciplinary Medical Center, Astana, Kazakhstan
| | | | - Venera Rakhmetova
- Department of Internal Diseases, Astana Medical University, Astana, Kazakhstan
| | - Joseph D. Terwilliger
- Sergiеvsky Center, Columbia University, New York, NY, United States
- Division of Medical Genetics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry and Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Joseph H. Lee
- Sergiеvsky Center, Columbia University, New York, NY, United States
- Departments of Epidemiology and Neurology, Columbia University, New York, NY, United States
| | - Zhaxybay Zhumadilov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
6
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
7
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
8
|
McClellan BL, Haase S, Nunez FJ, Alghamri MS, Dabaja AA, Lowenstein PR, Castro MG. Impact of epigenetic reprogramming on antitumor immune responses in glioma. J Clin Invest 2023; 133:e163450. [PMID: 36647827 PMCID: PMC9843056 DOI: 10.1172/jci163450] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers. Although much of the initial research primarily identified how the epigenetic aberrations impacted glioma progression by solely examining the glioma cells, recent studies have aimed at establishing the role of epigenetic alterations in shaping the tumor microenvironment (TME). In this review, we discuss the mechanisms by which these epigenetic phenomena in glioma remodel the TME and how current therapies targeting epigenetic dysregulation affect the glioma immune response and therapeutic outcomes. Understanding the link between epigenetic remodeling and the glioma TME provides insights into the implementation of epigenetic-targeting therapies to improve the antitumor immune response.
Collapse
Affiliation(s)
- Brandon L. McClellan
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Santiago Haase
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Felipe J. Nunez
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Accenture-Argentina, Autonomous City of Buenos Aires (CABA), Argentina
| | - Mahmoud S. Alghamri
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Ali A. Dabaja
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria G. Castro
- Department of Neurosurgery and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Pradhan V, Salahuddin, Kumar R, Mazumder A, Abdullah MM, Shahar Yar M, Ahsan MJ, Ullah Z. Molecular Target Interactions of Quinoline Derivatives as Anticancer Agents: A Review. Chem Biol Drug Des 2022; 101:977-997. [PMID: 36533867 DOI: 10.1111/cbdd.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
Collapse
Affiliation(s)
- Vikas Pradhan
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida
| | | | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, New Delhi
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, Rajasthan, India
| | - Zabih Ullah
- Department of Pharmaceutical Sciences, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, Saudi Arabia
| |
Collapse
|
10
|
Acharya N, Singh KP. Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech Dis 2022; 14:e1575. [DOI: 10.1002/wsbm.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| |
Collapse
|
11
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
13
|
Bordonaro M. Hypothesis: Sam68 and Pygo2 mediate cell type-specific effects of the modulation of CBP-Wnt and p300-Wnt activities in Colorectal Cancer Cells. J Cancer 2021; 12:5046-5052. [PMID: 34234873 PMCID: PMC8247382 DOI: 10.7150/jca.59726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
The preventive activity of dietary fiber against colorectal cancer (CRC) may be in part mediated by the fermentation product of fiber, butyrate, a histone deacetylase inhibitor (HDACi) that induces CRC cell growth arrest and apoptosis. This action of butyrate, and other HDACis, is in part due to the hyperactivation of the deregulated Wnt activity found in the relevant CRC cell lines. The histone acetylases CBP and p300 interact with beta-catenin; and the relative levels of CBP-Wnt vs. p300-Wnt activity influences CRC cell physiology. It has previously been observed that there are cell type-specific differences in how cotreatment with butyrate and ICG-001, an agent that blocks CBP-Wnt activity allowing for p300-Wnt activity, affects CRC cell physiology. These differences may have clinical significance in dealing with treatment of CRC patients with ICG-001-like agents. Sam68 is a factor differentially expressed in cancer cells, with higher expression in cancer cell lines that have cancer stem cell (CSC)-like properties. Sam68 expression sensitizes cancer cells to ICG-001 treatment, as ICG-001 enhances nuclear localization of Sam68, where binding between Sam68 and CBP diminishes CBP-beta-catenin binding and thus CBP-Wnt activity. Pygo2 is a chromatin effector involved with Wnt signaling that is differentially acetylated by CBP and p300; thus CBP-mediated acetylation localized Pygo2 to the nucleus where it functions in transcriptional activation, while p300-mediated acetylation localizes Pygo2 to the cytoplasm. This paper proposes the hypothesis that Sam68 and Pygo2 are responsible for cell type-specific response of CRC cell lines cotreated with ICG-001 and butyrate as well as other HDACis. Further, experiments are proposed to evaluate this hypothesis and consider possible expected results that could be obtained from such studies.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
14
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
15
|
Perez T, Bergès R, Maccario H, Oddoux S, Honoré S. Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget 2021; 12:304-315. [PMID: 33659042 PMCID: PMC7899546 DOI: 10.18632/oncotarget.27892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent primitive brain tumor with a high recurrence and mortality. Histone deacetylase inhibitors (HDACi) have evoked great interest because they are able to change transcriptomic profiles to promote tumor cell death but also induce side effects due to the lack of selectivity. We show in this paper new anticancer properties and mechanisms of action of low concentrations of vorinostat on various GBM cells which acts by affecting microtubule cytoskeleton in a non-histone 3 (H3) manner. Indeed, vorinostat induces tubulin acetylation and detyrosination, affects EB stabilizing cap on microtubule plus ends and suppresses microtubule dynamic instability. We previously identified EB1 overexpression as a marker of bad prognostic in GBM. Interestingly, we show for the first time to our knowledge, a strong decrease of EB1 expression in GBM cells by a drug. Altogether, our results suggest that low dose vorinostat, which is more selective for HDAC6 inhibition, could therefore represent an interesting therapeutic option for GBM especially in patients with EB1 overexpressing tumor with lower expected side effects. A validation of our hypothesis is needed during future clinical trials with this drug in GBM.
Collapse
Affiliation(s)
- Thomas Perez
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Hélène Maccario
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Sarah Oddoux
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Stéphane Honoré
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
16
|
Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 2020; 220:107721. [PMID: 33144118 DOI: 10.1016/j.pharmthera.2020.107721] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma.
Collapse
Affiliation(s)
- Elena Kunadis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| |
Collapse
|
17
|
Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, Ding Y, Wang Y. The application of histone deacetylases inhibitors in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:138. [PMID: 32682428 PMCID: PMC7368699 DOI: 10.1186/s13046-020-01643-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The epigenetic abnormality is generally accepted as the key to cancer initiation. Epigenetics that ensure the somatic inheritance of differentiated state is defined as a crucial factor influencing malignant phenotype without altering genotype. Histone modification is one such alteration playing an essential role in tumor formation, progression, and resistance to treatment. Notably, changes in histone acetylation have been strongly linked to gene expression, cell cycle, and carcinogenesis. The balance of two types of enzyme, histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines the stage of histone acetylation and then the architecture of chromatin. Changes in chromatin structure result in transcriptional dysregulation of genes that are involved in cell-cycle progression, differentiation, apoptosis, and so on. Recently, HDAC inhibitors (HDACis) are identified as novel agents to keep this balance, leading to numerous researches on it for more effective strategies against cancers, including glioblastoma (GBM). This review elaborated influences on gene expression and tumorigenesis by acetylation and the antitumor mechanism of HDACis. Besdes, we outlined the preclinical and clinical advancement of HDACis in GBM as monotherapies and combination therapies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430030, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
18
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V, Shoshan-Barmatz V. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link. Cancers (Basel) 2020; 12:cancers12041031. [PMID: 32331482 PMCID: PMC7226296 DOI: 10.3390/cancers12041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors. VDAC1, in the outer mitochondrial membrane, controls metabolic cross-talk between the mitochondria and the rest of the cell, thus regulating the metabolic and energetic functions of mitochondria, and has been implicated in apoptotic-relevant events. We previously demonstrated that silencing VDAC1 expression in glioblastoma (GBM) U-87MG cell-derived tumors, resulted in reprogramed metabolism leading to inhibited tumor growth, angiogenesis, epithelial-mesenchymal transition and invasiveness, and elimination of cancer stem cells, while promoting the differentiation of residual tumor cells into neuronal-like cells. These VDAC1 depletion-mediated effects involved alterations in transcription factors regulating signaling pathways associated with cancer hallmarks. As the epigenome is sensitive to cellular metabolism, this study was designed to assess whether depleting VDAC1 affects the metabolism-epigenetics axis. Using DNA microarrays, q-PCR, and specific antibodies, we analyzed the effects of si-VDAC1 treatment of U-87MG-derived tumors on histone modifications and epigenetic-related enzyme expression levels, as well as the methylation and acetylation state, to uncover any alterations in epigenetic properties. Our results demonstrate that metabolic rewiring of GBM via VDAC1 depletion affects epigenetic modifications, and strongly support the presence of an interplay between metabolism and epigenetics.
Collapse
Affiliation(s)
- Zohar Amsalem
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Vered Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (Z.A.); (T.A.); (A.S.-K.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Fax: +972-8-647-2992
| |
Collapse
|
19
|
LINE-1 retrotransposon encoded ORF1p expression and promoter methylation in oral squamous cell carcinoma: a pilot study. Cancer Genet 2020; 244:21-29. [PMID: 32088612 DOI: 10.1016/j.cancergen.2020.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the same population. There are almost 500,000 copies of L1 occupied around 30% of the human genome. Although most of them are inactive, around 150-200 copies are actively jumping in a human genome. L1 encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort (n = 15) of paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset and progression of this particular type of cancer.
Collapse
|
20
|
Targeted regulation of fibroblast state by CRISPR-mediated CEBPA expression. Respir Res 2019; 20:281. [PMID: 31829168 PMCID: PMC6907247 DOI: 10.1186/s12931-019-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Fibroblasts regulate tissue homeostasis and the balance between tissue repair and fibrosis. CCAAT/enhancer-binding protein alpha (CEBPA) is a key transcription factor that regulates adipogenesis. CEBPA has been shown to be essential for lung maturation, and deficiency of CEBPA expression leads to abnormal lung architecture. However, its specific role in lung fibroblast regulation and fibrosis has not yet been elucidated. Methods Lung fibroblast CEBPA expression, pro-fibrotic and lipofibroblast gene expression were assessed by qRT-PCR. CEBPA gain and loss of function experiments were carried out to evaluate the role of CEBPA in human lung fibroblast activation with and without TGF-β1 treatment. Adipogenesis assay was used to measure the adiopogenic potential of lung fibroblasts. Finally, CRISPR activation system was used to enhance endogenous CEBPA expression. Results We found that CEBPA gene expression is significantly decreased in IPF-derived fibroblasts compared to normal lung fibroblasts. CEBPA knockdown in normal human lung fibroblasts enhanced fibroblast pro-fibrotic activation and ECM production. CEBPA over-expression by transient transfection in IPF-derived fibroblasts significantly reduced pro-fibrotic gene expression, ECM deposition and αSMA expression and promoted the formation of lipid droplets measured by Oil Red O staining and increased lipofibroblast gene expression. Inhibition of the histone methyl transferase G9a enhanced CEBPA expression, and the anti-fibrotic effects of G9a inhibition were partially mediated by CEBPA expression. Finally, targeted CRISPR-mediated activation of CEBPA resulted in fibroblasts switching from fibrogenic to lipofibroblast states. Conclusions CEBPA expression is reduced in human IPF fibroblasts and its deficiency reduces adipogenic potential and promotes fibrogenic activation. CEBPA expression can be rescued via an inhibitor of epigenetic repression or by targeted CRISPR activation, leading to reduced fibrogenic activation.
Collapse
|
21
|
Abstract
Aim: The druggability of epigenetic targets has prompted researchers to develop small-molecule therapeutics. However, no systematic assessment has ever been done to investigate the chemical space of epigenetic modulators. Herein, we report a comprehensive chemoinformatic analysis of epigenetic ligands from EpiDBase, HEMD, ChEMBL and PubChem databases. Results: Nearly, 0.45 × 106 ligands were analyzed for assay interference compounds, target profiling, drug-like properties and hit prioritization. After eliminating approximately 96,000 problematic compounds, the remaining 0.36 × 106 compounds were studied for their physicochemical distributions, principal component analysis and hit prioritization. More than 30% of assay interference compounds were determined for many proteins. Conclusion: This systematic assessment of epigenetic ligands will help in the enrichment of screening libraries with high-quality compounds and thus, the generation of efficacious drug candidates.
Collapse
|
22
|
Kumari N, Karmakar A, Ganesan SK. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy. J Cell Physiol 2019; 235:1933-1947. [PMID: 31531859 DOI: 10.1002/jcp.29180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20-65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR.
Collapse
Affiliation(s)
- Nidhi Kumari
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Karmakar
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Senthil Kumar Ganesan
- Laboratory of Translational Genetics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Mehta GA, Khanna P, Gatza ML. Emerging Role of SOX Proteins in Breast Cancer Development and Maintenance. J Mammary Gland Biol Neoplasia 2019; 24:213-230. [PMID: 31069617 PMCID: PMC6790170 DOI: 10.1007/s10911-019-09430-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022] Open
Abstract
The SOX genes encode a family of more than 20 transcription factors that are critical regulators of embryogenesis and developmental processes and, when aberrantly expressed, have been shown to contribute to tumor development and progression in both an oncogenic and tumor suppressive role. Increasing evidence demonstrates that the SOX proteins play essential roles in multiple cellular processes that mediate or contribute to oncogenic transformation and tumor progression. In the context of breast cancer, SOX proteins function both as oncogenes and tumor suppressors and have been shown to be associated with tumor stage and grade and poor prognosis. Experimental evidence demonstrates that a subset of SOX proteins regulate critical aspects of breast cancer biology including cancer stemness and multiple signaling pathways leading to altered cell proliferation, survival, and tumor development; EMT, cell migration and metastasis; as well as other tumor associated characteristics. This review will summarize the role of SOX family members as important mediators of tumorigenesis in breast cancer, with an emphasis on the triple negative or basal-like subtype of breast cancer, as well as examine the therapeutic potential of these genes and their downstream targets.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA.
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
24
|
Ponnusamy L, Mahalingaiah PKS, Singh KP. Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance. Adv Clin Chem 2019; 94:219-259. [PMID: 31952572 DOI: 10.1016/bs.acc.2019.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the most common clinical choice of treatment for cancer, however, acquired chemoresistance is a major challenge that limits the successful outcome of this option. Systematic review of in vitro, in vivo, preclinical and clinical studies suggests that acquired chemoresistance is polygenic, progressive, and involve both genetic and epigenetic heterogeneities and perturbations. Various mechanisms that confer resistance to chemotherapy are tightly controlled by epigenetic regulations. Poised epigenetic plasticity and temporal increase in epigenetic alterations upon chemotherapy make chemoresistance likely an epigenetic-driven process. The transient and reversible nature of epigenetic modulations enable ways to intervene the epigenetic re-programing associated with acquired chemoresistance via application of epigenetic modifying drugs. This review discusses recent understandings behind the various mechanisms of acquired chemoresistance that are under the control of epigenetic drivers, potential application of epigenetic-based drugs in resensitizing refractory cancers to chemotherapy, the limitations and future scope for clinical application of epigenetic therapeutics in successfully addressing chemoresistance.
Collapse
Affiliation(s)
- Logeswari Ponnusamy
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
25
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
26
|
Bure I, Geer S, Knopf J, Roas M, Henze S, Ströbel P, Agaimy A, Wiemann S, Hoheisel JD, Hartmann A, Haller F, Moskalev EA. Long noncoding RNA HOTAIR is upregulated in an aggressive subgroup of gastrointestinal stromal tumors (GIST) and mediates the establishment of gene-specific DNA methylation patterns. Genes Chromosomes Cancer 2018; 57:584-597. [PMID: 30248209 DOI: 10.1002/gcc.22672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Aberrant alterations of DNA methylation are common events in oncogenesis. The origin of cancer-associated epigenetic defects is of interest for mechanistic understanding of malignant transformation and-in the long run-therapeutic modulation of DNA methylation in a locus-specific manner. Given the ability of certain long noncoding RNAs to operate as an interface between DNA and the epigenetic modification machinery which can interact with DNA methyltransferases, we hypothesized-considering HOTAIR as an example-that this transcript may contribute to gene specificity of DNA methylation. Using gastrointestinal stromal tumors (GISTs, n = 67) as a model, we confirmed upregulation of HOTAIR in tumors with high risk of recurrence and showed high abundance of the transcript in GIST cell lines. HOTAIR knockdown in GIST-T1 cells triggered transcriptional response of genes involved in the organization and disassembly of the extracellular matrix and, notably, induced global locus-specific alterations of DNA methylation patterns. Hypomethylation was induced at a total of 507 CpG sites, whereas 382 CpG dinucleotides underwent gain of methylation upon HOTAIR depletion. Importantly, orchestrated gain or loss of methylation at multiple individual CpG sites was shown for cancer-related DPP4, RASSF1, ALDH1A3, and other targets. Collectively, our data indicate that HOTAIR enables target specificity of DNA methylation in GIST and is capable of dual (hypo- and hypermethylation) regulation by a yet to be defined mechanism. The results further suggest the feasibility of manipulating DNA methylation in a targeted manner and are of interest in the context of epigenetic cancer therapy.
Collapse
Affiliation(s)
- Irina Bure
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Sandra Geer
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Jasmin Knopf
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Maike Roas
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Sabine Henze
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, Georg August University, Göttingen, Germany
| | - Abbas Agaimy
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arndt Hartmann
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Florian Haller
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Evgeny A Moskalev
- Diagnostic Molecular Pathology, Institute of Pathology, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
27
|
Ramos KN, Ramos IN, Zeng Y, Ramos KS. Genetics and epigenetics of pediatric leukemia in the era of precision medicine. F1000Res 2018; 7. [PMID: 30079227 PMCID: PMC6053694 DOI: 10.12688/f1000research.14634.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Pediatric leukemia represents a heterogeneous group of diseases characterized by germline and somatic mutations that manifest within the context of disturbances in the epigenetic machinery and genetic regulation. Advances in genomic medicine have allowed finer resolution of genetic and epigenetic strategies that can be effectively used to risk-stratify patients and identify novel targets for therapy. This review discusses the genetic and epigenetic mechanisms of leukemogenesis, particularly as it relates to acute lymphocytic leukemias, the mechanisms of epigenetic control of leukemogenesis, namely DNA methylation, histone modifications, microRNAs, and LINE-1 retroelements, and highlights opportunities for precision medicine therapeutics in further guiding disease management. Future efforts to broaden the integration of advances in genomic and epigenomic science into the practice of pediatric oncology will not only identify novel therapeutic strategies to improve clinical outcomes but also improve the quality of life for this unique patient population. Recent findings in precision therapeutics of acute lymphocytic leukemias over the past three years, along with some provocative areas of epigenetics research, are reviewed here.
Collapse
Affiliation(s)
- Kristie N Ramos
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine-Tucson, Tucson, USA
| | - Irma N Ramos
- Department of Promotion Health Sciences, University of Arizona Mel and Enid Zucherman College of Public Health, Tucson, USA
| | - Yi Zeng
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Arizona College of Medicine-Tucson, Tucson, USA.,University of Arizona Cancer Center, Tucson, USA
| | - Kenneth S Ramos
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine-Tucson, Tucson, USA.,University of Arizona Cancer Center, Tucson, USA.,Department of Medicine, Division of Clinical Support and Data Analytics, University of Arizona College of Medicine-Phoenix, Phoenix, USA
| |
Collapse
|
28
|
Choi SA, Kwak PA, Park CK, Wang KC, Phi JH, Lee JY, Lee CS, Lee JH, Kim SK. A novel histone deacetylase inhibitor, CKD5, has potent anti-cancer effects in glioblastoma. Oncotarget 2018; 8:9123-9133. [PMID: 27852054 PMCID: PMC5354719 DOI: 10.18632/oncotarget.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
There have been extensive efforts to improve the outcome of glioblastoma, but the prognosis of this disease has not been significantly altered to date. Histone deacetylase inhibitors (HDACIs) have been evaluated as promising anti-cancer drugs and regulate cell growth, cell cycle arrest and apoptosis in glioblastoma. Here, we demonstrated the therapeutic efficacy of a novel pan-HDACI, 7-ureido-N-hydroxyheptanamide derivative (CKD5), compared with traditional pan-HDACIs, such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), in vitro and in vivo. Compared with SAHA and TSA, CKD5 had improved cytotoxic effects and induced apoptosis, anti-proliferative activity and cell cycle arrest at G2/M phase. Furthermore, CKD5 significantly reduced tumor volume and prolonged the survival in vivo compared with TSA, suggesting improved anti-cancer efficacy among HDACIs. Our results demonstrate that the novel HDACI CKD5 is a promising therapeutic candidate for glioblastoma.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Pil Ae Kwak
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Department of Anatomy, Seoul National University Hospital, Seoul, Korea
| | - Chang Sik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do, Korea
| | - Ju-Hee Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
29
|
Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2018; 7:72322-72342. [PMID: 27608848 PMCID: PMC5342165 DOI: 10.18632/oncotarget.11875] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
In the last several years, our appreciation of intra-tumoral heterogeneity has greatly increased due to accumulating evidence for the co-existence of genetically and epigenetically divergent cancer cells residing in different microenvironments within a tumor. Herein, we review recent literature discussing intra-tumoral heterogeneity in the context of therapy resistance mechanisms at the genetic, epigenetic and microenvironmental levels. We illustrate the influence of tumor microenvironment on therapy resistance and epigenetic states of cancer cells by highlighting the role of cancer stem cells in therapy resistance. We also summarize different strategies that have been employed to address various resistance mechanisms at genetic, epigenetic, and microenvironmental levels in preclinical and clinical studies. We propose that future personalized cancer therapy design needs to incorporate dynamic and comprehensive analyses of tumor heterogeneity landscape and multi-dimensional mechanisms of therapy resistance.
Collapse
|
30
|
Zabkiewicz J, Gilmour M, Hills R, Vyas P, Bone E, Davidson A, Burnett A, Knapper S. The targeted histone deacetylase inhibitor tefinostat (CHR-2845) shows selective in vitro efficacy in monocytoid-lineage leukaemias. Oncotarget 2017; 7:16650-62. [PMID: 26934551 PMCID: PMC4941341 DOI: 10.18632/oncotarget.7692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/17/2016] [Indexed: 01/18/2023] Open
Abstract
Tefinostat (CHR-2845) is a novel monocyte/macrophage-targeted histone deacetylase (HDAC) inhibitor which is cleaved into its active acid by the intracellular esterase human carboxylesterase-1 (hCE-1). The in vitro efficacy of tefinostat was characterised in cell lines and in a cohort of 73 primary AML and CMML samples. Dose-dependent induction of apoptosis and significant growth inhibitory effects were seen in myelomonocytic (M4), monocytic/monoblastic (M5) and CMML samples in comparison to non-monocytoid AML sub-types (p = 0.007). Importantly, no growth inhibitory effects were seen in normal bone marrow CD34+ cells exposed to AML-toxic doses of tefinostat in clonogenic assays. Expression of hCE-1 was measured by intracellular flow cytometry and immunoblotting across the cohort, with highest levels seen in M5 AML patients. hCE-1 levels correlated with significantly increased tefinostat sensitivity (low EC50) as measured by growth inhibition assays (p = 0.001) and concomitant elevation of the mature monocytoid marker CD14+. Strong induction of intracellular histone protein acetylation was observed in tefinostat-responsive samples, as were high levels of the DNA damage sensor γ-H2A.X, highlighting potential biomarkers of patient responsiveness. Synergistic interaction between tefinostat and the current standard treatment cytarabine was demonstrated in dose response and clonogenic assays using simultaneous drug addition in primary samples (median Combination Index value = 0.51). These data provide a strong rationale for the further clinical evaluation of tefinostat in monocytoid-lineage haematological neoplasms including CMML and monocyte-lineage AMLs.
Collapse
Affiliation(s)
- Joanna Zabkiewicz
- Department of Haematology, Experimental Cancer Medicine Centre (ECMC), Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Marie Gilmour
- Department of Haematology, Experimental Cancer Medicine Centre (ECMC), Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Robert Hills
- Department of Haematology, Experimental Cancer Medicine Centre (ECMC), Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Pares Vyas
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Alan Burnett
- Department of Haematology, Experimental Cancer Medicine Centre (ECMC), Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Steven Knapper
- Department of Haematology, Experimental Cancer Medicine Centre (ECMC), Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
31
|
Good KV, Martínez de Paz A, Tyagi M, Cheema MS, Thambirajah AA, Gretzinger TL, Stefanelli G, Chow RL, Krupke O, Hendzel M, Missiaen K, Underhill A, Landsberger N, Ausió J. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics 2017; 12:934-944. [PMID: 29099289 DOI: 10.1080/15592294.2017.1380760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.
Collapse
Affiliation(s)
- Katrina V Good
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Alexia Martínez de Paz
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Monica Tyagi
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Manjinder S Cheema
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Anita A Thambirajah
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada.,b Douglas Hospital Research Center , Department of Psychiatry , McGill University , Montréal , Québec H3G 1Y6 , Canada
| | - Taylor L Gretzinger
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Gilda Stefanelli
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Robert L Chow
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Oliver Krupke
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Michael Hendzel
- e Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Kristal Missiaen
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Alan Underhill
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Nicoletta Landsberger
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Juan Ausió
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| |
Collapse
|
32
|
Juratli TA, Qin N, Cahill DP, Filbin MG. Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. Pharmacol Ther 2017; 182:70-79. [PMID: 28830841 DOI: 10.1016/j.pharmthera.2017.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas (HGG) are the most common malignant brain tumors in the pediatric population and account for a large subset of all pediatric central nervous system neoplasms. The management of pediatric HGG continues to be challenging, with poor outcome in many cases despite aggressive treatments. Consequently, parallel research efforts have been focused on identifying the underlying genetic and biological basis of pediatric HGG in order to more clearly define prognostic subgroups for treatment stratification as well as identify new treatment targets. These cutting-edge advances have revolutionized pediatric neuro-oncology and have revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Promising treatments - including pathway-targeting small molecules as well as epigenetic therapy - are being evaluated in clinical trials, and recent genomic discoveries in rare glioma subgroups have led to the identification of additional new potentially-actionable alterations. This review summarizes the current state of knowledge about the molecular characterization of pediatric HGG in correlation to the revised World Health Organization (WHO) classification, as well as provides an overview of some targeted treatment approaches in the modern clinical management of high-grade gliomas.
Collapse
Affiliation(s)
- Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) - partner site Essen/Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
33
|
MicroRNA-34a Encapsulated in Hyaluronic Acid Nanoparticles Induces Epigenetic Changes with Altered Mitochondrial Bioenergetics and Apoptosis in Non-Small-Cell Lung Cancer Cells. Sci Rep 2017. [PMID: 28623259 PMCID: PMC5473901 DOI: 10.1038/s41598-017-02816-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapies targeting epigenetic changes for cancer treatment are in Phase I/II trials; however, all of these target only nuclear DNA. Emerging evidence suggests presence of methylation marks on mitochondrial DNA (mtDNA); but their contribution in cancer is unidentified. Expression of genes encoded on mtDNA are altered in cancer cells, along with increased glycolytic flux. Such glycolytic flux and elevated reactive oxygen species is supported by increased antioxidant; glutathione. MicroRNA-34a can translocate to mitochondria, mediate downstream apoptotic effects of tumor suppressor P53, and inhibit the antioxidant response element Nrf-2, resulting in depleted glutathione levels. Based on such strong rationale, we encapsulated microRNA-34a in our well-established Hyaluronic-Acid nanoparticles and delivered to cisplatin-sensitive and cisplatin-resistant A549-lung adenocarcinoma cells. Successful delivery and uptake in cells resulted in altered ATP levels, decreased glycolytic flux, Nrf-2 and glutathione levels, ultimately resulting in caspase-3 activation and apoptosis. Most important were the concurrent underlying molecular changes in epigenetic status of D-loop on the mtDNA and transcription of mtDNA-encoded genes. Although preliminary, we provide a novel therapeutic approach in form of altered mitochondrial bioenergetics and redox status of cancer cells with underlying changes in epigenetic status of mtDNA that can subsequently results in induction of cancer cell apoptosis.
Collapse
|
34
|
Ronnekleiv-Kelly SM, Sharma A, Ahuja N. Epigenetic therapy and chemosensitization in solid malignancy. Cancer Treat Rev 2017; 55:200-208. [DOI: 10.1016/j.ctrv.2017.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
35
|
Local co-administration of gene-silencing RNA and drugs in cancer therapy: State-of-the art and therapeutic potential. Cancer Treat Rev 2017; 55:128-135. [PMID: 28363142 DOI: 10.1016/j.ctrv.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Gene-silencing miRNA and siRNA are emerging as attractive therapeutics with potential to suppress any genes, which could be especially useful in combination cancer therapy to overcome multidrug resistant (MDR) cancer. Nanomedicine aims to advance cancer treatment through functional nanocarriers that delivers one or more therapeutics to cancer tissue and cells with minimal off-target effects and suitable release kinetics and dosages. Although much effort has gone into developing circulating nanocarriers with targeting functionality for systemic administration, another alternative and straightforward approach is to utilize formulations to be administered directly to the site of action, such as pulmonary and intratumoral delivery. The combination of gene-silencing RNA with drugs in nanocarriers for localized delivery is emerging with promising results. In this review, the current progress and strategies for local co-administration of RNA and drug for synergistic effects and future potential in cancer treatment are presented and discussed. Key advances in RNA-drug anticancer synergy and localized delivery systems were combined with a review of the available literature on local co-administration of RNA and drug for cancer treatment. It is concluded that advanced delivery systems for local administration of gene-silencing RNA and drug hold potential in treatment of cancer, depending on indication. In particular, there are promising developments using pulmonary delivery and intratumoral delivery in murine models, but further research should be conducted on other local administration strategies, designs that achieve effective intracellular delivery and maximize synergy and feasibility for clinical use.
Collapse
|
36
|
Partolina M, Thoms HC, MacLeod KG, Rodriguez-Blanco G, Clarke MN, Venkatasubramani AV, Beesoo R, Larionov V, Neergheen-Bhujun VS, Serrels B, Kimura H, Carragher NO, Kagansky A. Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array. Cell Death Discov 2017; 3:16077. [PMID: 28326191 PMCID: PMC5349387 DOI: 10.1038/cddiscovery.2016.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required, for at least two pressing reasons: firstly, many approved drugs are known to influence histone modifications and new cancer therapies are increasingly being developed towards targeting histone deacetylases (HDACs) and other epigenetic readers and writers. Therefore, robust assays for fingerprinting the global effects of such drugs on preclinical cell, organoid and in vivo models is required; and secondly, robust histone-fingerprinting assays applicable to patient samples may afford the development of next-generation diagnostic and prognostic tools. In our study, we have used a panel of monoclonal antibodies to determine the relative changes in the global abundance of post-translational modifications on histones purified from cancer cell lines treated with HDAC inhibitors using a novel technique, called epigenetic reverse phase protein array. We observed a robust increase in acetylation levels within 2–24 h after inhibition of HDACs in different cancer cell lines. Moreover, when these cells were treated with N-acetylated amino acids in addition to HDACs, we detected a further increase in histone acetylation, demonstrating that these molecules could be utilized as donors of the acetyl moiety for protein acetylation. Consequently, this study not only offers a novel assay for diagnostics and drug screening but also warrants further research of the novel class of inexpensive, non-toxic natural compounds that could potentiate the effects of HDAC inhibitors and is therefore of interest for cancer therapeutics.
Collapse
Affiliation(s)
- Marina Partolina
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hazel C Thoms
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Kenneth G MacLeod
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Giovanny Rodriguez-Blanco
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Matthew N Clarke
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Anuroop V Venkatasubramani
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Rima Beesoo
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute , Bethesda, MD 20892, USA
| | - Vidushi S Neergheen-Bhujun
- Department of Health Sciences and ANDI Centre of Excellence for Biomedical and Biomaterials Research, Faculty of Science, University of Mauritius , Réduit, Republic of Mauritius
| | - Bryan Serrels
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology . 4259, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Neil O Carragher
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| | - Alexander Kagansky
- Synthetic Epigenetics Laboratory, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh , Edinburgh, UK
| |
Collapse
|
37
|
|
38
|
Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience 2016; 3:337-350. [PMID: 28105458 PMCID: PMC5235922 DOI: 10.18632/oncoscience.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The SWI/SNF complex is an important regulator of gene expression that functions by interacting with a diverse array of cellular proteins. The catalytic subunits of SWI/SNF, BRG1 and BRM, are frequently lost alone or concomitantly in a range of different cancer types. This loss abrogates SWI/SNF complex function as well as the functions of proteins that are required for SWI/SNF function, such as RB1 and TP53. Yet while both proteins are known to be dependent on SWI/SNF, we found that BRG1, but not BRM, is functionally linked to RB1, such that loss of BRG1 can directly or indirectly inactivate the RB1 pathway. This newly discovered dependence of RB1 on BRG1 is important because it explains why BRG1 loss can blunt the growth-inhibitory effect of tyrosine kinase inhibitors (TKIs). We also observed that selection for Trp53 mutations occurred in Brm-positive tumors but did not occur in Brm-negative tumors. Hence, these data indicate that, during cancer development, Trp53 is functionally dependent on Brm but not Brg1. Our findings show for the first time the key differences in Brm- and Brg1-specific SWI/SNF complexes and help explain why concomitant loss of Brg1 and Brm frequently occurs in cancer, as well as how their loss impacts cancer development.
Collapse
Affiliation(s)
| | - Sudhir K Rai
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Jb Gramling
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Li Lu
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA; Department of Pathology, University of Florida, Gainesville, FL, USA
| | - David N Reisman
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Günther J, Petzl W, Zerbe H, Schuberth HJ, Seyfert HM. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells. Innate Immun 2016; 23:155-164. [PMID: 27913794 PMCID: PMC5410871 DOI: 10.1177/1753425916681076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive stimulation of the TLR4 axis through LPS reduces the expression of some
cytokine genes in immune cells, while stimulating the expression of immune
defense genes during a subsequent bacterial infection. This endotoxin tolerance
(ET) is mediated via epigenetic mechanisms. Priming the udder of cows with LPS
was shown to induce ET in mammary epithelial cells (MEC), thereby protecting the
udder against reinfection for some time. Seeking alternatives to LPS priming we
tried to elicit ET by priming MEC with either lipopeptide (Pam2CSK4) via the
TLR2/6 axis or inhibitors of histone-modifying enzymes. Pre-incubation of MEC
with Pam2CSK4 enhanced baseline and induced expression of bactericidal
(β-defensin; SLPI) and membrane protecting factors
(SAA3, TGM3), while reducing the
expression of cytokine- and chemokine-encoding genes (TNF,
IL1β) after a subsequent pathogen challenge, the latter,
however, not as efficiently as after LPS priming. Pre-treating MEC with various
inhibitors of histone H3 modifiers (for demethylation, acetylation or
deacetylation) all failed to induce any of the protective factors and only
resulted in some dampening of cytokine gene expression after the re-challenge.
Hence, triggering immune functions via the TLR axis, but not through those
histone modifiers, induced the beneficial phenomenon of ET in MEC.
Collapse
Affiliation(s)
- Juliane Günther
- 1 Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Wolfram Petzl
- 2 Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Holm Zerbe
- 2 Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | - Hans-Martin Seyfert
- 1 Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| |
Collapse
|
40
|
Halsall JA, Turner BM. Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success. Bioessays 2016; 38:1102-1110. [PMID: 27717012 PMCID: PMC5091640 DOI: 10.1002/bies.201600070] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are in clinical trials against a variety of cancers. Despite early successes, results against the more common solid tumors have been mixed. How is it that so many cancers, and most normal cells, tolerate the disruption caused by HDACi-induced protein hyperacetylation? And why are a few cancers so sensitive? Here we discuss recent results showing that human cells mount a coordinated transcriptional response to HDACi that mitigates their toxic effects. We present a hypothetical signaling system that could trigger and mediate this response. To account for the existence of such a response, we note that HDACi of various chemical types are made by a variety of organisms to kill or suppress competitors. We suggest that the resistance response in human cells is a necessary evolutionary consequence of exposure to environmental HDACi. We speculate that cancers sensitive to HDACi are those in which the resistance response has been compromised by mutation. Identifying such mutations will allow targeting of HDACi therapy to potentially susceptible cancers. Also see the video abstract here.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
41
|
New evidence of gene inactivation by aberrant DNA-Methylation in T-cell leukemia, with treatment implications. Leuk Res 2016; 50:29-30. [PMID: 27649494 DOI: 10.1016/j.leukres.2016.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
|
42
|
Knuhtsen A, Legrand B, Van der Poorten O, Amblard M, Martinez J, Ballet S, Kristensen JL, Pedersen DS. Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases. Chemistry 2016; 22:14022-14028. [DOI: 10.1002/chem.201602518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Astrid Knuhtsen
- Faculty of Health and Medical Sciences; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247 CNRS-Université Montpellier-ENSCM; 15 Avenue Charles Flahault 34093 Montpellier, cedex 5 France
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry; Departments of Chemistry and Bio-engineering Sciences; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247 CNRS-Université Montpellier-ENSCM; 15 Avenue Charles Flahault 34093 Montpellier, cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247 CNRS-Université Montpellier-ENSCM; 15 Avenue Charles Flahault 34093 Montpellier, cedex 5 France
| | - Steven Ballet
- Research Group of Organic Chemistry; Departments of Chemistry and Bio-engineering Sciences; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium
| | - Jesper L. Kristensen
- Faculty of Health and Medical Sciences; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Daniel Sejer Pedersen
- Faculty of Health and Medical Sciences; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
43
|
Valiulienė G, Treigytė G, Savickienė J, Matuzevičius D, Alksnė M, Jarašienė-Burinskaja R, Bukelskienė V, Navakauskas D, Navakauskienė R. Histone modifications patterns in tissues and tumours from acute promyelocytic leukemia xenograft model in response to combined epigenetic therapy. Biomed Pharmacother 2016; 79:62-70. [DOI: 10.1016/j.biopha.2016.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 01/23/2023] Open
|
44
|
Abstract
A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting.
Collapse
Affiliation(s)
- Chun Yew Fong
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Jessica Morison
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne
| | - Mark A Dawson
- Cancer Epigenetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
45
|
Boyce WT, Kobor MS. Development and the epigenome: the 'synapse' of gene-environment interplay. Dev Sci 2015; 18:1-23. [PMID: 25546559 DOI: 10.1111/desc.12282] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
This paper argues that there is a revolution afoot in the developmental science of gene-environment interplay. We summarize, for an audience of developmental researchers and clinicians, how epigenetic processes - chromatin structural modifications that regulate gene expression without changing DNA sequences - may offer a strong, parsimonious account for the convergence of genetic and contextual variation in the genesis of adaptive and maladaptive development. Epigenetic processes may play a plausible explanatory role in understanding: divergent trajectories and sexual dimorphisms in brain development; statistical interactions between genes and environments; the biological embedding of early psychosocial adversities; the linkages of such adversities to disorders of mental health; the striking individual variation in the strength of those linkages; the molecular origins of critical and sensitive periods; and the transgenerational inheritance of risk and protection. Taken together, these arguments converge in a claim that epigenetic processes constitute a promising and illuminating point of connection - a 'synapse' - between genes and environments.
Collapse
Affiliation(s)
- W Thomas Boyce
- Departments of Pediatrics and Psychiatry, University of California, San Francisco, USA; Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | | |
Collapse
|
46
|
Abstract
Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.
Collapse
Affiliation(s)
| | - Tao Ye
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic UniversityHung Hom, Hong Kong
| |
Collapse
|
47
|
Vispé S, Deroide A, Davoine E, Desjobert C, Lestienne F, Fournier L, Novosad N, Bréand S, Besse J, Busato F, Tost J, De Vries L, Cussac D, Riond J, Arimondo PB. Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2'-deoxycytidine in human leukemic KG1 cells. Oncotarget 2015; 6:15265-82. [PMID: 25948775 PMCID: PMC4558150 DOI: 10.18632/oncotarget.3317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/08/2015] [Indexed: 12/27/2022] Open
Abstract
5-azacytidine and 5-aza-2'-deoxycytidine are clinically used to treat patients with blood neoplasia. Their antileukemic property is mediated by the trapping and the subsequent degradation of a family of proteins, the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) leading to DNA demethylation, tumor suppressor gene re-expression and DNA damage. Here we studied the respective role of each DNMT in the human leukemia KG1 cell line using a RNA interference approach. In addition we addressed the role of DNA damage formation in DNA demethylation by 5-aza-2'-deoxycytidine. Our data show that DNMT1 is the main DNMT involved in DNA methylation maintenance in KG1 cells and in mediating DNA damage formation upon exposure to 5-aza-2'-deoxycytidine. Moreover, KG1 cells express the DNMT1 protein at a level above the one required to ensure DNA methylation maintenance, and we identified a threshold for DNMT1 depletion that needs to be exceeded to achieve DNA demethylation. Most interestingly, by combining DNMT1 siRNA and treatment with low dose of 5-aza-2'-deoxycytidine, it is possible to uncouple DNA damage formation from DNA demethylation. This work strongly suggests that a direct pharmacological inhibition of DNMT1, unlike the use of 5-aza-2'-deoxycytidine, should lead to tumor suppressor gene hypomethylation and re-expression without inducing major DNA damage in leukemia.
Collapse
Affiliation(s)
- Stéphane Vispé
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Arthur Deroide
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Emeline Davoine
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Cécile Desjobert
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Fabrice Lestienne
- Molecular and Cellular Biology Department, Centre de Recherche Pierre Fabre, Castres, France
| | - Lucie Fournier
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Natacha Novosad
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Sophie Bréand
- Informatique de Recherche (Bioinformatics and Statistics), Centre de Recherche Pierre Fabre, Castres, France
| | - Jérôme Besse
- Informatique de Recherche (Bioinformatics and Statistics), Centre de Recherche Pierre Fabre, Castres, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| | - Luc De Vries
- Molecular and Cellular Biology Department, Centre de Recherche Pierre Fabre, Castres, France
| | - Didier Cussac
- Molecular and Cellular Biology Department, Centre de Recherche Pierre Fabre, Castres, France
| | - Joëlle Riond
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| | - Paola B. Arimondo
- Unité de Service et de Recherche n°3388 CNRS-Pierre Fabre, ETaC Epigenetic Targeting of Cancer, CRDPF, Toulouse, France
| |
Collapse
|
48
|
Toss A, Cristofanilli M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 2015; 17:60. [PMID: 25902832 PMCID: PMC4407294 DOI: 10.1186/s13058-015-0560-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the wide improvements in breast cancer (BC) detection and adjuvant treatment, BC is still responsible for approximately 40,000 deaths annually in the United States. Novel biomarkers are fundamental to assist clinicians in BC detection, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing a more tailored approach to therapy in both primary and metastatic settings. In primary BC, the development of molecular profiling techniques has added prognostic and predictive information to conventional biomarkers--estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Moreover, the application of next-generation sequencing and reverse-phase protein microarray methods in the metastatic setting holds the promise to further advance toward a personalized management of cancer. The improvement in our understanding on BC biology associated with the study of the genomic aberrations characterizing the most common molecular subtypes allows us to explore new targets for drug development. Finally, the integration of cancer stem cell-targeted therapies and immune therapies in future combination regimens increases our chances to successfully treat a larger proportion of women with more aggressive and resistant metastatic disease. This article reviews the current state of novel biological markers for BC, the evidence to demonstrate their clinical validity and utility, and the implication for therapeutic targeting.
Collapse
Affiliation(s)
- Angela Toss
- Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41125, Italy.
| | - Massimo Cristofanilli
- Department of Medical Oncology, Jefferson University Hospital, 1100 Walnut Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
49
|
Zoulim F, Durantel D. Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harb Perspect Med 2015; 5:5/4/a021501. [PMID: 25833942 DOI: 10.1101/cshperspect.a021501] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current therapies of chronic hepatitis B (CHB) remain limited to either pegylated interferon-α (Peg-IFN-α), or one of the five approved nucleoside analog (NA) treatments. Although viral suppression can be achieved in the majority of patients with high-barrier-to-resistance new-generation NAs (i.e., entecavir and tenofovir), HBsAg loss is achieved in only 10% of patients with both classes of drugs after a follow-up of 5 years. Attempts to improve the response by administering two different NAs or a combination of NA and Peg-IFN-α have been unsuccessful. Therefore, there is a renewed interest to investigate a number of steps in the hepatitis B virus (HBV) replication cycle and specific virus-host cell interactions as potential targets for new antivirals. Novel targets and compounds could readily be evaluated using both relevant in vitro and newly developed in vivo models of HBV infection. The addition of one or several new drugs to current regimens should offer the prospect of markedly improving the response to therapy, thus reducing the burden of drug resistance, as well as the incidence of cirrhosis and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon, University of Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
50
|
Cazaly E, Charlesworth J, Dickinson JL, Holloway AF. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease. Mol Med 2015; 21:400-9. [PMID: 25822796 DOI: 10.2119/molmed.2015.00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023] Open
Abstract
The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.
Collapse
Affiliation(s)
- Emma Cazaly
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|