1
|
Shuai Y, Ma Z, Ju J, Wei T, Gao S, Kang Y, Yang Z, Wang X, Yue J, Yuan P. Liquid-based biomarkers in breast cancer: looking beyond the blood. J Transl Med 2023; 21:809. [PMID: 37957623 PMCID: PMC10644618 DOI: 10.1186/s12967-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, using circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosomes and etc. as liquid biomarkers has received enormous attention in various tumors, including breast cancer (BC). To date, efforts in the area of liquid biopsy predominantly focus on the analysis of blood-based markers. It is worth noting that the identifications of markers from non-blood sources provide unique advantages beyond the blood and these alternative sources may be of great significance in offering supplementary information in certain settings. Here, we outline the latest advances in the analysis of non-blood biomarkers, predominantly including urine, saliva, cerebrospinal fluid, pleural fluid, stool and etc. The unique advantages of such testings, their current limitations and the appropriate use of non-blood assays and blood assays in different settings are further discussed. Finally, we propose to highlight the challenges of these alternative assays from basic to clinical implementation and explore the areas where more investigations are warranted to elucidate its potential utility.
Collapse
Affiliation(s)
- You Shuai
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jie Ju
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Wei
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Songlin Gao
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yikun Kang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixuan Yang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Li WM, Ren XD, Jiang YZ, Su N, Li BW, Sun XG, Li RX, Lu WP, Deng SL, Li J, Li MX, Huang Q. Rapid detection of EGFR mutation in CTCs based on a double spiral microfluidic chip and the real-time RPA method. Anal Bioanal Chem 2023:10.1007/s00216-023-04743-2. [PMID: 37254002 DOI: 10.1007/s00216-023-04743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Circulating tumor cells (CTCs) are cells shed from primary or metastatic tumors and spread into the peripheral bloodstream. Mutation detection in CTCs can reveal vital genetic information about the tumors and can be used for "liquid biopsy" to indicate cancer treatment and targeted medication. However, current methods to measure the mutations in CTCs are based on PCR or DNA sequencing which are cumbersome and time-consuming and require sophisticated equipment. These largely limited their applications especially in areas with poor healthcare infrastructure. Here we report a simple, convenient, and rapid method for mutation detection in CTCs, including an example of a deletion at exon 19 (Del19) of the epidermal growth factor receptor (EGFR). CTCs in the peripheral blood of NSCLC patients were first sorted by a double spiral microfluidic chip with high sorting efficiency and purity. The sorted cells were then lysed by proteinase K, and the E19del mutation was detected via real-time recombinase polymerase amplification (RPA). Combining the advantages of microfluidic sorting and real-time RPA, an accurate mutation determination was realized within 2 h without professional operation or complex data interpretation. The method detected as few as 3 cells and 1% target variants under a strongly interfering background, thus, indicating its great potential in the non-invasive diagnosis of E19del mutation for NSCLC patients. The method can be further extended by redesigning the primers and probes to detect other deletion mutations, insertion mutations, and fusion genes. It is expected to be a universal molecular diagnostic tool for real-time assessment of relevant mutations and precise adjustments in the care of oncology patients.
Collapse
Affiliation(s)
- Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu-Zhu Jiang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Meng-Xia Li
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China.
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
3
|
Gao T, Li W, Ma J, Chen Y, Wang Z, Sun N, Pei R. Selection of DNA aptamer recognizing CD44 for high-efficiency capture of circulating tumor cells. Talanta 2023; 262:124728. [PMID: 37247446 DOI: 10.1016/j.talanta.2023.124728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Cancer stem cells play critical roles in cancer progression, cancer invasion and metastasis, and cancer recurrence. CD44 is known as a specific surface marker of cancer stem cells, which has been well-studied in cancer invasion and metastasis. Herein, we successfully selected the DNA aptamers for recognizing CD44+ cells using Cell-SELEX strategy, in which the engineered CD44 overexpression cells were used as target cells for selection. The optimized aptamer candidate C24S showed high binding affinity with the Kd value of 14.54 nM and good specificity. Then, the aptamer C24S was employed to prepare the functional aptamer-magnetic nanoparticles (C24S-MNPs) for CTC capture. To investigate the capture efficiency and sensitivity of C24S-MNPs, series of cell capture tests were performed using artificial samples with 10-200 of HeLa cells spiked into 1 mL PBS or PBMCs isolated from 1 mL peripheral blood, obtaining an efficiency of 95% and 90%, respectively. More importantly, we finally explored the facility of C24S-MNPs for CTC detection in blood samples from clinical cancer patients, indicating a potential and feasible strategy for cancer diagnostic technology in clinical applications.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jialing Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Na Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
5
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A. Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9605439. [PMID: 35480139 PMCID: PMC9038417 DOI: 10.1155/2022/9605439] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is a global cause for concern owing to its high incidence around the world. The alarming increase in breast cancer cases emphasizes the management of disease at multiple levels. The management should start from the beginning that includes stringent cancer screening or cancer registry to effective diagnostic and treatment strategies. Breast cancer is highly heterogeneous at morphology as well as molecular levels and needs different therapeutic regimens based on the molecular subtype. Breast cancer patients with respective subtype have different clinical outcome prognoses. Breast cancer heterogeneity emphasizes the advanced molecular testing that will help on-time diagnosis and improved survival. Emerging fields such as liquid biopsy and artificial intelligence would help to under the complexity of breast cancer disease and decide the therapeutic regimen that helps in breast cancer management. In this review, we have discussed various risk factors and advanced technology available for breast cancer diagnosis to combat the worst breast cancer status and areas that need to be focused for the better management of breast cancer.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University (Gharuan), Mohali 140313, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160014, India
| | - Deepika Koundal
- Department of Systemics, School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India
| | - Atef Zaguia
- Department of computer science, College of Computers and Information Technology, Taif University, P.O. BOX 11099, Taif 21944, Saudi Arabia
| | - Shubham Koundal
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University (Gharuan), Mohali 140313, India
| | - Assaye Belay
- Department of Statistics, Mizan-Tepi University, Ethiopia
| |
Collapse
|
7
|
Zhang Z, Wuethrich A, Wang J, Korbie D, Lin LL, Trau M. Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Anal Chem 2021; 93:16787-16795. [PMID: 34889595 DOI: 10.1021/acs.analchem.1c03167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial to mesenchymal transition (EMT) results in the genesis of circulating tumor cells (CTCs) from tumor sites and promotes the metastatic capability of CTCs in circulation. In this study, we develop a multiplex surface-enhanced Raman scattering nanotechnology for comprehensive characterization of EMT-associated phenotypes in CTCs, to monitor cancer metastasis. We observe the downregulation of the CTC marker (EpCAM) and the epithelial marker (E-cadherin), as well as the upregulation of a mesenchymal marker (N-cadherin) and a stem cell marker (ABCB5) during the transforming growth factor-β-induced EMT process in breast cancer cell line models. Additionally, we also find changes in the heterogeneity levels of these selected markers in cells. With this method, we successfully detect the presence of disease in samples from breast cancer patients and characterize EMT-associated phenotypes in their CTCs. Overall, this approach and findings provide a new means for monitoring the EMT process in cancer, insights into the detailed mechanistic progress of the diseases, and have potential for detecting the early occurrence of cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,Dermatology Research Centre, University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
9
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
10
|
Aghamir SMK, Heshmat R, Ebrahimi M, Khatami F. Liquid Biopsy: The Unique Test for Chasing the Genetics of Solid Tumors. Epigenet Insights 2020; 13:2516865720904052. [PMID: 32166219 PMCID: PMC7050026 DOI: 10.1177/2516865720904052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran Iran
| | - Fatemeh Khatami
- Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Arthur DW, Winter KA, Kuerer HM, Haffty B, Cuttino L, Todor DA, Anne PR, Anderson P, Woodward WA, McCormick B, Cheston S, Sahijdak WM, Canaday D, Brown DR, Currey A, Fisher CM, Jagsi R, Moughan J, White JR. Effectiveness of Breast-Conserving Surgery and 3-Dimensional Conformal Partial Breast Reirradiation for Recurrence of Breast Cancer in the Ipsilateral Breast: The NRG Oncology/RTOG 1014 Phase 2 Clinical Trial. JAMA Oncol 2020; 6:75-82. [PMID: 31750868 DOI: 10.1001/jamaoncol.2019.4320] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Mastectomy is standard for recurrence of breast cancer after breast conservation therapy with whole breast irradiation. The emergence of partial breast irradiation led to consideration of its application for reirradiation after a second lumpectomy for treatment of recurrence of breast cancer in the ipsilateral breast. Objectives To assess the effectiveness and adverse effects of partial breast reirradiation after a second lumpectomy and whether the treatment is an acceptable alternative to mastectomy. Design, Setting, and Participants The NRG Oncology/Radiation Therapy Oncology Group 1014 trial is a phase 2, single-arm, prospective clinical trial of 3-dimensional, conformal, external beam partial breast reirradiation after a second lumpectomy for recurrence of breast cancer in the ipsilateral breast after previous whole breast irradiation. The study opened on June 4, 2010, and closed June 18, 2013. Median follow-up was 5.5 years. This analysis used all data received at NRG Oncology through November 18, 2018. Eligible patients experienced a recurrence of breast tumor that was less than 3 cm and unifocal in the ipsilateral breast more than 1 year after breast-conserving therapy with whole breast irradiation and who had undergone excision with negative margins. Interventions Adjuvant partial breast reirradiation, 1.5 Gy twice daily for 30 treatments during 15 days (45 Gy), using a 3-dimensional conformal technique. Main Outcomes and Measures The main outcomes of the present study were the predefined secondary study objectives of recurrence of breast cancer in the ipsilateral breast, late adverse events (>1 year after treatment), mastectomy incidence, distant metastasis-free survival, overall survival, and circulating tumor cell incidence. Results A total of 65 women were enrolled, with 58 evaluable for analysis (mean [SD] age, 65.12 [9.95] years; 48 [83%] white). Of the recurrences of breast cancer in the ipsilateral breast, 23 (40%) were noninvasive and 35 (60%) were invasive. In all 58 patients, 53 (91%) had tumors 2 cm or smaller. All tumors were clinically node negative. A total of 44 patients (76%) tested positive for estrogen receptor, 33 (57%) for progesterone receptor, and 10 (17%) for ERBB2 (formerly HER2 or HER2/neu) overexpression. Four patients had breast cancer recurrence, with a 5-year cumulative incidence of 5% (95% CI, 1%-13%). Seven patients underwent ipsilateral mastectomies for a 5-year cumulative incidence of 10% (95% CI, 4%-20%). Both distant metastasis-free survival and overall survival rates were 95% (95% CI, 85%-98%). Four patients (7%) had grade 3 and none had grade 4 or higher late treatment adverse events. Conclusions and Relevance For patients experiencing recurrence of breast cancer in the ipsilateral breast after lumpectomy and whole breast irradiation, a second breast conservation was achievable in 90%, with a low risk of re-recurrence of cancer in the ipsilateral breast using adjuvant partial breast reirradiation. This finding suggests that this treatment approach is an effective alternative to mastectomy.
Collapse
Affiliation(s)
- Douglas W Arthur
- Massey Cancer Center, Virginia Commonwealth University, Richmond
| | - Kathryn A Winter
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | | | - Bruce Haffty
- Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Laurie Cuttino
- Massey Cancer Center, Virginia Commonwealth University, Richmond
| | - Dorin A Todor
- Massey Cancer Center, Virginia Commonwealth University, Richmond
| | | | | | | | | | - Sally Cheston
- University of Maryland/Greenebaum Cancer Center, Baltimore, Maryland
| | | | | | - Doris R Brown
- Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Adam Currey
- Froedtert and the Medical College of Wisconsin, Milwaukee
| | | | - Reshma Jagsi
- University of Michigan Comprehensive Cancer Center, Ann Arbor
| | - Jennifer Moughan
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Julia R White
- Ohio State University Comprehensive Cancer Center, Columbus
| |
Collapse
|
12
|
Wang J, Dong R, Wu H, Cai Y, Ren B. A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy. NANO-MICRO LETTERS 2019; 12:11. [PMID: 34138055 PMCID: PMC7770680 DOI: 10.1007/s40820-019-0350-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/27/2019] [Indexed: 05/27/2023]
Abstract
Micro/nanomotors have been extensively explored for efficient cancer diagnosis and therapy, as evidenced by significant breakthroughs in the design of micro/nanomotors-based intelligent and comprehensive biomedical platforms. Here, we demonstrate the recent advances of micro/nanomotors in the field of cancer-targeted delivery, diagnosis, and imaging-guided therapy, as well as the challenges and problems faced by micro/nanomotors in clinical applications. The outlook for the future development of micro/nanomotors toward clinical applications is also discussed. We hope to highlight these new advances in micro/nanomotors in the field of cancer diagnosis and therapy, with the ultimate goal of stimulating the successful exploration of intelligent micro/nanomotors for future clinical applications.
Collapse
Affiliation(s)
- Jiajia Wang
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Renfeng Dong
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Huiying Wu
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yuepeng Cai
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
13
|
Evans MF. MOLECULAR DIAGNOSIS. Cancer 2019. [DOI: 10.1002/9781119645214.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Temilola DO, Wium M, Coulidiati TH, Adeola HA, Carbone GM, Catapano CV, Zerbini LF. The Prospect and Challenges to the Flow of Liquid Biopsy in Africa. Cells 2019; 8:E862. [PMID: 31404988 PMCID: PMC6721679 DOI: 10.3390/cells8080862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy technologies have the potential to transform cancer patient management as it offers non-invasive diagnosis and real-time monitoring of disease progression and treatment responses. The use of liquid biopsy for non-invasive cancer diagnosis can have pivotal importance for the African continent where access to medical infrastructures is limited, as it eliminates the need for surgical biopsies. To apply liquid biopsy technologies in the African setting, the influence of environmental and population genetic factors must be known. In this review, we discuss the use of circulating tumor cells, cell-free nucleic acids, extracellular vesicles, protein, and other biomolecules in liquid biopsy technology for cancer management with special focus on African studies. We discussed the prospect, barriers, and other aspects that pose challenges to the use of liquid biopsy in the African continent.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Tangbadioa Herve Coulidiati
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Training and Research unit in Sciences and Technology, University Norbert Zongo, P.O. Box 376, Koudougou 376, Burkina Faso
| | - Henry Ademola Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Giuseppina Maria Carbone
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Carlo Vittorio Catapano
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
15
|
You R, Liu Y, Lin M, Huang P, Tang L, Zhang Y, Pan Y, Liu W, Guo W, Zou X, Zhao K, Kang T, Liu L, Lin A, Hong M, Mai H, Zeng M, Chen M. Relationship of circulating tumor cells and Epstein–Barr virus DNA to progression‐free survival and overall survival in metastatic nasopharyngeal carcinoma patients. Int J Cancer 2019; 145:2873-2883. [DOI: 10.1002/ijc.32380] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Rui You
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - You‐Ping Liu
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Mei Lin
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Pei‐Yu Huang
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Lin‐Quan Tang
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Yi‐Nuan Zhang
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Yi Pan
- Department of Radiotherapy, Guangdong General HospitalGuangdong Academy of Medical Science Guangzhou People's Republic of China
| | - Wan‐Li Liu
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
- Department of Clinical LaboratorySun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Wei‐Bang Guo
- Guangdong Lung Cancer InstituteGuangdong General Hospital Guangzhou People's Republic of China
| | - Xiong Zou
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Ke‐Ming Zhao
- Zhongshan School of MedicineSun Yat‐sen University Guangzhou People's Republic of China
| | - Ting Kang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
- Department of Clinical LaboratorySun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Li‐Zhi Liu
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
- Department of Medical Imaging and Interventional RadiologySun Yat‐sen University Cancer Center Guangzhou People' Republic of China
| | - Ai‐Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public HealthSun Yat‐sen University Guangzhou People's Republic of China
| | - Ming‐Huang Hong
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
- Department of Clinical Trials CenterSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Hai‐Qiang Mai
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Mu‐Sheng Zeng
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| | - Ming‐Yuan Chen
- Department of Nasopharyngeal CarcinomaSun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Guangzhou People's Republic of China
| |
Collapse
|
16
|
Li M, Lu Y, Long Z, Li M, Kong J, Chen G, Wang Z. Prognostic and clinicopathological significance of circulating tumor cells in osteosarcoma. J Bone Oncol 2019; 16:100236. [PMID: 31024791 PMCID: PMC6475710 DOI: 10.1016/j.jbo.2019.100236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma is the most common form of primary malignant bone tumor, with metastasis playing an essential role in determining a patient's prospects for survival. It is essential that new and better molecular targets that respond effectively to therapies and are predictive of the risk of tumor metastasis are identified. We have therefore undertaken the present prospective study to ascertain the clinical significance of circulating tumor cells (CTCs) in osteosarcoma patients. Peripheral blood was obtained from patients both pre- and post-surgery then processed using a CanPatrol™ system, an enrichment technique allowing isolation of CTCs by virtue of their size at baseline. Multiplex RNA in situ hybridization (RNA-ISH) was subsequently conducted to characterize the CTCs based on various molecular markers including MTA1, CD45, EpCAM, CK8, CK19, Vimentin and Twist. MTA1 expression was further validated by immunohistochemistry of the tumor tissue. Besides defining a diagnosis and prognosis for osteosarcoma patients, the correlation between CTC count and their molecular and clinicopathological characteristics was found to assist in the analysis of the response of patients to neoadjuvant chemotherapy. Our results revealed that the number of CTCs was significantly higher at baseline in metastatic patients than in those whose osteosarcomas were localized. The variation was attributed to the neoadjuvant chemotherapy treatment. A cut-off value of 7 CTCs/5 mL was found to effectively distinguish patients who had either a favorable or unfavorable prognosis. Notably, the ratio of mesenchymal CTCs at baseline was found to be higher in metastatic vs. localized osteosarcoma patients. In addition, the expression of MTA1 was higher in mesenchymal CTCs than the other CTC phenotypes. Furthermore, immunohistochemical analysis demonstrated a higher expression of MTA1 in tumor tissues from metastatic osteosarcoma patients. Taken together, our findings conclusively establish that the number and molecular phenotype of CTCs are predictive of tumor metastasis and the response of patients to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Minghui Li
- Department of Orthopedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yajie Lu
- Department of Orthopedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Zuoyao Long
- Department of Orthopedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Mengyang Li
- Department of Hepatobiliary and Pancreas Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jing Kong
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Guojing Chen
- Department of Orthopedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Zhen Wang
- Department of Orthopedics, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, PR China
| |
Collapse
|
17
|
He W, Xu D, Wang Z, Wu H, Xiang X, Tang B, Jiang W, Cui Y, Wang H, Jiang N, Sun Y, Chen Y, Li S, Hou M, Zhang Y, Wang L, Ke ZF. Three-dimensional nanostructured substrates enable dynamic detection of ALK-rearrangement in circulating tumor cells from treatment-naive patients with stage III/IV lung adenocarcinoma. J Transl Med 2019; 17:32. [PMID: 30658713 PMCID: PMC6339314 DOI: 10.1186/s12967-019-1779-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Background Circulating tumor cells (CTC) shows great prospect to realize precision medicine in cancer patients. Methods We developed the NanoVelcro Chip integrating three functional mechanisms. NanoVelcro CTC capture efficiency was tested in stage III or IV lung adenocarcinoma. Further, ALK-rearrangement status was examined through fluorescent in situ hybridization in CTCs enriched by NanoVelcro. Results NanoVelcro system showed higher CTC-capture efficiency than CellSearch in stage III or IV lung adenocarcinoma. CTC counts obtained by both methods were positively correlated (r = 0.45, p < 0.05). Further, Correlation between CTC counts and pTNM stage determined by NanoVelcro was more significant than that determined by CellSearch (p < 0.001 VS p = 0.029). All ALK-positive patients had 3 or more ALK-rearranged CTC per ml of blood. Less than 3 ALK-rearranged CTC was detected in ALK-negative patients. NanoVelcro can detect the ALK–rearranged status with consistent sensitivity and specificity compared to biopsy test. Furthermore, the ALK-rearranged CTC ratio correlated to the pTNM stage in ALK-positive patients. Following up showed that CTCs counting by NanoVelcro was more stable and reliable in evaluating the efficacy of Clozotinib both in the short and long run compared with CellSearch. Changing of NanoVlecro CTC counts could accurately reflect disease progression. Conclusion NanoVelcro provides a sensitive method for CTC counts and characterization in advanced NSCLC. ALK-rearrangement can be detected in CTCs collected from advanced NSCLC patients by NanoVelcro, facilitating diagnostic test and prognosis analysis, most importantly offering one noninvasive method for real-time monitoring of treatment reaction. Electronic supplementary material The online version of this article (10.1186/s12967-019-1779-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiling He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, No.26 Shenli Street, Jiang'an District, Wuhan, 430014, Hubei, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hui Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xianhong Xiang
- Department of Interventional Radiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Bing Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wenting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yongmei Cui
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Han Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Neng Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Minzhi Hou
- Department of Gyneacology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yang Zhang
- Biomedical Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Guan X, Ma F, Li C, Wu S, Hu S, Huang J, Sun X, Wang J, Luo Y, Cai R, Fan Y, Li Q, Chen S, Zhang P, Li Q, Xu B. The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun (Lond) 2019; 39:1. [PMID: 30606259 PMCID: PMC6319003 DOI: 10.1186/s40880-018-0346-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023] Open
Abstract
Background Epithelial–mesenchymal transition (EMT) is implicated in the metastatic process and presents a challenge to epithelial cell adhesion molecule-based detection of circulating tumor cells (CTCs), which have been demonstrated to be a prognostic indicator in metastatic breast cancer. Although evidence has indicated that heterogeneity of CTCs based on EMT markers is associated with disease progression, no standard recommendations have been established for clinical practice. This study aimed to evaluate the prognostic significance of dynamic CTC detection based on EMT for metastatic breast cancer patients. Methods We enrolled 108 human epidermal growth factor receptor 2-negative metastatic breast cancer patients from the prospective phase III CAMELLIA study and applied the CanPatrol CTC enrichment technique to identify CTC phenotypes (including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs) in peripheral blood samples. Receiver operating characteristic curve analyses of total CTC count and the proportion of mesenchymal CTCs for predicting the 1-year progression-free survival (PFS) rate were conducted to determine the optimal cut-off values, and Kaplan–Meier analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic value of the cut-off values of both total CTC count and the proportion of mesenchymal CTCs in combination. Results For predicting the 1-year PFS rate, the optimal cut-off value of total CTC count was 9.5 (Area under the curve [AUC] = 0.538, 95% confidence interval [CI] = 0.418–0.657), and that of the proportion of mesenchymal CTCs was 10.7% (AUC = 0.581, 95% CI = 0.463–0.699). We used the two cut-off values in combination to forecast PFS in which the total CTC count was equaled to or exceeded 10/5 mL with the proportion of mesenchymal CTCs surpassed 10.7%. Patients who met the combined criteria had significantly shorter median PFS than did those who did not meet the criteria (6.2 vs. 9.9 months, P =0.010). A nomogram was constructed based on the criteria and significant clinicopathological characteristics with a C-index of 0.613 (P = 0.010). Conclusions The criteria, which combine the total CTC count and the proportion of mesenchymal CTCs, may be used to monitor therapeutic resistance and predict prognosis in patients with metastatic breast cancer. Trial registrationClinicalTrials.gov. NCT01917279. Registered on 19 July 2013, https://clinicaltrials.gov/ct2/show/NCT01917279?term=NCT01917279&rank=1.
Collapse
Affiliation(s)
- Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China.
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Shiyang Wu
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, 510000, Guangdong, P. R. China
| | - Shangying Hu
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiefen Huang
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, 510000, Guangdong, P. R. China
| | - Xiaoying Sun
- Department of Medical Oncology, Huanxing Cancer Hospital, Beijing, 100021, P. R. China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China.
| |
Collapse
|
19
|
Zhang YJ, Zeng QY, Li LF, Qi MN, Qi QC, Li SX, Xu JF. Label-free rapid identification of tumor cells and blood cells with silver film SERS substrate. OPTICS EXPRESS 2018; 26:33044-33056. [PMID: 30645462 DOI: 10.1364/oe.26.033044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The detection of circulating tumor cells (CTCs) from peripheral blood is considered as great significance for the diagnosis and prognosis of cancer patients. Raman spectroscopy is a highly sensitive optical detection technique that can provide fingerprint molecular identification information. In this paper, the silver film substrate surface-enhanced Raman scattering (SERS) was used to research several tumor cells, immortalized cells, clinical cancer cells isolated from cancer patient's tissue and blood cells. The results display that there is great difference for the nucleic acid characteristic peaks of those cells. The red blood cells have almost none nucleic acid characteristic peak and the SERS signals of white blood cells are only a slight increase. Except for immortalized cells and few tumor cells, the nucleic acid characteristic peaks of some tumor cells have huge enhancement. Nucleic acid characteristic peaks of clinical cancer cells also have greater enhancement. The discriminant model established by the intensity ratio of the nucleic acid characteristic peak 730 cm-1 to the substrate background peak 900 cm-1 shows that some tumor cells and clinical sample cells can be separated from white blood cells, but tumor cells with relatively low-DNA index cannot be differentiated from white blood cells. This study demonstrates that thin-film SERS technology can distinguish between blood cells and some types of tumor cells. This study opens up a new possible method for the detection of CTCs with label-free SERS spectra.
Collapse
|
20
|
Shashni B, Matsuura H, Saito R, Hirata T, Ariyasu S, Nomura K, Takemura H, Akimoto K, Aikawa N, Yasumori A, Aoki S. Simple and Convenient Method for the Isolation, Culture, and Re-collection of Cancer Cells from Blood by Using Glass-Bead Filters. ACS Biomater Sci Eng 2018; 5:438-452. [DOI: 10.1021/acsbiomaterials.8b01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Babita Shashni
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hidehiko Matsuura
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Riku Saito
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takuma Hirata
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shinya Ariyasu
- Center for Technologies against Cancer, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Nomura
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Takemura
- Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical Science-Engineering Corporation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazunori Akimoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical Science-Engineering Corporation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naoyuki Aikawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Center for Technologies against Cancer, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical Science-Engineering Corporation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Atsuo Yasumori
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Center for Technologies against Cancer, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Division of Medical Science-Engineering Corporation, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Su YH, Kim AK, Jain S. Liquid biopsies for hepatocellular carcinoma. Transl Res 2018; 201:84-97. [PMID: 30056068 PMCID: PMC6483086 DOI: 10.1016/j.trsl.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the world's second leading cause of cancer death; 82.4% of patients die within 5 years. This grim prognosis is the consequence of a lack of effective early detection tools, limited treatment options, and the high frequency of HCC recurrence. Advances in the field of liquid biopsy hold great promise in improving early detection of HCC, advancing patient prognosis, and ultimately increasing the survival rate. In an effort to address the current challenges of HCC screening and management, several studies have identified and evaluated liver-cancer-associated molecular signatures such as genetic alterations, methylation, and noncoding RNA expression in the form of circulating biomarkers in body fluids and circulating tumor cells of HCC patients. In this review, we summarize the recent progress in HCC liquid biopsy, organized by the intended clinical application of the reported study.
Collapse
Affiliation(s)
- Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania.
| | - Amy K Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore Maryland.
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, Pennsylvania.
| |
Collapse
|
22
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
24
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
25
|
Hwang WL, Pleskow HM, Miyamoto DT. Molecular analysis of circulating tumors cells: Biomarkers beyond enumeration. Adv Drug Deliv Rev 2018; 125:122-131. [PMID: 29326053 DOI: 10.1016/j.addr.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/15/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Advances in our molecular understanding of cancer biology have paved the way to an expanding compendium of molecularly-targeted therapies, accompanied by the urgent need for biomarkers that enable the precise selection of the most appropriate therapies for individual cancer patients. Circulating biomarkers such as circulating tumor cells (CTCs) are poised to fill this need, since they are "liquid biopsies" that can be performed non-invasively and serially, and may capture the spectrum of spatial and temporal tumor heterogeneity better than conventional tissue biopsies. Increasing evidence suggests that moving beyond the enumeration of CTCs towards more sophisticated molecular analyses can provide actionable data that may predict and potentially improve clinical outcomes. In this review, we discuss the potential of molecular CTC analyses to serve as prognostic and predictive biomarkers to guide cancer therapy and early cancer detection. As technologies to capture and analyze CTCs continue to increase in sophistication, we anticipate that the potential clinical applications of CTCs will grow exponentially in the coming years.
Collapse
Affiliation(s)
- William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital Cancer Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Haley M Pleskow
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - David T Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital Cancer Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
26
|
Škovierová H, Okajčeková T, Strnádel J, Vidomanová E, Halašová E. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J Mol Med 2017; 41:1187-1200. [PMID: 29286071 PMCID: PMC5819928 DOI: 10.3892/ijmm.2017.3320] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Numerous studies over the past two decades have focused on the epithelial-to-mesenchymal transition (EMT) and its role in the development of metastasis. Certain studies highlighted the importance of EMT in the dissemination of tumor cells and metastasis of epithelium-derived carcinomas. Tumor metastasis is a multistep process during which tumor cells change their morphology, and start to migrate and invade distant sites. The present review discusses the current understanding of the molecular mechanisms contributing to EMT in embryogenesis, fibrosis and tumorigenesis. Additionally, the signaling pathways that initiate EMT through transcriptional factors responsible for the activation and suppression of various genes associated with cancer cell migration were investigated. Furthermore, the important role of the epigenetic modifications that regulate EMT and the reverse process, mesenchymal-to-epithelial transition (MET) are discussed. MicroRNAs are key regulators of various intracellular processes and current knowledge of EMT has significantly improved due to microRNA characterization. Their effect on signaling pathways and the ensuing events that occur during EMT at the molecular level is becoming increasingly recognized. The current review also highlights the role of circulating tumor cells (CTCs) and CTC clusters, and their ability to form metastases. In addition, the biological properties of different types of circulating cells based on their tumor-forming potential are compared.
Collapse
Affiliation(s)
- Henrieta Škovierová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Terézia Okajčeková
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Ján Strnádel
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Eva Vidomanová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin 03601, Slovakia
| |
Collapse
|
27
|
Kruspe S, Dickey DD, Urak KT, Blanco GN, Miller MJ, Clark KC, Burghardt E, Gutierrez WR, Phadke SD, Kamboj S, Ginader T, Smith BJ, Grimm SK, Schappet J, Ozer H, Thomas A, McNamara JO, Chan CH, Giangrande PH. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:542-557. [PMID: 28918054 PMCID: PMC5577414 DOI: 10.1016/j.omtn.2017.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.
Collapse
Affiliation(s)
- Sven Kruspe
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin T Urak
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Giselle N Blanco
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew J Miller
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Karen C Clark
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Elliot Burghardt
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Sneha D Phadke
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sukriti Kamboj
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Timothy Ginader
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Sarah K Grimm
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - James Schappet
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Department of Hematology & Oncology, Wake Forest, Winston Salem, NC, USA
| | - James O McNamara
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Carlos H Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Surgery, University of Iowa, Iowa City, IA, USA.
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA; Environmental Health Sciences Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Zhang X, Hofmann S, Rack B, Harbeck N, Jeschke U, Sixou S. Fluorescence Analysis of Vitamin D Receptor Status of Circulating Tumor Cells (CTCS) in Breast Cancer: From Cell Models to Metastatic Patients. Int J Mol Sci 2017. [PMID: 28632174 PMCID: PMC5486139 DOI: 10.3390/ijms18061318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Vitamin D receptor (VDR) expressed in normal breast tissue and breast tumors has been suggested as a new prognostic biomarker in breast cancer (BC). Besides, increasing evidence supports the view that the detection of circulating tumor cells (CTCs) predicts outcome in early and metastatic BC. Consequently, an evaluation of VDR expression in the CTCs of BC patients may allow optimization of their treatment. As an attempt to profile and subtype the CTCs of metastatic patients, we established an innovative fluorescence technique using nine BC cell lines to visualize, define, and compare their individual VDR status. Afterwards, we tested the CTC presence and VDR expression in blood samples (cytospins) collected from 23 metastatic BC patients. The results demonstrated major differences in the VDR levels among the nine cell lines, and VDR positive CTCs were detected in 46% of CTC-positive patients, with a total of 42 CTCs individually analyzed. Due to the limited number of patients in this study, no correlation between VDR expression and BC subtype classification (according to estrogen receptor (ER), progesterone receptor (PR) and HER2) could be determined, but our data support the view that VDR evaluation is a potential new prognostic biomarker to help in the optimization of therapy management for BC patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Simone Hofmann
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Brigitte Rack
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Nadia Harbeck
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
| | - Sophie Sixou
- Department of Obstetrics and Gynaecology, Breast Center, Ludwig-Maximilians University of Munich (LMU), Maistrasse 11, Munich 80337, Germany.
- Faculty of Pharmacy, University Paul Sabatier Toulouse III, Toulouse cedex 09 31062, France.
| |
Collapse
|
29
|
Fang S, Tian H, Li X, Jin D, Li X, Kong J, Yang C, Yang X, Lu Y, Luo Y, Lin B, Niu W, Liu T. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One 2017; 12:e0175050. [PMID: 28369094 PMCID: PMC5378374 DOI: 10.1371/journal.pone.0175050] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing attention has been attracted by exosomes in blood-based diagnosis because cancer cells release more exosomes in serum than normal cells and these exosomes overexpress a certain number of cancer-related biomarkers. However, capture and biomarker analysis of exosomes for clinical application are technically challenging. In this study, we developed a microfluidic chip for immunocapture and quantification of circulating exosomes from small sample volume and applied this device in clinical study. Circulating EpCAM-positive exosomes were measured in 6 cases breast cancer patients and 3 healthy controls to assist diagnosis. A significant increase in the EpCAM-positive exosome level in these patients was detected, compared to healthy controls. Furthermore, we quantified circulating HER2-positive exosomes in 19 cases of breast cancer patients for molecular classification. We demonstrated that the exosomal HER2 expression levels were almost consistent with that in tumor tissues assessed by immunohistochemical staining. The microfluidic chip might provide a new platform to assist breast cancer diagnosis and molecular classification.
Collapse
Affiliation(s)
- Shimeng Fang
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Hongzhu Tian
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xiancheng Li
- Department of Urology, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dong Jin
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Chun Yang
- Department of Nuclear Medicine, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Weidong Niu
- College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (TL); (WN)
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (TL); (WN)
| |
Collapse
|
30
|
Yan WT, Cui X, Chen Q, Li YF, Cui YH, Wang Y, Jiang J. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep 2017; 7:43464. [PMID: 28337998 PMCID: PMC5364512 DOI: 10.1038/srep43464] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Whether circulating tumor cells (CTCs) can be used as an indicator of treatment response in breast cancer (BC) needs to be clarified. We addressed this issue by a meta-analysis. PubMed, EMBase and Cochrane library databases were searched in June 2016. Effect measures were estimated as pooled risk ratio (RR), odds ratio (OR) or mean difference by fixed- or random-effect models, according to heterogeneity of included studies. In total, 50 studies with 6712 patients were recruited. Overall analysis showed that there was a significant reduction of CTC-positive rate (RR = 0.68, 95% CI: 0.61–0.76, P < 0.00001) after treatment. Subgroup analyses revealed that neoadjuvant treatment, adjuvant treatment, metastatic treatment or combination therapy could reduce the CTC-positive rate, but surgery could not; moreover, the reduction was only found in HER2+ or HER2- patients but not in the triple-negative ones. Reduction of CTC-positive rate was associated with lower probability of disease progression (OR = 0.54, 95% CI: 0.33–0.89, P = 0.01) and longer overall survival period (mean difference = 11.61 months, 95% CI: 8.63–14.59, P < 0.00001) as well as longer progression-free survival period (mean difference = 5.07 months, 95% CI: 2.70–7.44, P < 0.0001). These results demonstrate that CTC status can serve as an indicator to monitor the effectiveness of treatments and guide subsequent therapies in BC.
Collapse
Affiliation(s)
- Wen-Ting Yan
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiang Cui
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
31
|
Liu XR, Shao B, Peng JX, Li HP, Yang YL, Kong WY, Song GH, Jiang HF, Liang X, Yan Y. Identification of high independent prognostic value of nanotechnology based circulating tumor cell enumeration in first-line chemotherapy for metastatic breast cancer patients. Breast 2017; 32:119-125. [PMID: 28157583 DOI: 10.1016/j.breast.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) is a promising tool in the management of metastatic breast cancer (MBC). This study investigated the capturing efficiency and prognostic value of our previously reported peptide-based nanomagnetic CTC isolation system (Pep@MNPs). We counted CTCs in blood samples taken at baseline (n = 102) and later at patients' first clinical evaluation after starting firstline chemotherapy (n = 72) in a cohort of women treated for MBC. Their median follow-up was 16.3 months (range: 9.0-31.0 months). The CTC detection rate was 69.6 % for the baseline samples. Patients with ≤2 CTC/2 ml at baseline had longer median progression-free survival (PFS) than did those with >2 CTC/2 ml (17.0 months vs. 8.0 months; P = 0.002). Patients with ≤2 CTC/2 ml both at baseline and first clinical evaluation had longest PFS (18.2 months) among all patient groups (P = 0.004). Particularly, among patients with stable disease (SD; per imaging evaluation) our assay could identify those with longer PFS (P < 0.001). Patients with >2 CTC/2 ml at baseline were also significantly more likely to suffer liver metastasis (P = 0.010). This study confirmed the prognostic value of Pep@MNPs assays for MBC patients who undergo firstline chemotherapy, and offered extra stratification regarding PFS for patients with SD, and a possible indicator for patients at risk for liver metastasis.
Collapse
Affiliation(s)
- Xiao-Ran Liu
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jia-Xi Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
| | - Hui-Ping Li
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yan-Lian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China.
| | - Wei-Yao Kong
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Guo-Hong Song
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Han-Fang Jiang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xu Liang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Yan
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
32
|
(Very) Early technology assessment and translation of predictive biomarkers in breast cancer. Cancer Treat Rev 2017; 52:117-127. [DOI: 10.1016/j.ctrv.2016.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
|
33
|
Souza E Silva V, Chinen LTD, Abdallah EA, Damascena A, Paludo J, Chojniak R, Dettino ALA, de Mello CAL, Alves VS, Fanelli MF. Early detection of poor outcome in patients with metastatic colorectal cancer: tumor kinetics evaluated by circulating tumor cells. Onco Targets Ther 2016; 9:7503-7513. [PMID: 28008271 PMCID: PMC5167467 DOI: 10.2147/ott.s115268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer worldwide. New prognostic markers are needed to identify patients with poorer prognosis, and circulating tumor cells (CTCs) seem to be promising to accomplish this. PATIENTS AND METHODS A prospective study was conducted by blood collection from patients with metastatic CRC (mCRC), three times, every 2 months in conjunction with image examinations for evaluation of therapeutic response. CTC isolation and counting were performed by Isolation by Size of Epithelial Tumor Cells (ISET). RESULTS A total of 54 patients with mCRC with a mean age of 57.3 years (31-82 years) were included. Among all patients, 60% (n=32) were carriers of wild-type KRAS (WT KRAS) tumors and 90% of them (n=29) were exposed to monoclonal antibodies along with systemic treatment. Evaluating CTC kinetics, when we compared the baseline (pretreatment) CTC level (CTC1) with the level at first follow-up (CTC2), we observed that CTC1-positive patients (CTCs above the median), who became negative (CTCs below the median) had a favorable evolution (n=14), with a median progression-free survival (PFS) of 14.7 months. This was higher than that for patients with an unfavorable evolution (CTC1- that became CTC2+; n=13, 6.9 months; P=0.06). Patients with WT KRAS with favorable kinetics had higher PFS (14.7 months) in comparison to those with WT KRAS with unfavorable kinetics (9.4 months; P=0.02). Moreover, patients whose imaging studies showed radiological progression had an increased quantification of CTCs at CTC2 compared to those without progression (P=0.04). CONCLUSION This study made possible the presentation of ISET as a feasible tool for evaluating CTC kinetics in patients with mCRC, which can be promising in their clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Jociana Paludo
- Image Department, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Rubens Chojniak
- Image Department, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
34
|
Beije N, Onstenk W, Kraan J, Sieuwerts AM, Hamberg P, Dirix LY, Brouwer A, de Jongh FE, Jager A, Seynaeve CM, Van NM, Foekens JA, Martens JWM, Sleijfer S. Prognostic Impact of HER2 and ER Status of Circulating Tumor Cells in Metastatic Breast Cancer Patients with a HER2-Negative Primary Tumor. Neoplasia 2016; 18:647-653. [PMID: 27764697 PMCID: PMC5071539 DOI: 10.1016/j.neo.2016.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Preclinical and clinical studies have reported that human epidermal growth factor receptor 2 (HER2) overexpression yields resistance to endocrine therapies. Here the prevalence and prognostic impact of HER2-positive circulating tumor cells (CTCs) were investigated retrospectively in metastatic breast cancer (MBC) patients with a HER2-negative primary tumor receiving endocrine therapy. Additionally, the prevalence and prognostic significance of HER2-positive CTCs were explored in a chemotherapy cohort, as well as the prognostic impact of the estrogen receptor (ER) CTC status in both cohorts. METHODS Included were MBC patients with a HER2-negative primary tumor, with ≥1 detectable CTC, starting a new line of treatment. CTCs were enumerated using the CellSearch system, characterized for HER2 with the CellSearch anti-HER2 phenotyping reagent, and characterized for ER mRNA expression. Primary end point was progression-free rate after 6 months (PFR6months) of endocrine treatment in HER2-positive versus HER2-negative CTC patients. RESULTS HER2-positive CTCs were present in 29% of all patients. In the endocrine cohort (n=72), the PFR6months was 53% for HER2-positive versus 68% for HER2-negative CTC patients (P=.23). In the chemotherapy cohort (n=82), no prognostic value of HER2-positive CTCs on PFR6months was observed either. Discordances in ER status between the primary tumor and CTCs occurred in 25% of all patients but had no prognostic value in exploratory survival analyses. CONCLUSION Discordances regarding HER2 status and ER status between CTCs and the primary tumor occurred frequently but had no prognostic impact in our MBC patient cohorts.
Collapse
Affiliation(s)
- Nick Beije
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Wendy Onstenk
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jaco Kraan
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Paul Hamberg
- Franciscus Gasthuis, Department of Internal Medicine, Kleiweg 500, 3045 PM, Rotterdam, The Netherlands
| | - Luc Y Dirix
- Oncology Center GZA Hospitals Sint Augustinus, Translational Cancer Research Unit, Department of Medical Oncology, Oosterveldlaan 26, 2610, Antwerp, Belgium
| | - Anja Brouwer
- Oncology Center GZA Hospitals Sint Augustinus, Translational Cancer Research Unit, Department of Medical Oncology, Oosterveldlaan 26, 2610, Antwerp, Belgium
| | - Felix E de Jongh
- Ikazia Hospital, Department of Internal Medicine, Montessoriweg 1, 3083 AN, Rotterdam, The Netherlands
| | - Agnes Jager
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Caroline M Seynaeve
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ngoc M Van
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - John A Foekens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - John W M Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Nurwidya F, Zaini J, Putra AC, Andarini S, Hudoyo A, Syahruddin E, Yunus F. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer. Chonnam Med J 2016; 52:151-8. [PMID: 27689025 PMCID: PMC5040764 DOI: 10.4068/cmj.2016.52.3.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Jamal Zaini
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Andika Chandra Putra
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Achmad Hudoyo
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
36
|
Gkountela S, Szczerba B, Donato C, Aceto N. Recent advances in the biology of human circulating tumour cells and metastasis. ESMO Open 2016; 1:e000078. [PMID: 27843628 PMCID: PMC5070257 DOI: 10.1136/esmoopen-2016-000078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
The development of a metastatic disease is recognised as the cause of death of over 90% of patients diagnosed with cancer. Understanding the biological features of metastasis has been hampered for a long time by the difficulties to study widespread cancerous lesions in patients, and by the absence of reliable methods to isolate viable metastatic cells during disease progression. These difficulties negatively impact on our ability to develop new agents that are tailored to block the spread of cancer. Yet, recent advances in specialised devices for the isolation of circulating tumour cells (CTCs), hand-in-hand with technologies that enable single cell resolution interrogation of their genome and transcriptome, are now paving the way to understanding those molecular mechanisms that drive the formation of metastasis. In this review, we aim to summarise some of the latest discoveries in CTC biology in the context of several types of cancer, and to highlight those findings that have a potential to improve the clinical management of patients with metastatic cancer.
Collapse
Affiliation(s)
- Sofia Gkountela
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Barbara Szczerba
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Cinzia Donato
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Nicola Aceto
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| |
Collapse
|
37
|
Uttley L, Whiteman BL, Woods HB, Harnan S, Philips ST, Cree IA. Building the Evidence Base of Blood-Based Biomarkers for Early Detection of Cancer: A Rapid Systematic Mapping Review. EBioMedicine 2016; 10:164-73. [PMID: 27426280 PMCID: PMC5006664 DOI: 10.1016/j.ebiom.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Early Cancer Detection Consortium is developing a blood-test to screen the general population for early identification of cancer, and has therefore conducted a systematic mapping review to identify blood-based biomarkers that could be used for early identification of cancer. METHODS A mapping review with a systematic approach was performed to identify biomarkers and establish their state of development. Comprehensive searches of electronic databases Medline, Embase, CINAHL, the Cochrane library and Biosis were conducted in May 2014 to obtain relevant literature on blood-based biomarkers for cancer detection in humans. Screening of retrieved titles and abstracts was performed using an iterative sifting process known as "data mining". All blood based biomarkers, their relevant properties and characteristics, and their corresponding references were entered into an inclusive database for further scrutiny by the Consortium, and subsequent selection of biomarkers for rapid review. This systematic review is registered with PROSPERO (no. CRD42014010827). FINDINGS The searches retrieved 19,724 records after duplicate removal. The data mining approach retrieved 3990 records (i.e. 20% of the original 19,724), which were considered for inclusion. A list of 814 potential blood-based biomarkers was generated from included studies. Clinical experts scrutinised the list to identify miss-classified and duplicate markers, also volunteering the names of biomarkers that may have been missed: no new markers were identified as a result. This resulted in a final list of 788 biomarkers. INTERPRETATION This study is the first to systematically and comprehensively map blood biomarkers for early detection of cancer. Use of this rapid systematic mapping approach found a broad range of relevant biomarkers allowing an evidence-based approach to identification of promising biomarkers for development of a blood-based cancer screening test in the general population.
Collapse
Affiliation(s)
- Lesley Uttley
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | - Becky L Whiteman
- Centre for Technology Enabled Health Research, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Helen Buckley Woods
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | - Susan Harnan
- The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
| | | | - Ian A Cree
- Centre for Technology Enabled Health Research, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK; Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
38
|
Girotra S, Yeghiazaryan K, Golubnitschaja O. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics. Per Med 2016; 13:469-484. [PMID: 29767597 DOI: 10.2217/pme-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.
Collapse
|
39
|
Gkountela S, Aceto N. Stem-like features of cancer cells on their way to metastasis. Biol Direct 2016; 11:33. [PMID: 27457474 PMCID: PMC4960876 DOI: 10.1186/s13062-016-0135-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED More than 90 % of cancer-related deaths are due to the development of a systemic metastatic disease. Clearly, much remains to be understood about the biological principles that govern human cancer metastasis, aiming at the ambitious objective to decrease metastasis-related mortality in patients. For many years, research on metastasis has been conducted in great part on experimental mouse models, mainly because of the difficulties in sampling, longitudinal studies, and molecular interrogation of a human metastatic disease. However, recently, extraordinary advances in microfluidic technologies are allowing the isolation and characterization of human circulating tumor cells (CTCs) that escaped a primary tumor mass and are in the process of seeding a distant metastasis. Analysis of human CTCs has now revealed important features of cancer metastasis, such as the high metastatic potential of CTC-clusters compared to single CTCs, the dynamic expression of epithelial and mesenchymal markers on CTCs during treatment, and the possibility to culture CTCs from patients for a real-time and individualized testing of drug susceptibility. Nevertheless, several aspects of CTC biology remain unsolved, such as the characterization of the stem-like cell population among human CTCs. Here, we focus on describing the latest findings in the CTC field, and discuss them in the context of cancer stem cell biology. Defining the molecular features of those few metastasis-initiating, stem-like CTCs holds the exceptional promise to develop metastasis-tailored therapies for patients with cancer. REVIEWERS This article was reviewed by Elisa Cimetta, Luca Pellegrini and Sirio Dupont (nominated by LP).
Collapse
Affiliation(s)
- Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
40
|
Frequent detection of PIK3CA mutations in single circulating tumor cells of patients suffering from HER2-negative metastatic breast cancer. Mol Oncol 2016; 10:1330-43. [PMID: 27491860 DOI: 10.1016/j.molonc.2016.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023] Open
Abstract
Modern technologies enable detection and characterization of circulating tumor cells (CTC) in peripheral blood samples. Thus, CTC have attracted interest as markers for therapeutic response in breast cancer. First studies have incorporated CTC analyses to guide therapeutic interventions and stratification of breast cancer patients. Aim of this study was to analyze characteristic features of CTC as biomarker for predicting resistance to HER2-targeted therapies. Therefore, CTC from metastatic breast cancer patients with HER2-negative primary tumors screened for the prospective randomized phase III trial DETECT III were explored for their HER2 status and the presence of PIK3CA mutations. Detection and characterization of HER2 expression of CTC were conducted with the CellSearch(®) system. Fifteen of 179 CTC-positive patients (8.4%) contained ≥1 CTC with strong HER2 expression. Genomic DNA from individual CTC isolated by micromanipulation was propagated by whole genome amplification and analyzed for PIK3CA mutations in exons 9 and 20 by Sanger sequencing. One or more CTC/7.5 mL were detected in 179/290 patients (61.7%). In 109 patients (34.8%), ≥5 CTC/7.5 mL were found. We detected at least one CTC with the mutation p.E542K, p.E545K, p.H1047R, p.H1047L or p.M1043V in 12/33 patients (36.4%). Thirty six of 114 CTC (31.6%) harbored one of these mutations. CTC in individual patients exhibited heterogeneity concerning PIK3CA mutations and HER2 expression. In conclusion, clinically relevant genomic aberrations such as mutations in the hotspot regions of exon 9 and 20 of the PIK3CA gene can be detected in single CTC and might provide insights into mechanisms of resistance to HER2-targeted therapies.
Collapse
|
41
|
Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. NANOSCALE 2016; 8:12406-29. [PMID: 26831217 DOI: 10.1039/c5nr08534a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The study of cancer is of great significance to human survival and development, due to the fact that cancer has become one of the greatest threats to human health. In recent years, the rapid progress of nanoscience and nanotechnology has brought new and bright opportunities to this field. In particular, the applications of quantum dots (QDs) and magnetic nanoparticles (MNPs) have greatly promoted early diagnosis and effective therapy of cancer. In this review, we focus on fluorescent/magnetic micro/nano-spheres based on QDs and/or MNPs (we may call them "nanoparticle-sphere (NP-sphere) composites") from their preparation to their bio-application in cancer research. Firstly, we outline and compare the main four kinds of methods for fabricating NP-sphere composites, including their design principles, operation processes, and characteristics (merits and limitations). The NP-sphere composites successfully inherit the unique fluorescence or magnetic properties of QDs or MNPs. Moreover, compared with the nanoparticles (NPs) alone, the NP-sphere composites show superior properties, which are also discussed in this review. Then, we summarize their recent applications in cancer research from three aspects, that is: separation and enrichment of target tumor cells or biomarkers; cancer diagnosis mainly through medical imaging or tumor biomarker detection; and cancer therapy via targeted drug delivery systems. Finally, we provide some perspectives on the future challenges and development trends of the NP-sphere composites.
Collapse
Affiliation(s)
- Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Satelli A, Batth IS, Brownlee Z, Rojas C, Meng QH, Kopetz S, Li S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep 2016; 6:28910. [PMID: 27363678 PMCID: PMC4929464 DOI: 10.1038/srep28910] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/13/2016] [Indexed: 12/29/2022] Open
Abstract
Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Izhar Singh Batth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zachary Brownlee
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christina Rojas
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing H. Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Departments of Surgical Oncology and Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
43
|
|
44
|
Abstract
The role of angiogenesis in tumor growth has been studied continuously for over 45 years. It is now appreciated that angiogenesis is also essential for the dissemination and establishment of tumor metastases. In this review, we focus on the role of angiogenesis as a necessity for the escape of tumor cells into the bloodstream and for the establishment of metastatic colonies in secondary sites. We also discuss the role of tumor lymphangiogenesis as a means of dissemination of lymphatic metastases. Appropriate combination therapies may be used in the future to both prevent and treat metastatic disease through the rational use of antiangiogenic and antilymphangiogenic therapies in ways that are informed by the current and future work in the field.
Collapse
|
45
|
Masuda T, Hayashi N, Iguchi T, Ito S, Eguchi H, Mimori K. Clinical and biological significance of circulating tumor cells in cancer. Mol Oncol 2016; 10:408-17. [PMID: 26899533 DOI: 10.1016/j.molonc.2016.01.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023] Open
Abstract
During the process of metastasis, which is the leading cause of cancer-related death, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. The migrating tumor cells in circulation, e.g., those found in peripheral blood (PB) or bone marrow (BM), are called circulating tumor cells (CTCs). CTCs in the BM are generally called disseminated tumor cells (DTCs). Many studies have reported the detection and characterization of CTCs to facilitate early diagnosis of relapse or metastasis and improve early detection and appropriate treatment decisions. Initially, epithelial markers, such as EpCAM and cytokeratins (CKs), identified using immunocytochemistry or reverse transcription polymerase chain reaction (RT-PCR) were used to identify CTCs in PB or BM. Recently, however, other markers such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and immuno-checkpoint genes also have been examined to facilitate detection of CTCs with metastatic potential. Moreover, the epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) have also received increasing attention as important CTC markers owing to their roles in the biological progression of metastasis. In addition to these markers, researchers have attempted to develop detection or capture techniques for CTCs. Notably, however, the establishment of metastasis requires cancer-host interactions. Markers from host cells, such as macrophages, mesenchymal stem cells, and bone marrow-derived cells, which constitute the premetastatic niche, may become novel biomarkers for predicting relapse or metastasis or monitoring the effects of treatment. Biological studies of CTCs are still emerging. However, recent technical innovations, such as next-generation sequencing, are being used more commonly and could help to clarify the mechanism of metastasis. Additionally, biological findings are gradually being accumulated, adding to our body of knowledge on CTCs. In this review, we will summarize recent approaches to detect or capture CTCs. Moreover, we will introduce recent studies of the clinical and biological importance of CTCs and host cells.
Collapse
Affiliation(s)
- Takaaki Masuda
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Naoki Hayashi
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Tomohiro Iguchi
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | - Shuhei Ito
- Kyushu University Beppu Hospital, Department of Surgery, Japan
| | | | - Koshi Mimori
- Kyushu University Beppu Hospital, Department of Surgery, Japan.
| |
Collapse
|
46
|
Diagnostic and Prognostic Value of Circulating Tumor Cells in Head and Neck Squamous Cell Carcinoma: a systematic review and meta-analysis. Sci Rep 2016; 6:20210. [PMID: 26831813 PMCID: PMC4735798 DOI: 10.1038/srep20210] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
Several techniques have been developed to detect circulating tumor cells (CTC) in patients with head and neck squamous cell carcinoma (HNSCC), but their diagnostic and prognostic value are not yet fully established. A computerized retrieval of literatures was conducted without time restrictions using the electronic database in December 2014. Diagnostic accuracy variables were pooled and analyzed by the Meta-DiSc software. Engauge Digitizer and Stata software were used for pooled survival analysis. Twenty-two retrieved studies were eligible for systematic review, of which 9 conformed for the diagnostic test meta-analysis and 5 for the prognostic analysis. Subgroup analysis showed 24.6% pooled sensitivity and 100% pooled specificity of detections by using positive selection strategy, which moreover presented low heterogeneity. The presence of CTC was significantly associated with shorter disease free survival (DFS, HR 4.62, 95% CI 2.51-8.52). In conclusion, current evidence identifies the CTC detection assay as an extremely specific, but low sensitive test in HNSCC. Also, the presence of CTC indicates a worse DFS.
Collapse
|
47
|
Stoecklein NH, Fischer JC, Niederacher D, Terstappen LWMM. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev Mol Diagn 2015; 16:147-64. [DOI: 10.1586/14737159.2016.1123095] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Hardingham JE, Grover P, Winter M, Hewett PJ, Price TJ, Thierry B. Detection and Clinical Significance of Circulating Tumor Cells in Colorectal Cancer--20 Years of Progress. Mol Med 2015; 21 Suppl 1:S25-31. [PMID: 26605644 DOI: 10.2119/molmed.2015.00149] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTC) may be defined as tumor- or metastasis-derived cells that are present in the bloodstream. The CTC pool in colorectal cancer (CRC) patients may include not only epithelial tumor cells, but also tumor cells undergoing epithelial-mesenchymal transition (EMT) and tumor stem cells. A significant number of patients diagnosed with early stage CRC subsequently relapse with recurrent or metastatic disease despite undergoing "curative" resection of their primary tumor. This suggests that an occult metastatic disease process was already underway, with viable tumor cells being shed from the primary tumor site, at least some of which have proliferative and metastatic potential and the ability to survive in the bloodstream. Such tumor cells are considered to be responsible for disease relapse in these patients. Their detection in peripheral blood at the time of diagnosis or after resection of the primary tumor may identify those early-stage patients who are at risk of developing recurrent or metastatic disease and who would benefit from adjuvant therapy. CTC may also be a useful adjunct to radiological assessment of tumor response to therapy. Over the last 20 years many approaches have been developed for the isolation and characterization of CTC. However, none of these methods can be considered the gold standard for detection of the entire pool of CTC. Recently our group has developed novel unbiased inertial microfluidics to enrich for CTC, followed by identification of CTC by imaging flow cytometry. Here, we provide a review of progress on CTC detection and clinical significance over the last 20 years.
Collapse
Affiliation(s)
- Jennifer E Hardingham
- Molecular Oncology Group, Haematology-Oncology Department, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, South Australia.,School of Medicine, University of Adelaide, South Australia.,Centre for Personalized Medicine, University of Adelaide, South Australia
| | - Phulwinder Grover
- Department of Surgery, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Marnie Winter
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia
| | - Peter J Hewett
- Department of Surgery, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Timothy J Price
- School of Medicine, University of Adelaide, South Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia
| | - Benjamin Thierry
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia
| |
Collapse
|
49
|
Aceto N, Toner M, Maheswaran S, Haber DA. En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition. Trends Cancer 2015; 1:44-52. [DOI: 10.1016/j.trecan.2015.07.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
|