1
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2025; 22:75-91. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Picard LC, Rich FJ, Kenwright DN, Stevens AJ. Epigenetic changes associated with Bacillus Calmette-Guerin (BCG) treatment in bladder cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189123. [PMID: 38806074 DOI: 10.1016/j.bbcan.2024.189123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Bacillus Calmette-Guérin (BCG) treatment for non-muscle invasive bladder cancer (NMIBC) is an established immunotherapeutic, however, a significant portion of patients do not respond to treatment. Despite extensive research into the therapeutic mechanism of BCG, gaps remain in our understanding. This review specifically focuses on the epigenomic contributions in the immune microenvironment, in the context of BCG treatment for NMIBC. We also summarise the current understanding of NMIBC epigenetic characteristics, and discuss how future targeted strategies for BCG therapy should incorporate epigenomic biomarkers in conjunction with genomic biomarkers.
Collapse
Affiliation(s)
- Lucy C Picard
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Fenella J Rich
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Diane N Kenwright
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Aaron J Stevens
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand.
| |
Collapse
|
3
|
Li K, Qi L, Tang G, Xu H, Li Z, Fan B, Li Z, Li Y. Epigenetic Regulation in Urothelial Carcinoma. Curr Mol Med 2024; 24:85-97. [PMID: 36545729 DOI: 10.2174/1566524023666221221094432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Urothelial carcinoma (UC) is a common malignancy that remains a clinical challenge: Non-muscle-invasive urothelial carcinoma (NMIUC) has a high rate of recurrence and risk of progression, while muscle-invasive urothelial carcinoma (MIUC) has a high mortality. Although some new treatments, such as immunotherapies, have shown potential effects on some patients, most cases of advanced UC remain incurable. While treatments based on epigenetic mechanisms, whether combined with traditional platinum-based chemotherapy or emerging immunotherapy, show therapeutic advantages. With the advancement of sequencing and bioinformatics, the study of epigenomics, containing DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA, is increasingly linked with the occurrence and progression of UC. Since the epigenetics of UC is a constantly developing field of medicine, this review aims to summarize the latest research on epigenetic regulation of UC, generalize the mechanism of epigenetics in UC, and reveal the potential epigenetic therapies in the clinical setting, in order to provide some new clues on the discovery of new drugs based on the epigenetics.
Collapse
Affiliation(s)
- Ke Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Li
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhongbei Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Zhong W, Qu H, Yao B, Wang D, Qiu J. Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022; 14:e24818. [PMID: 35693359 PMCID: PMC9172899 DOI: 10.7759/cureus.24818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
|
5
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
6
|
Li HJ, Gong X, Li ZK, Qin W, He CX, Xing L, Zhou X, Zhao D, Cao HL. Role of Long Non-coding RNAs on Bladder Cancer. Front Cell Dev Biol 2021; 9:672679. [PMID: 34422802 PMCID: PMC8371405 DOI: 10.3389/fcell.2021.672679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer (BC) is the most common malignant tumor in the urinary system, and its early diagnosis is conducive to improving clinical prognosis and prolonging overall survival time. However, few biomarkers with high sensitivity and specificity are used as diagnostic markers for BC. Multiple long non-coding RNAs (lncRNAs) are abnormally expressed in BC, and play key roles in tumorigenesis, progression and prognosis of BC. In this review, we summarize the expression, function, molecular mechanisms and the clinical significance of lncRNAs on bladder cancer. There are more than 100 dysregulated lncRNAs in BC, which are involved in the regulation of proliferation, cell cycle, apoptosis, migration, invasion, metabolism and drug resistance of BC. Meanwhile, the molecular mechanisms of lncRNAs in BC was explored, including lncRNAs interacting with DNA, RNA and proteins. Additionally, the abnormal expression of thirty-six lncRNAs is closely associated with multiple clinical characteristics of BC, including tumor size, metastasis, invasion, and drug sensitivity or resistance of BC. Furthermore, we summarize some potential diagnostic and prognostic biomarkers of lncRNA for BC. This review provides promising novel biomarkers in early diagnosis, prognosis and monitoring of BC based on lncRNAs.
Collapse
Affiliation(s)
- Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xue Gong
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zheng-Kun Li
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, and Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
7
|
Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells. Genes (Basel) 2021; 12:genes12020260. [PMID: 33670166 PMCID: PMC7916885 DOI: 10.3390/genes12020260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Since genes encoding epigenetic regulators are often mutated or deregulated in urothelial carcinoma (UC), they represent promising therapeutic targets. Specifically, inhibition of Class-I histone deacetylase (HDAC) isoenzymes induces cell death in UC cell lines (UCC) and, in contrast to other cancer types, cell cycle arrest in G2/M. Here, we investigated whether mutations in cell cycle genes contribute to G2/M rather than G1 arrest, identified the precise point of arrest and clarified the function of individual HDAC Class-I isoenzymes. Database analyses of UC tissues and cell lines revealed mutations in G1/S, but not G2/M checkpoint regulators. Using class I-specific HDAC inhibitors (HDACi) with different isoenzyme specificity (Romidepsin, Entinostat, RGFP966), cell cycle arrest was shown to occur at the G2/M transition and to depend on inhibition of HDAC1/2 rather than HDAC3. Since HDAC1/2 inhibition caused cell-type-specific downregulation of genes encoding G2/M regulators, the WEE1 inhibitor MK-1775 could not overcome G2/M checkpoint arrest and therefore did not synergize with Romidepsin inhibiting HDAC1/2. Instead, since DNA damage was induced by inhibition of HDAC1/2, but not of HDAC3, combinations between inhibitors of HDAC1/2 and of DNA repair should be attempted.
Collapse
|
8
|
Chen E, Bohm K, Rosenblatt M, Kang K. Epigenetic regulation of anterior segment diseases and potential therapeutics. Ocul Surf 2020; 18:383-395. [PMID: 32344150 DOI: 10.1016/j.jtos.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
In recent years, technological advances in sequencing have accelerated our understanding of epigenetics in ocular development and ophthalmic diseases. We now know that epigenetic modifications are necessary for normal ocular development and biological processes such as corneal wound healing and ocular surface repair, while aberrant epigenetic regulation underlies the pathogenesis of a wide range of ocular diseases, including cataracts and various diseases of the ocular surface. As the epigenetics of the eye is a constantly changing field of medicine, this comprehensive review focuses on innovations and scientific discoveries related to epigenetic control of anterior segment diseases that were published in the English literature in the past five years. These recent studies attempt to elucidate therapeutic targets for the anterior segment pathological processes. Already, recent studies have shown therapeutic potential in targeting epigenetic mechanisms of ocular diseases, and new epigenetic therapies are on the verge of being introduced to clinical practice. New drug targets can potentially emerge as we make further discoveries within this field.
Collapse
Affiliation(s)
- Eric Chen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kelley Bohm
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Sharma A, Reutter H, Ellinger J. DNA Methylation and Bladder Cancer: Where Genotype does not Predict Phenotype. Curr Genomics 2020; 21:34-36. [PMID: 32655296 PMCID: PMC7324896 DOI: 10.2174/1389202921666200102163422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Nearly three decades ago, the association between Bladder cancer (BC) and DNA methylation has initially been reported. Indeed, in the recent years, the mechanism connecting these two has gained deeper insights. Still, the mediocre performance of DNA methylation markers in the clinics raises the major concern. Strikingly, whether it is the inter-individual methylation variations or the paucity of knowledge about methylation fingerprints lying within histologically distinct subtypes of BC requires critical discussion. In the future, besides identifying the initial causative factors, it will be important to illustrate the cascade of events that determines the fraction of the genome to convey altered methylation patterns specific towards each cancer type.
Collapse
Affiliation(s)
- Amit Sharma
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Heiko Reutter
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- 1Department of Ophthalmology, University Clinic Bonn, Bonn, Germany; 2Department of Neurology, University Clinic Bonn, Bonn, Germany; 3Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany; 4Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; 5Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Wang Y, Ruan Z, Yu S, Tian T, Liang X, Jing L, Li W, Wang X, Xiang L, Claret FX, Nan K, Guo H. A four-methylated mRNA signature-based risk score system predicts survival in patients with hepatocellular carcinoma. Aging (Albany NY) 2020; 11:160-173. [PMID: 30631005 PMCID: PMC6339794 DOI: 10.18632/aging.101738] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
Evidence suggests that altered DNA methylation plays a causative role in the pathogenesis of various cancers, including hepatocellular carcinoma (HCC). Thus, methylated differently expressed genes (MDEGs) could potentially serve as biomarkers and therapeutic targets in HCC. In the present study, screening four genomics profiling datasets (GSE62232, GSE84402, GSE73003 and GSE57956) enabled us to identify a total of 148 MDEGs. A signature was then established based on the top four MDEGs (BRCA1, CAD, CDC20 and RBM8A). Taking clinical variables into consideration, we constructed a risk score system consisting of the four-MDEG signature and the patients' clinical features, which was predictive of prognosis in HCC. The prognostic value of the HCC risk score system was confirmed using TCGA HCC samples. The scores were then used to construct a nomogram, performance of which was evaluated using Harrel's concordance index (C-index) and a calibration curve. The signature-based nomogram for prediction of overall survival in HCC patients exhibited good performance and was superior to traditional staging systems (C-index: 0.676 vs 0.629, P< 0.05). We have thus established a novel risk score system that is predictive of prognosis and is a potentially useful guide for personalized treatment of HCC patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lcl Xiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
11
|
Zhang T, Du E, Liu Y, Cheng J, Zhang Z, Xu Y, Qi S, Chen Y. Anticancer Effects of Zinc Oxide Nanoparticles Through Altering the Methylation Status of Histone on Bladder Cancer Cells. Int J Nanomedicine 2020; 15:1457-1468. [PMID: 32184598 PMCID: PMC7062395 DOI: 10.2147/ijn.s228839] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Zinc oxide nanoparticles (nZnO) have been widely used in the medicine field. Numerous mechanistic studies for nZnO’s anticancer effects are merely performed under high concentration exposure. However, possible anticancer mechanisms of epigenetic dysregulation induced by low doses of nZnO are unclear. Methods nZnO were characterized and bladder cancer T24 cells were treated with nZnO for 48 hrs at different exposure concentrations. Cell cycle, apoptosis, cell migration and invasion were determined. We performed qRT-PCR, Western blot and chromatin immunoprecipitation to detect the mRNA and protein levels of signaling pathway cascades for histone modification. Results In this study, we investigated the potential anticancer effects and mechanisms of nZnO on histone modifications in bladder cancer T24 cells upon low-dose exposure. Our findings showed that low concentrations of nZnO resulted in cell cycle arrest at S phase, facilitated cellular late apoptosis, repressed cell invasion and migration after 48 hrs exposure. These anticancer effects could be attributed to increased RUNX3 levels resulting from reduced H3K27me3 occupancy on the RUNX3 promoter, as well as decreased contents of histone methyltransferase EZH2 and the trimethylation of histone H3K27. Our findings reveal that nZnO are able to enter into the cytoplasm and nucleus of T24 cells. Additionally, both particles and ions from nZnO may jointly contribute to the alteration of histone methylation. Moreover, sublethal nZnO-conducted anticancer effects and epigenetic mechanisms were not associated with oxidative stress or DNA damage. Conclusion We reveal a novel epigenetic mechanism for anticancer effects of nZnO in bladder cancer cells under low-dose exposure. This study will provide experimental basis for the toxicology and cancer therapy of nanomaterials.
Collapse
Affiliation(s)
- Tianke Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China.,Department of Anorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, People's Republic of China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Jun Cheng
- Department of Anorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, People's Republic of China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, People's Republic of China
| |
Collapse
|
12
|
Lobo J, Jerónimo C, Henrique R. Targeting the Immune system and Epigenetic Landscape of Urological Tumors. Int J Mol Sci 2020; 21:E829. [PMID: 32012885 PMCID: PMC7037817 DOI: 10.3390/ijms21030829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, we have witnessed remarkable advances in targeted therapies for cancer patients. There is a growing effort to either replace or reduce the dose of unspecific, systemic (chemo)therapies, given the associated short- and long-term side effects, by introducing more specific targeted therapies as single or combination agents. Due to the well-known implications of the immune system and epigenetic landscape in modulating cancer development, both have been explored as potential targets in several malignancies, including those affecting the genitourinary tract. As the immune system function is also epigenetically regulated, there is rationale for combining both strategies. However, this is still rather underexplored, namely in urological tumors. We aim to briefly review the use of immune therapies in prostate, kidney, bladder, and testicular cancer, and further describe studies providing supporting evidence on their combination with epigenetic-based therapies.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
13
|
Martinez VG, Munera-Maravilla E, Bernardini A, Rubio C, Suarez-Cabrera C, Segovia C, Lodewijk I, Dueñas M, Martínez-Fernández M, Paramio JM. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front Genet 2019; 10:1125. [PMID: 31850055 PMCID: PMC6902278 DOI: 10.3389/fgene.2019.01125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the most common neoplasia of the urothelial tract. Due to its high incidence, prevalence, recurrence and mortality, it remains an unsolved clinical and social problem. The treatment of BC is challenging and, although immunotherapies have revealed potential benefit in a percentage of patients, it remains mostly an incurable disease at its advanced state. Epigenetic alterations, including aberrant DNA methylation, altered chromatin remodeling and deregulated expression of non-coding RNAs are common events in BC and can be driver events in BC pathogenesis. Accordingly, these epigenetic alterations are now being used as potential biomarkers for these disorders and are being envisioned as potential therapeutic targets for the future management of BC. In this review, we summarize the recent findings in these emerging and exciting new aspects paving the way for future clinical treatment of this disease.
Collapse
Affiliation(s)
- Victor G. Martinez
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Ester Munera-Maravilla
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandra Bernardini
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Cristian Suarez-Cabrera
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Cristina Segovia
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Iris Lodewijk
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mónica Martínez-Fernández
- Genomes & Disease Lab, CiMUS (Center for Research in Molecular Medicine and Chronic Diseases), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesus Maria Paramio
- Biomedical Research Institute I + 12, University Hospital 12 de Octubre, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
14
|
Wang L, Shi J, Huang Y, Liu S, Zhang J, Ding H, Yang J, Chen Z. A six-gene prognostic model predicts overall survival in bladder cancer patients. Cancer Cell Int 2019; 19:229. [PMID: 31516386 PMCID: PMC6729005 DOI: 10.1186/s12935-019-0950-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/27/2019] [Indexed: 01/02/2023] Open
Abstract
Background The fatality and recurrence rates of bladder cancer (BC) have progressively increased. DNA methylation is an influential regulator associated with gene transcription in the pathogenesis of BC. We describe a comprehensive epigenetic study performed to analyse DNA methylation-driven genes in BC. Methods Data related to DNA methylation, the gene transcriptome and survival in BC were downloaded from The Cancer Genome Atlas (TCGA). MethylMix was used to detect BC-specific hyper-/hypo-methylated genes. Metascape was used to carry out gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A least absolute shrinkage and selection operator (LASSO)-penalized Cox regression was conducted to identify the characteristic dimension decrease and distinguish prognosis-related methylation-driven genes. Subsequently, we developed a six-gene risk evaluation model and a novel prognosis-related nomogram to predict overall survival (OS). A survival analysis was carried out to explore the individual prognostic significance of the six genes. Results In total, 167 methylation-driven genes were identified. Based on the LASSO Cox regression, six genes, i.e., ARHGDIB, LINC00526, IDH2, ARL14, GSTM2, and LURAP1, were selected for the development of a risk evaluation model. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better OS (P = 1.679e−05). The area under the curve (AUC) of this model was 0.698 at 3 years of OS. The verification performed in subgroups demonstrated the validity of the model. Then, we designed an OS-associated nomogram that included the risk score and clinical factors. The concordance index of the nomogram was 0.694. The methylation levels of IDH2 and ARL14 were appreciably related to the survival results. In addition, the methylation and gene expression-matched survival analysis revealed that ARHGDIB and ARL14 could be used as independent prognostic indicators. Among the six genes, 6 methylation sites in ARHGDIB, 3 in GSTM2, 1 in ARL14, 2 in LINC00526 and 2 in LURAP1 were meaningfully associated with BC prognosis. In addition, several abnormal methylated sites were identified as linked to gene expression. Conclusion We discovered differential methylation in BC patients with better and worse survival and provided a risk evaluation model by merging six gene markers with clinical characteristics.
Collapse
Affiliation(s)
- Liwei Wang
- 1Urology Institute of People's Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China.,Unit 32357 of People's Liberation Army, Pujiang, 611630 People's Republic of China
| | - Jiazhong Shi
- 3Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Yaqin Huang
- 3Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Sha Liu
- 3Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Jingqi Zhang
- 1Urology Institute of People's Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Hua Ding
- 1Urology Institute of People's Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Jin Yang
- 3Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| | - Zhiwen Chen
- 1Urology Institute of People's Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 People's Republic of China
| |
Collapse
|
15
|
Stenzl A, McConkey D, Bellmunt J. Does it matter whether a T1 high-grade tumor is molecularly classified? Eur Urol Oncol 2019; 4:837-842. [PMID: 31383572 DOI: 10.1016/j.euo.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
A 58-yr-old male, 20 pack-year smoker, with hypertension was diagnosed with a single left-side high-grade papillary tumor with peritumoral carcinoma in situ, but no tumor was visible outside the bladder. En bloc resection was performed, and repeat transurethral resection of the bladder at 4 wk found no residual tumor. He was prescribed bacillus Calmette-Guérin (BCG) plus maintenance therapy, and cystoscopy at 9 mo found a T1b high-grade tumor, this time right sided. Is it important that the tumor should be molecularly characterized before a treatment decision is made, or is clinicopathologic characterization still the only viable option at this time? PATIENT SUMMARY: We discussed how new methods in pathology may help us find molecular structures that would help clinicians decide safely between cystectomy and conservative bladder-sparing strategies. The primary superficially infiltrative tumor and its similar recurrence 9 mo later were categorized based on standard clinical criteria, but here we discuss whether recently discovered methods for defining the molecular structure of tumors could mean that more bladder-preserving treatments might be an option.
Collapse
Affiliation(s)
- Arnulf Stenzl
- Department of Urology, University of Tübingen Medical School, Tübingen, Germany.
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Joaquim Bellmunt
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
16
|
Yang PJ, Hsieh MJ, Hung TW, Wang SS, Chen SC, Lee MC, Yang SF, Chou YE. Effects of Long Noncoding RNA H19 Polymorphisms on Urothelial Cell Carcinoma Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1322. [PMID: 31013794 PMCID: PMC6518101 DOI: 10.3390/ijerph16081322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Urothelial cell carcinoma (UCC) is one of the major malignancies of the genitourinary tract, and it is induced by carcinogenic epidemiological risk factors. H19 is one of the most crucial long noncoding RNAs (lncRNAs) and is involved in various types of bladder cancer. In this study, we examined H19 single-nucleotide polymorphisms (SNPs) to investigate UCC susceptibility and clinicopathological characteristics. Using real-time polymerase chain reaction, we analyzed five SNPs of H19 in 431 UCC patients and 431 controls without cancer. The results showed that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants had a high risk of developing muscle invasive tumors (pT2-T4) (p = 0.030; p = 0.025, respectively). With a median follow up of 39 months, CT+TT polymorphisms of rs2107425 were associated with worse disease-specific survival (adjusted hard ratio (AHR) = 2.043, 95% confidence interval (CI) = 1.029-4.059) in UCC patients aged older than 65 years. In conclusion, our results indicate that patients with UCC carrying the H19 rs217727 CT + TT and rs2107425 CT + TT genetic variants have a high risk of developing muscle invasive tumors. Thus, H19 polymorphisms may be applied as a marker or therapeutic target in UCC treatment.
Collapse
Affiliation(s)
- Po-Jen Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Shiuan-Chih Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Meng-Chih Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
17
|
Ye F, Li N. Role of p15(INK4B) Methylation in Patients With Myelodysplastic Syndromes: A Systematic Meta-Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e259-e265. [PMID: 31023595 DOI: 10.1016/j.clml.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor suppressor gene cyclin-dependent kinase inhibitor 2B (p15(INK4B)) methylation has been frequently reported in myelodysplastic syndromes (MDS). However, the association between p15(INK4B) methylation and MDS remains elusive. Thus, this meta-analysis was first conducted to evaluate the clinical significance of p15(INK4B) methylation in MDS. MATERIALS AND METHODS Eligible studies were identified via an online electronic databases search. The overall odds ratios (ORs) or hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. RESULTS Twenty-eight studies published between 1997 and 2017 were identified, including 1205 MDS patients and 243 nontumor controls. No evidence of heterogeneity was found in our study. p15(INK4B) methylation was significantly elevated in MDS compared with nontumor controls (OR, 10.37; P < .001). In addition, p15(INK4B) methylation was significantly higher in advanced MDS than in early MDS (OR, 4.70; P < .001) and was linked to an unfavorable overall survival (multivariate analysis: HR, 1.78; 95% CI, 1.23-2.71). Subgroup analyses on the basis of ethnicity and detection method showed that the results remained significant in different subgroups (all Ps < .05). CONCLUSION Our findings suggest that p15(INK4B) methylation might play an important role in the development, progression, and poor prognosis of MDS. More prospective studies with larger study populations are needed.
Collapse
Affiliation(s)
- Fang Ye
- Department of Hematology, Chuiyangliu Hospital affiliated to Tsinghua University, Beijing, China.
| | - Ningning Li
- Department of Hematology, Chuiyangliu Hospital affiliated to Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Shan H, Yang Y, Zhu X, Han X, Zhang P, Zhang X. FAM83H‐AS1 is associated with clinical progression and modulates cell proliferation, migration, and invasion in bladder cancer. J Cell Biochem 2018; 120:4687-4693. [PMID: 30537032 DOI: 10.1002/jcb.27758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Shan
- Department of Urology Beijing Chaoyang Hospital, Capital Medical University Beijing China
| | - Yunbo Yang
- Department of Urology Hebei Yanda Hospital Hebei China
| | - Xuhui Zhu
- Department of Urology Beijing Chaoyang Hospital, Capital Medical University Beijing China
| | - Xiuwu Han
- Department of Urology Beijing Chaoyang Hospital, Capital Medical University Beijing China
| | - Peng Zhang
- Department of Urology Beijing Chaoyang Hospital, Capital Medical University Beijing China
| | - Xiaodong Zhang
- Department of Urology Beijing Chaoyang Hospital, Capital Medical University Beijing China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Epigenetics refers to processes that alter gene expression without altering primary DNA. Over that past decade, there is a growing focus on epigenetic mechanisms in cancer research and its importance in cancer biology. This review summarizes epigenetic dysregulation in bladder cancer. RECENT FINDINGS Epigenetic alterations are overall shared across various grades and stages of bladder cancer. High grade invasive tumors demonstrate a greater degree and intensity of methylation and may have a unique methylation pattern. Environmental exposures may influence epigenetic alterations directly independent of genomic change. Non-coding RNAs play an important role in cancer phenotype, especially in the context of integrative genomic analyses. DNA hypermethylation and non-coding RNAs have potential as robust bladder cancer biomarkers; however, they require further study and validation. Changes in chromatin and histone modification are attractive targets for therapy and are currently in clinical trials. Epigenetic dysregulation may be an important key in improving the understanding of bladder cancer pathogenesis, especially through integrative genomic analyses. Deeper understanding of these pathways can help identify clinically relevant biomarkers and therapeutic targets to validate for diagnosis, monitoring, prognosis, and treatment for bladder cancer.
Collapse
Affiliation(s)
- Sima P Porten
- Department of Urology, University of California San Francisco (UCSF), Mailbox Code 1695, 550 16th Street, 6th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
Miyata Y, Matsuo T, Araki K, Nakamura Y, Sagara Y, Ohba K, Sakai H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030087. [PMID: 30103466 PMCID: PMC6164790 DOI: 10.3390/medicines5030087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/12/2023]
Abstract
Green tea and green tea polyphenols (GTPs) are reported to inhibit carcinogenesis and malignant behavior in several diseases. Various in vivo and in vitro studies have shown that GTPs suppress the incidence and development of bladder cancer. However, at present, opinions concerning the anticancer effects and preventive role of green tea are conflicting. In addition, the detailed molecular mechanisms underlying the anticancer effects of green tea in bladder cancer remain unclear, as these effects are regulated by several cancer-related factors. A detailed understanding of the pathological roles and regulatory mechanisms at the molecular level is necessary for advancing treatment strategies based on green tea consumption for patients with bladder cancer. In this review, we discuss the anticancer effects of GTPs on the basis of data presented in in vitro studies in bladder cancer cell lines and in vivo studies using animal models, as well as new treatment strategies for patients with bladder cancer, based on green tea consumption. Finally, on the basis of the accumulated data and the main findings, we discuss the potential usefulness of green tea as an antibladder cancer agent and the future direction of green tea-based treatment strategies for these patients.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| |
Collapse
|