1
|
Tan M, Li L, Tan B, Yang J. Innovations in modern low-LET radiotherapy regimens for locally advanced non-small cell lung cancer: a meta-analysis and systematic review of high-dose-rate brachytherapy, stereotactic body radiotherapy, and hypofractionated proton therapy. BMC Cancer 2025; 25:942. [PMID: 40420058 PMCID: PMC12105129 DOI: 10.1186/s12885-025-14328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND This study assesses recent treatments for locally advanced non-small cell lung cancer (LA-NSCLC) ineligible for surgery, comparing high-dose-rate (HDR) brachytherapy with conventional low linear energy transfer (LET) hypofractionated radiotherapy methods. METHODS From 9435 papers, 8 meeting criteria were selected, covering 484 LA-NSCLC patients (2005-2019). Analysis focused on comparing outcomes, exploring biologically effective doses (BED), and examining toxicities. RESULTS HDR brachytherapy had better effectiveness. Specific data revealed that the median overall survival (OS) with HDR brachytherapy was 38 months, with a significant 2-year OS rate of 68.0% (95% CI, 58.2-79.4%). In comparison, stereotactic body radiation (SBRT) and proton treatment had 2-year OS rates of 54% (95% CI, 36-71%), and 56% (95% CI, 42-70%), respectively. In terms of local control (LC), the 2-year LC rate for HDR brachytherapy stood at 87.1% (95% CI, 79-95%), whereas the 2-year LC rates for SBRT and proton therapy were 75% (95% CI, 63-86%) and 84% (95% CI, 68 -100%), respectively. The 2-year OS for BED10 equal to or greater than 78 Gy was 62% (95% CI, 51-72%), compared to 38% (95% CI, 17-58%) for BED10 less than 78 Gy. Acute toxicity was lower with HDR brachytherapy (95% CI, 0-10%) versus SBRT (95% CI, 8-16%), with no grade 3 + events reported for proton therapy. Furthermore, the rate of late toxicity events above grade 3 was 3% (95% CI, 0-6%) for SBRT and 14% (95% CI, 4-24%) for proton therapy, while no late toxicities above grade 3 were observed with brachytherapy. CONCLUSIONS Hypofractionated low LET irradiation is efficacious and safe for LA-NSCLC, while HDR brachytherapy provides significant OS and LC advantages with few toxicities. Achieving BED10 ≥ 78 Gy significantly impacts OS. These findings guide clinical practice and stimulate further LA-NSCLC treatment advancements.
Collapse
Affiliation(s)
- Mingyu Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Jinxin Yang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Volpe S, Mastroleo F, Vincini MG, Zaffaroni M, Porazzi A, Damiani E, Marvaso G, Jereczek-Fossa BA. Facing the climate change: Is radiotherapy as green as we would like? A systematic review. Crit Rev Oncol Hematol 2024; 204:104500. [PMID: 39245297 DOI: 10.1016/j.critrevonc.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE To focus on the ecological footprint of radiotherapy (RT), on opportunities for sustainable practices, on future research directions. METHODS Different databases were interrogated using the following terms: Carbon Footprint, Sustainab*, Carbon Dioxide, Radiotherapy, and relative synonyms. RESULTS 931 records were retrieved; 15 reports were included in the review. Eight main thematic areas have been identified. Nine research works analyzed the environmental impact of photon-based external beam RT. Particle therapy was the subject of one work. Other thematic areas were brachytherapy, intra-operative RT, telemedicine, travel-related issues, and the impact of COVID-19. CONCLUSION This review demonstrates the strong interest in identifying novel strategies for a more environmentally friendly RT and serves as a clarion call to unveil the environmental impact of carbon footprints entwined with radiation therapy. Future research should address current gaps to guide the transition towards greener practices, reducing the environmental footprint and maintaining high-quality care.
Collapse
Affiliation(s)
- Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Alice Porazzi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Ernesto Damiani
- Department of Computer Science, University of Milan, Milan, Italy; Cyber-Physical Systems Research Center at Khalifa University, Abu Dhabi
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Levy A, Adebahr S, Hurkmans C, Ahmed M, Ahmad S, Guckenberger M, Geets X, Lievens Y, Lambrecht M, Pourel N, Lewitzki V, Konopa K, Franks K, Dziadziuszko R, McDonald F, Fortpied C, Clementel E, Fournier B, Rizzo S, Fink C, Riesterer O, Peulen H, Andratschke N, McWilliam A, Gkika E, Schimek-Jasch T, Grosu AL, Le Pechoux C, Faivre-Finn C, Nestle U. Stereotactic Body Radiotherapy for Centrally Located Inoperable Early-Stage NSCLC: EORTC 22113-08113 LungTech Phase II Trial Results. J Thorac Oncol 2024; 19:1297-1309. [PMID: 38788924 DOI: 10.1016/j.jtho.2024.05.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION The international phase II single-arm LungTech trial 22113-08113 of the European Organization for Research and Treatment of Cancer assessed the safety and efficacy of stereotactic body radiotherapy (SBRT) in patients with centrally located early-stage NSCLC. METHODS Patients with inoperable non-metastatic central NSCLC (T1-T3 N0 M0, ≤7cm) were included. After prospective central imaging review and radiation therapy quality assurance for any eligible patient, SBRT (8 × 7.5 Gy) was delivered. The primary endpoint was freedom from local progression probability three years after the start of SBRT. RESULTS The trial was closed early due to poor accrual related to repeated safety-related pauses in recruitment. Between August 2015 and December 2017, 39 patients from six European countries were included and 31 were treated per protocol and analyzed. Patients were mainly male (58%) with a median age of 75 years. Baseline comorbidities were mainly respiratory (68%) and cardiac (48%). Median tumor size was 2.6 cm (range 1.2-5.5) and most cancers were T1 (51.6%) or T2a (38.7%) N0 M0 and of squamous cell origin (48.4%). Six patients (19.4%) had an ultracentral tumor location. The median follow-up was 3.6 years. The rates of 3-year freedom from local progression and overall survival were 81.5% (90% confidence interval [CI]: 62.7%-91.4%) and 61.1% (90% CI: 44.1%-74.4%), respectively. Cumulative incidence rates of local, regional, and distant progression at three years were 6.7% (90% CI: 1.6%-17.1%), 3.3% (90% CI: 0.4%-12.4%), and 29.8% (90% CI: 16.8%-44.1%), respectively. SBRT-related acute adverse events and late adverse events ≥ G3 were reported in 6.5% (n = 2, including one G5 pneumonitis in a patient with prior interstitial lung disease) and 19.4% (n = 6, including one lethal hemoptysis after a lung biopsy in a patient receiving anticoagulants), respectively. CONCLUSIONS The LungTech trial suggests that SBRT with 8 × 7.5Gy for central lung tumors in inoperable patients is associated with acceptable local control rates. However, late severe adverse events may occur after completion of treatment. This SBRT regimen is a viable treatment option after a thorough risk-benefit discussion with patients. To minimize potentially fatal toxicity, careful management of dose constraints, and post-SBRT interventions is crucial.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Sonja Adebahr
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | - Merina Ahmed
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust/Institute of Cancer Research, Sutton, United Kingdom
| | - Shahreen Ahmad
- Department of Oncology and Radiotherapy, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques universitaires Saint-Luc, MIRO - IREC Lab, Brussels, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Maarten Lambrecht
- Department of Radiotherapy-Oncology, UZ Gasthuisberg Leuven, Leuven, Belgium; KU Leuven, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Nicolas Pourel
- Institut Sainte-Catherine, Service de radiothérapie, Avignon, France
| | - Victor Lewitzki
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Krzysztof Konopa
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Kevin Franks
- Department of Clinical Oncology, St. James's University Hospital, Leeds, United Kingdom
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Fiona McDonald
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust/Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | | - Stefania Rizzo
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christian Fink
- Allgemeines Krankenhaus, AKH Celle, Celle, Germany; Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Kantonsspital Aarau, Radio-Onkologie-Zentrum KSA-KSB, Aarau, Switzerland
| | - Heike Peulen
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alan McWilliam
- Division of Cancer Sciences, The Christie NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Eleni Gkika
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany; Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Cécile Le Pechoux
- Department of Radiation Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, The Christie NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Ursula Nestle
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany; Department of Radiation Oncology, Kliniken Maria Hilf GmbH Mönchengladbach, Mönchengladbach, Germany.
| |
Collapse
|
4
|
Chen D, Zou B, Li B, Gao A, Huang W, Shao Q, Meng X, Zhang P, Tang X, Hu X, Zhang Y, Guo J, Zhao C, Yuan J, Li Q, Zhu C, Yu J, Wang L. Adebrelimab plus chemotherapy and sequential thoracic radiotherapy as first-line therapy for extensive-stage small-cell lung cancer (ES-SCLC): a phase II trial. EClinicalMedicine 2024; 75:102795. [PMID: 39252865 PMCID: PMC11381814 DOI: 10.1016/j.eclinm.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Background This phase II prospective trial aimed to investigate the efficacy and safety of adebrelimab (PD-L1 antibody) plus first-line chemotherapy followed by sequential thoracic radiotherapy (TRT) combined with adebrelimab in extensive-stage small-cell lung cancer (ES-SCLC). Biomarkers associated with potential therapeutic effects were also explored. Methods Patients with previously untreated ES-SCLC were enrolled at Shandong Cancer Hospital and Institute (Jinan, China). Patients received 4-6 cycles of adebrelimab (20 mg/kg, D1, Q3W) combined with EP/EC (etoposide, 100 mg/m2, D1-3, Q3W and cisplatin, 75 mg/m2, D1, Q3W or carboplatin, AUC = 5, D1, Q3W). Then patients with response sequentially underwent consolidative TRT (≥30 Gy in 10 fractions or ≥50 Gy in 25 fractions, involved-field irradiation), and maintenance adebrelimab until disease progression or intolerable adverse events (AEs). The primary endpoint was overall survival (OS). Genomic and circulating tumour DNA (ctDNA) profiling were also analyzed with tumour tissues and peripheral blood. This trial was registered with ClinicalTrials.gov, NCT04562337. Findings From October 2020 to April 2023, 67 patients diagnosed with ES-SCLC were enrolled and received at least one dose of study treatment. All patients were included in the efficacy and safety analyses. 45 patients received sequential TRT as planned. The median OS and progression-free survival (PFS) was 21.4 months (95% CI: 17.2-not reached months) and 10.1 months (95% CI: 6.9-15.5 months), respectively. The confirmed objective response rate was 71.6% (48/67, 95% CI: 59.3-82.0%) and disease control rate was 89.6% (60/67, 95% CI: 79.7-95.7%). There were no treatment-related deaths. The most common grade 3 or higher treatment-related adverse events (TRAEs) were hematological toxicities. The incidence of any grade and G3+ pneumonitis was 25% (17/67) and 6% (4/67), respectively. No unexpected adverse events were observed. Patients without co-mutations of TP53/RB1 in both tissue and peripheral blood displayed longer PFS (tissue, P = 0.071; ctDNA, P = 0.060) and OS (tissue, P = 0.032; ctDNA, P = 0.031). Interpretation Adebrelimab plus chemotherapy and sequential TRT as first-line therapy for ES-SCLC showed promising efficacy and acceptable safety. Funding This study was funded by the National Natural Science Foundation of China (82172865), Jiangsu Hengrui Pharmaceuticals Co., Ltd. and Amoy Diagnostics Co., Ltd.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Pinliang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyong Tang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jun Guo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changhong Zhao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jiajia Yuan
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Qian Li
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Changbin Zhu
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Nakajima K, Oguri M, Iwata H, Hattori Y, Hashimoto S, Nomura K, Hayashi K, Toshito T, Akita K, Baba F, Ogino H, Hiwatashi A. Long-term survival outcomes and quality of life of image-guided proton therapy for operable stage I non-small cell lung cancer: A phase 2 study. Radiother Oncol 2024; 196:110276. [PMID: 38614284 DOI: 10.1016/j.radonc.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND PURPOSE This study evaluated long-term efficacy, safety, and changes in quality of life (QOL) of patients after image-guided proton therapy (IGPT) for operable stage I non-small cell lung cancer (NSCLC). MATERIALS AND METHODS This single-institutional prospective phase 2 study enrolled patients with operable histologically confirmed stage IA or IB NSCLC (7th edition of UICC). The prescribed dose was 66 Gy relative biological effectiveness equivalents (GyRBE) in 10 fractions for peripheral lesions, or 72.6 GyRBE in 22 fractions for central lesions. The primary endpoint was the 3-year overall survival (OS). The secondary endpoints included disease control, toxicity, and changes in QOL score. RESULTS We enrolled 43 patients (median age: 68 years; range, 47-79 years) between July 2013 to January 2021, of whom 41 (95 %) had peripheral lesions and 27 (63 %) were stage IA. OS, local control, and progression-free survival rates were 95 % (95 % CI: 83-99), 95 % (82-99), and 86 % (72-94), respectively, at 3 years, and 83 % (66-92), 95 % (82-99), and 77 % (60-88), respectively, at 7 years. Four patients (9 %) developed grade 2, and one patient (2 %) developed grade 3 radiation pneumonitis. No other grade 3 or higher adverse events were observed. In the QOL analysis, global QOL remained favorable; however, approximately 40 % of patients reported dyspnea at 3 and 24 months. CONCLUSION Our findings suggest that IGPT provides effective disease control and survival in operable stage I NSCLC, particularly for peripheral lesions. Moreover, toxicity associated with IGPT was minimal, and patients reported favorable QOL.
Collapse
Affiliation(s)
- Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan.
| | - Masanosuke Oguri
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kento Nomura
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Kenji Akita
- Department of Respiratory Medicine, Thoracic Oncology Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Fumiya Baba
- Department of Radiotherapy, Nagoya City University West Medical Center, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Alterio D, Vincini MG, Volpe S, Bergamaschi L, Zaffaroni M, Gandini S, Peruzzotti G, Cattani F, Garibaldi C, Jereczek-Fossa BA, Orecchia R. A multicenter high-quality data registry for advanced proton therapy approaches: the POWER registry. BMC Cancer 2024; 24:333. [PMID: 38475762 PMCID: PMC10935828 DOI: 10.1186/s12885-024-12059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Paucity and low evidence-level data on proton therapy (PT) represent one of the main issues for the establishment of solid indications in the PT setting. Aim of the present registry, the POWER registry, is to provide a tool for systematic, prospective, harmonized, and multidimensional high-quality data collection to promote knowledge in the field of PT with a particular focus on the use of hypofractionation. METHODS All patients with any type of oncologic disease (benign and malignant disease) eligible for PT at the European Institute of Oncology (IEO), Milan, Italy, will be included in the present registry. Three levels of data collection will be implemented: Level (1) clinical research (patients outcome and toxicity, quality of life, and cost/effectiveness analysis); Level (2) radiological and radiobiological research (radiomic and dosiomic analysis, as well as biological modeling); Level (3) biological and translational research (biological biomarkers and genomic data analysis). Endpoints and outcome measures of hypofractionation schedules will be evaluated in terms of either Treatment Efficacy (tumor response rate, time to progression/percentages of survivors/median survival, clinical, biological, and radiological biomarkers changes, identified as surrogate endpoints of cancer survival/response to treatment) and Toxicity. The study protocol has been approved by the IEO Ethical Committee (IEO 1885). Other than patients treated at IEO, additional PT facilities (equipped with Proteus®ONE or Proteus®PLUS technologies by IBA, Ion Beam Applications, Louvain-la-Neuve, Belgium) are planned to join the registry data collection. Moreover, the registry will be also fully integrated into international PT data collection networks.
Collapse
Affiliation(s)
- Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Luca Bergamaschi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Peruzzotti
- Clinical Trial Office, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Medical Physics Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
7
|
Mazzola G, Bergamaschi L, Pedone C, Vincini M, Pepa M, Zaffaroni M, Volpe S, Rombi B, Doyen J, Fossati P, Haustermans K, Høyer M, Langendijk J, Matute R, Orlandi E, Rylander H, Troost E, Orecchia R, Alterio D, Jereczek-Fossa B. Patients' needs in proton therapy: A survey among ten European facilities. Clin Transl Radiat Oncol 2023; 43:100670. [PMID: 37736140 PMCID: PMC10509656 DOI: 10.1016/j.ctro.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
Aims The number of Proton Therapy (PT) facilities is still limited worldwide, and the access to treatment could be characterized by patients' logistic and economic challenges. Aim of the present survey is to assess the support provided to patients undergoing PT across Europe. Methods Through a personnel contact, an online questionnaire (62 multiple-choice and open-ended questions) via Microsoft Forms was administered to 10 European PT centers. The questionnaire consisted of 62 questions divided into 6 sections: i) personal data; ii) general information on clinical activity; iii) fractionation, concurrent systemic treatments and technical aspects of PT facility; iv) indication to PT and reimbursement policies; v) economic and/ or logistic support to patients vi) participants agreement on statements related to the possible limitation of access to PT. A qualitative analysis was performed and reported. Results From March to May 2022 all ten involved centers filled the survey. Nine centers treat from 100 to 500 patients per year. Paediatric patients accounted for 10-30%, 30-50% and 50-70% of the entire cohort for 7, 2 and 1 center, respectively. The most frequent tumours treated in adult population were brain tumours, sarcomas and head and neck carcinomas; in all centers, the mean duration of PT is longer than 3 weeks. In 80% of cases, the treatment reimbursement for PT is supplied by the respective country's Health National System (HNS). HNS also provides economic support to patients in 70% of centers, while logistic and meal support is provided in 20% and 40% of centers, respectively. PT facilities offer economic and/or logistic support in 90% of the cases. Logistic support for parents of pediatric patients is provided by HNS only in one-third of centers. Overall, 70% of respondents agree that geographic challenges could limit a patient's access to proton facilities and 60% believe that additional support should be given to patients referred for PT care. Conclusions Relevant differences exist among European countries in supporting patients referred to PT in their logistic and economic challenges. Further efforts should be made by HNSs and PT facilities to reduce the risk of inequities in access to cancer care with protons.
Collapse
Affiliation(s)
- G.C. Mazzola
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - L. Bergamaschi
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - C. Pedone
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - M.G. Vincini
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - M. Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - M. Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - S. Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - B. Rombi
- Proton Therapy Center, Trento, Italy
| | - J. Doyen
- Centre Antoine Lacassagne, Nice, France
| | - P. Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - M. Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - J.A. Langendijk
- University Medical Center Groningen, Groningen, The Netherlands
| | - R. Matute
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | - E. Orlandi
- CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | | | - E.G.C. Troost
- Faculty of Medicine and University Hospital Carl Gustav Carus, Department of Radiotherapy and Radiation Oncology, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology: Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - R. Orecchia
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - D. Alterio
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - B.A. Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|