1
|
Sun M, Liu N, Sun J, Zhang W, Gong P, Wang M, Liu Z. Novel anti-inflammatory compounds that alleviate experimental autoimmune encephalomyelitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156544. [PMID: 40023067 DOI: 10.1016/j.phymed.2025.156544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease primarily characterized by inflammatory demyelination. Despite significant research efforts, effective therapies for MS remain limited. Drug screening offers a promising approach to rapidly identifying potential therapeutic compounds. PURPOSE This study aimed to screen compounds that can exert anti-inflammatory effects and alleviate experimental autoimmune encephalomyelitis (EAE), an animal model of MS. STUDY DESIGN A fundamental research in vitro and in vivo. A high-throughput screen was performed to screen drugs that can mitigate EAE and the molecular mechanism was explored. METHODS Based on our previous research highlighting the crucial role of AXL, a receptor tyrosine kinase, in microglial function, we constructed an AXL-GFP reporter gene in BV2 microglia cells. A high-throughput screen of an FDA-approved compound library was performed to identify potential AXL-targeting compounds. The effects of candidate compounds on cellular morphology, cell cycle, apoptosis, mitochondrial function, inflammatory cytokine production, polarization, and phagocytic activity of BV2 cells were assessed. To investigate the in vivo effects of AXL modulation, EAE mice were generated. AXL was either upregulated using recombinant Gas6 protein or knocked out using CRISPR/Cas9. The impact of AXL modulation on disease progression and underlying molecular mechanisms was explored. RESULTS Primary and secondary screenings identified three potential AXL-targeting compounds: Betulin, Clofibric acid, and Isosorbide. Molecular docking analysis revealed that Isosorbide exhibited poor binding affinity with AXL at the molecular level and was excluded from further studies. Betulin and Clofibric acid were found to promote M2 polarization, reduce inflammation, enhance phagocytosis, extend the S phase of the cell cycle, inhibit apoptosis, and improve mitochondrial structure in BV2 cells. In vivo studies demonstrated that Betulin (20 mg/kg) alleviated EAE, while AXL gene knockout reversed its protective effects. CONCLUSION This study elucidates the molecular mechanism underlying Betulin's therapeutic effects in MS, both in vitro and in vivo. Betulin exerts its beneficial effects by upregulating the AXL/SOCS3 pathway and inhibiting the JAK2/STAT1 signaling pathway. These findings suggest that Betulin holds significant promise as a potential therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Mengjiao Sun
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563099, China; Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Panpan Gong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhenxing Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563099, China.
| |
Collapse
|
2
|
Zhang H, Zheng M, Cai Y, Kamara S, Chen J, Zhu S, Zhang L. Novel affibody molecules targeting the AXL extracellular structural domain for molecular imaging and targeted therapy of gastric cancer. Gastric Cancer 2025; 28:174-186. [PMID: 39644434 PMCID: PMC11842530 DOI: 10.1007/s10120-024-01568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Gastric cancer (GC) has a poor prognosis and high mortality because it is often diagnosed at an advanced stage. Targeted therapeutics are considered an important class for advanced GC treatment. However, the fewer effective therapeutic targets and the poor coverage of the GC population limit the use of GC targeted therapies. Recent research suggests that the AXL receptor tyrosine kinase (AXL) plays an vital role in the survival and proliferation of GC cells, and blocking AXL pathway may be an effective strategy for targeted therapies. On the other hand, the affibody molecule, with its small size and faster penetration of tissue, has great potential in tumor imaging and targeted therapy. In this study, we report the novel AXL-binding affibody molecules (ZAXL:239) screened by a phage-displayed peptide library. The ZAXL:239 could specifically bind and interact with AXL proteins in vitro and in vivo, as demonstrated by surface plasmon resonance, co-immunoprecipitation, immuno-fluorescence co-localization, and near infrared fluorescent imaging. In addition, ZAXL:239 affibody molecules could significantly inhibit the proliferative activity and induce apoptosis of AXL-positive GC cells by decreasing the phosphorylation levels of the PI3K/AKT1 and MEK/ERK pathway, leading to the suppression of the downstream nuclear protein c-myc. Moreover, ZAXL:239 was found to have significant anti-tumor effects in AXL-positive GC transplantation tumor nude mouse models. In brief, we provide strong evidence that the novel ZAXL:239 affibody molecules have great potential as a potent tumor-specific molecular imaging and targeted therapeutic agents for GC.
Collapse
Affiliation(s)
- HuiHui Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Maolin Zheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - YiQi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Huang S, Qin X, Fu S, Hu J, Jiang Z, Hu M, Zhang B, Liu J, Chen Y, Wang M, Liu X, Chen Z, Wang L. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405083. [PMID: 39527690 PMCID: PMC11714167 DOI: 10.1002/advs.202405083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is recognized as an immunogenic tumor, and immunotherapy is incorporated into its treatment landscape for decades. The acquisition of a tumor mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT) is associated with immune evasion and can contribute to immunotherapy resistance. Here, the involvement of STAM Binding Protein Like 1 (STAMBPL1) is reported in the development of mesenchymal and immune evasion phenotypes in KIRC cells. Mechanistically, STAMBPL1 elevated protein abundance and surface accumulation of TAM Receptor AXL through diminishing the TRIM21-mediated K63-linked ubiquitination and subsequent lysosomal degradation of AXL, thereby enhancing the expression of mesenchymal genes while suppressing chemokines CXCL9/10 and HLA/B/C. In addition, STAMBPL1 enhanced PD-L1 transcription via facilitating nuclear translocation of p65, and knockdown (KD) of STAMBPL1 augmented antitumor effects of PD-1 blockade. Furthermore, STAMBPL1 silencing and the tyrosine kinase inhibitor (TKI) sunitinib also exhibited a synergistic effect on the suppression of KIRC. Collectively, targeting the STAMBPL1/TRIM21/AXL axis can decrease mesenchymal phenotype and potentiate anti-tumor efficacy of cancer therapy.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xuke Qin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhengyu Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Hubei Key Laboratory of Digestive System DiseaseWuhan430060China
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Minghui Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
4
|
Dziubek K, Faktor J, Lokhande KB, Shrivastava A, Papak I, Chrusciel E, Pilch M, Hupp T, Marek-Trzonkowska N, Singh A, Parys M, Kote S. PD-1 interactome in osteosarcoma: identification of a novel PD-1/AXL interaction conserved between humans and dogs. Cell Commun Signal 2024; 22:605. [PMID: 39696578 DOI: 10.1186/s12964-024-01935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The PD-1/PDL-1 immune checkpoint inhibitors revolutionized cancer treatment, yet osteosarcoma remains a therapeutic challenge. In some types of cancer, PD-1 receptor is not solely expressed by immune cells but also by cancer cells, acting either as a tumor suppressor or promoter. While well-characterized in immune cells, little is known about the role and interactome of the PD-1 pathway in cancer. We investigated PD-1 expression in human osteosarcoma cells and studied PD-1 protein-protein interactions in cancer. Using U2OS cells as a model, we confirmed PD-1 expression by western blotting and characterized its intracellular as well as surface localization through flow cytometry and immunofluorescence. High-throughput analysis of PD-1 interacting proteins was performed using a pull-down assay and quantitative mass spectrometry proteomic analysis. For validation and molecular modeling, we selected tyrosine kinase receptor AXL-a recently reported cancer therapeutic target. We confirmed the PD-1/AXL interaction by immunoblotting and proximity ligation assay (PLA). Molecular dynamics (MD) simulations uncovered binding affinities and domain-specific interactions between extracellular (ECD) and intracellular (ICD) domains of PD-1 and AXL. ECD complexes exhibited strong binding affinity, further increasing for the ICD complexes, emphasizing the role of ICDs in the interaction. PD-1 phosphorylation mutant variants (Y223F and Y248F) did not disrupt the interaction but displayed varying strengths and binding affinities. Using bemcentinib, a selective AXL inhibitor, we observed reduced binding affinity in the PD-1/AXL interaction, although it was not abrogated. To facilitate the future translation of this finding into clinical application, we sought to validate the interaction in canine osteosarcoma. Osteosarcoma spontaneously occurs at significantly higher frequency in dogs and shares close genetic and pathological similarities with humans. We confirmed endogenous expression of PD-1 and AXL in canine osteosarcoma cells, with PD-1/AXL interaction preserved in the dog cells. Also, the interacting residues remain conserved in both species, indicating an important biological function of the interaction. Our study shed light on the molecular basis of the PD-1/AXL interaction with the implication for its conservation across species, providing a foundation for future research aimed at improving immunotherapy strategies and developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Kiran Bharat Lokhande
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad, India
| | - Ashish Shrivastava
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Elzbieta Chrusciel
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Magdalena Pilch
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdansk, Gdansk, Poland
| | - Ashutosh Singh
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
5
|
Li T, Sun S, Li Y, Zhang Y, Wei L. Immunotherapy revolutionizing brain metastatic cancer treatment: personalized strategies for transformative outcomes. Front Immunol 2024; 15:1418580. [PMID: 39136027 PMCID: PMC11317269 DOI: 10.3389/fimmu.2024.1418580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Brain metastatic cancer poses a significant clinical challenge, with limited treatment options and poor prognosis for patients. In recent years, immunotherapy has emerged as a promising strategy for addressing brain metastases, offering distinct advantages over conventional treatments. This review explores the evolving landscape of tumor immunotherapy in the context of brain metastatic cancer, focusing on the intricate interplay between the tumor microenvironment (TME) and immunotherapeutic approaches. By elucidating the complex interactions within the TME, including the role of immune cells, cytokines, and extracellular matrix components, this review highlights the potential of immunotherapy to reshape the treatment paradigm for brain metastases. Leveraging immune checkpoint inhibitors, cellular immunotherapies, and personalized treatment strategies, immunotherapy holds promise in overcoming the challenges posed by the blood-brain barrier and immunosuppressive microenvironment of brain metastases. Through a comprehensive analysis of current research findings and future directions, this review underscores the transformative impact of immunotherapy on the management of brain metastatic cancer, offering new insights and opportunities for personalized and precise therapeutic interventions.
Collapse
Affiliation(s)
- Ting Li
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shichen Sun
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yubing Li
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yanyu Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Linlin Wei
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
7
|
D'Aguanno S, Brignone M, Scalera S, Chiacchiarini M, Di Martile M, Valentini E, De Nicola F, Ricci A, Pelle F, Botti C, Maugeri-Saccà M, Del Bufalo D. Bcl-2 dependent modulation of Hippo pathway in cancer cells. Cell Commun Signal 2024; 22:277. [PMID: 38755629 PMCID: PMC11097437 DOI: 10.1186/s12964-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Stefano Scalera
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | | | - Alessia Ricci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Fabio Pelle
- Department of Surgery, Division of Breast Surgery, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Claudio Botti
- Department of Surgery, Division of Breast Surgery, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| |
Collapse
|
8
|
John L, Vijay R. Role of TAM Receptors in Antimalarial Humoral Immune Response. Pathogens 2024; 13:298. [PMID: 38668253 PMCID: PMC11054553 DOI: 10.3390/pathogens13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
Immune response against malaria and the clearance of Plasmodium parasite relies on germinal-center-derived B cell responses that are temporally and histologically layered. Despite a well-orchestrated germinal center response, anti-Plasmodium immune response seldom offers sterilizing immunity. Recent studies report that certain pathophysiological features of malaria such as extensive hemolysis, hypoxia as well as the extrafollicular accumulation of short-lived plasmablasts may contribute to this suboptimal immune response. In this review, we summarize some of those studies and attempt to connect certain host intrinsic features in response to the malarial disease and the resultant gaps in the immune response.
Collapse
Affiliation(s)
- Lijo John
- Department of Veterinary Biochemistry, Kerala Veterinary and Animal Sciences University, Pookode 673576, Kerala, India
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
| | - Rahul Vijay
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
| |
Collapse
|