1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Campo A, Aliquò F, Velletri T, Campo S. YRNAs: biosynthesis, structure, functions and involvment in cancer development. Discov Oncol 2025; 16:176. [PMID: 39945971 PMCID: PMC11825425 DOI: 10.1007/s12672-025-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Y RNAs are a class of highly conserved small non-coding RNAs. Emerging evidences reported that Y RNAs and their Y RNA-derived small RNAs (YsRNAs) represent bioactive molecules and not simply structural RNAs involved in scaffolding and assembling. They can interact and regulate both localization and functions of several RNA-binding proteins implicated in a wide range of cellular processes such as DNA replication, RNA quality control and cellular stress responses. More evidences suggest functional involvement of Y RNAs in several type of disease such as cancer, immune related pathologies, neurological disorders and cardiovascular diseases. Nevertheless, there are many questions that still need to be answered for their functional and mechanistic understanding in a physiological and in a pathological context. In this review we will describe the current state of knowledge about YRNAs, their structure, biogenesis, functions and interaction with known proteins, as well their role in disease. The picture arising indicates their potential function as biomarkers for disease diagnosis, as well as therapeutical targets for building up tailored approaches in personalized medicine.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy.
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125, Messina, Italy
| |
Collapse
|
3
|
Di Ludovico A, Rinaldi M, Mainieri F, Di Michele S, Girlando V, Ciarelli F, La Bella S, Chiarelli F, Attanasi M, Mauro A, Bizzi E, Brucato A, Breda L. Molecular Mechanisms of Fetal and Neonatal Lupus: A Narrative Review of an Autoimmune Disease Transferal across the Placenta. Int J Mol Sci 2024; 25:5224. [PMID: 38791261 PMCID: PMC11120786 DOI: 10.3390/ijms25105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This study, conducted by searching keywords such as "maternal lupus", "neonatal lupus", and "congenital heart block" in databases including PubMed and Scopus, provides a detailed narrative review on fetal and neonatal lupus. Autoantibodies like anti-Ro/SSA and anti-La/SSB may cross the placenta and cause complications in neonates, such as congenital heart block (CHB). Management options involve hydroxychloroquine, which is able to counteract some of the adverse events, although the drug needs to be used carefully because of its impact on the QTc interval. Advanced pacing strategies for neonates with CHB, especially in severe forms like hydrops, are also assessed. This review emphasizes the need for interdisciplinary care by rheumatologists, obstetricians, and pediatricians in order to achieve the best maternal and neonatal health in lupus pregnancies. This multidisciplinary approach seeks to improve the outcomes and management of the disease, decreasing the burden on mothers and their infants.
Collapse
Affiliation(s)
- Armando Di Ludovico
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Marta Rinaldi
- Paediatric Department, Buckinghamshire Healthcare NHS Trust, Aylesbury-Thames Valley Deanery, Aylesbury HP21 8AL, UK;
| | - Francesca Mainieri
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Stefano Di Michele
- Department of Surgical Science, Division of Obstetrics and Gynecology, University of Cagliari, Cittadella Universitaria Blocco I, Asse didattico Medicina P2, Monserrato, 09042 Cagliari, Italy;
| | - Virginia Girlando
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Francesca Ciarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Saverio La Bella
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Francesco Chiarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Marina Attanasi
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| | - Angela Mauro
- Pediatric Rheumatology Unit, Department of Childhood and Developmental Medicine, Fatebenefratelli—Sacco Hospital, Piazzale Principessa Clotilde, 20121 Milan, Italy
| | - Emanuele Bizzi
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Fatebenefratelli Hospital, University of Milan, 20121 Milan, Italy; (E.B.); (A.B.)
| | - Antonio Brucato
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Fatebenefratelli Hospital, University of Milan, 20121 Milan, Italy; (E.B.); (A.B.)
- Department of Biomedical and Clinical Sciences “Sacco”, University of Milano, Ospedale Fatebenefratelli, 20121 Milan, Italy
| | - Luciana Breda
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy; (A.D.L.); (F.M.); (V.G.); (F.C.); (S.L.B.); (F.C.); (M.A.)
| |
Collapse
|
4
|
Driedonks TAP, Ressel S, Tran Ngoc Minh T, Buck AH, Nolte‐‘t Hoen ENM. Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e123. [PMID: 38938676 PMCID: PMC11080805 DOI: 10.1002/jex2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.
Collapse
Affiliation(s)
- Tom A. P. Driedonks
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department CDL ResearchUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thi Tran Ngoc Minh
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Amy H. Buck
- Institute of Immunology & Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Esther N. M. Nolte‐‘t Hoen
- Department Biomolecular Health Sciences, Fac. Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Lodde V, Floris M, Zoroddu E, Zarbo IR, Idda ML. RNA-binding proteins in autoimmunity: From genetics to molecular biology. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1772. [PMID: 36658783 DOI: 10.1002/wrna.1772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Enrico Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Neurology Unit Azienza Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), Sassari, Italy
| |
Collapse
|
6
|
Mao R, Wang X, Long R, Wang M, Jin L, Zhu L. A new insight into the impact of systemic lupus erythematosus on oocyte and embryo development as well as female fertility. Front Immunol 2023; 14:1132045. [PMID: 37033965 PMCID: PMC10076658 DOI: 10.3389/fimmu.2023.1132045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is often associated with adverse reproductive outcomes. But it's currently unclear regarding the role of SLE in oocyte and embryonic development. Also, it's controversial whether SLE has an adverse effect on fertility. There is a lack of comprehensive understanding and assessment of fertility in patients with SLE. Objective This study was aim to investigate oocyte and embryonic development as well as ovarian reserve, and clinical outcomes in SLE patients during in vitro fertilization (IVF) treatment. By combining data on embryonic and gamete development in SLE patients, we hope to provide new insights into a comprehensive assessment of fertility in SLE patients. Methods In this study, we collected data from 34 SLE patients who were previously diagnosed and in remission for a total of 44 IVF cycles and matched 102 infertile women with a total of 148 IVF cycles by Propensity Score Matching (PSM) of 1:3 ratio. We then evaluated baseline characteristics, ovarian reserve, IVF laboratory outcomes, and clinical outcomes between the two groups. Results After PSM matching, baseline characteristics including age, infertility types, and duration, as well as infertility causes overall coincided between the two groups. Anti-müllerian hormone (AMH) was significantly lower in the SLE group vs comparison (1.9 vs. 3.3 ng/mL, P=0.001). The SLE group performed a significant reduction in available embryo rate (76.6% vs. 86.0%, P=0.001), good-quality blastocyst formation rate (35.1% vs. 47.0%, P=0.003), and blastocyst formation rate (51.0% vs. 67.7%, P=0.001) compared to the comparison. As for clinical outcomes, the implantation rate in the SLE group was notably lower (37.9% vs. 54.9%, P=0.022). The CLBR following every embryo-transfer procedure was distinctly lower (41.2% vs 64.7%, P=0.016) in the SLE group vs comparison. Also, the conservative and optimal CLBRs following every complete cycle procedure were significantly reduced in the SLE group vs the comparison (P=0.001, both). Conclusion Patients with SLE present worse outcomes in oocyte and embryonic development, thus yielding compromised female fertility and clinical pregnancy. Individualized fertility assessment and early fertility guidance are necessary for these special groups.
Collapse
Affiliation(s)
| | | | | | | | - Lei Jin
- *Correspondence: Lixia Zhu, ; Lei Jin,
| | - Lixia Zhu
- *Correspondence: Lixia Zhu, ; Lei Jin,
| |
Collapse
|
7
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Dellar ER, Hill C, Melling GE, Carter DR, Baena‐Lopez LA. Unpacking extracellular vesicles: RNA cargo loading and function. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e40. [PMID: 38939528 PMCID: PMC11080855 DOI: 10.1002/jex2.40] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed structures produced by prokaryotic and eukaryotic cells. EVs carry a range of biological cargoes, including RNA, protein, and lipids, which may have both metabolic significance and signalling potential. EV release has been suggested to play a critical role in maintaining intracellular homeostasis by eliminating unnecessary biological material from EV producing cells, and as a delivery system to enable cellular communication between both neighbouring and distant cells without physical contact. In this review, we give an overview of what is known about the relative enrichment of the different types of RNA that have been associated with EVs in the most recent research efforts. We then examine the selective and non-selective incorporation of these different RNA biotypes into EVs, the molecular systems of RNA sorting into EVs that have been elucidated so far, and the role of this process in EV-producing cells. Finally, we also discuss the model systems providing evidence for EV-mediated delivery of RNA to recipient cells, and the implications of this evidence for the relevance of this RNA delivery process in both physiological and pathological scenarios.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
| | - Genevieve E. Melling
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Institute of Clinical SciencesSchool of Biomedical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - David R.F Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
| | | |
Collapse
|
9
|
Pereira MS, Redanz S, Kriegel MA. Skin Deep: The Role of the Microbiota in Cutaneous Autoimmunity. J Invest Dermatol 2022; 142:834-840. [PMID: 35027173 DOI: 10.1016/j.jid.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The skin microbiota is thought to possibly contribute to the pathogenesis of skin autoimmune diseases. The gut microbiota affects systemically the development and function of the immune system, thereby potentially influencing cutaneous autoimmunity as well. In this paper, we review the role of the gut and skin microbiota in cutaneous autoimmune diseases. Besides direct inflammatory effects at the skin barrier, microbiota may contribute to the pathogenesis of skin autoimmune diseases by metabolites, recall immune cell responses, and permeation of antigens to the subepidermal space. Skin and gut barrier dysfunction may represent a common pathophysiologic process allowing microbiota or its particles to promote autoimmune diseases at barrier surfaces.
Collapse
Affiliation(s)
- Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Sylvio Redanz
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany; Section of Rheumatology and Clinical Immunology, Department of Medicine, University Hospital Münster, Münster, Germany; Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
10
|
Veenbergen S, Kozmar A, van Daele PL, Schreurs MW. Autoantibodies in Sjögren's syndrome and its classification criteria. J Transl Autoimmun 2021; 5:100138. [PMID: 35024595 PMCID: PMC8728464 DOI: 10.1016/j.jtauto.2021.100138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by immune-mediated injury of exocrine glands. Extensive lymphocytic infiltrates may contribute to the destruction and loss of secretory function of glands. B-cell hyperactivity is a key feature of the disease resulting in the production of a diverse array of autoantibodies in these patients. Although not specific for SS, anti-Ro/SSA and anti-La/SSB antibodies have been useful biomarkers for disease classification and diagnosis. During recent years, novel autoantibodies have been discovered in SS. In this review, we summarize the historical role and clinical relevance that autoantibodies have played in the classification criteria of Sjögren's syndrome, discuss laboratory aspects in antibody detection and review the role of novel autoantibodies in predicting particular stages of the disease, clinical phenotypes and long-term complications.
Collapse
Affiliation(s)
- Sharon Veenbergen
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ana Kozmar
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Croatia
| | - Paul L.A. van Daele
- Department of Internal Medicine, Allergology & Clinical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Marco W.J. Schreurs
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
11
|
Small RNAs Asserting Big Roles in Mycobacteria. Noncoding RNA 2021; 7:ncrna7040069. [PMID: 34842799 PMCID: PMC8628891 DOI: 10.3390/ncrna7040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with 10.4 million new cases per year reported in the human population. Recent studies on the Mtb transcriptome have revealed the abundance of noncoding RNAs expressed at various phases of mycobacteria growth, in culture, in infected mammalian cells, and in patients. Among these noncoding RNAs are both small RNAs (sRNAs) between 50 and 350 nts in length and smaller RNAs (sncRNA) < 50 nts. In this review, we provide an up-to-date synopsis of the identification, designation, and function of these Mtb-encoded sRNAs and sncRNAs. The methodological advances including RNA sequencing strategies, small RNA antagonists, and locked nucleic acid sequence-specific RNA probes advancing the studies on these small RNA are described. Initial insights into the regulation of the small RNA expression and putative processing enzymes required for their synthesis and function are discussed. There are many open questions remaining about the biological and pathogenic roles of these small non-coding RNAs, and potential research directions needed to define the role of these mycobacterial noncoding RNAs are summarized.
Collapse
|
12
|
Gryka-Marton M, Szukiewicz D, Teliga-Czajkowska J, Olesinska M. An Overview of Neonatal Lupus with Anti-Ro Characteristics. Int J Mol Sci 2021; 22:9281. [PMID: 34502221 PMCID: PMC8431034 DOI: 10.3390/ijms22179281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023] Open
Abstract
Neonatal lupus erythematosus (NLE) is a syndrome of clinical symptoms observed in neonates born to mothers with antibodies to soluble antigens of the cell nucleus. The main factors contributing to the pathogenesis of this disease are anti-Sjögren Syndrome A (anti-SS-A) antibodies, known as anti-Ro, and anti-Sjögren Syndrome B (anti-SS-B) antibodies, known as anti-La. Recent publications have also shown the significant role of anti-ribonucleoprotein antibodies (anti-RNP). Seropositive mothers may have a diagnosed rheumatic disease or they can be asymptomatic without diagnosis at the time of childbirth. These antibodies, after crossing the placenta, may trigger a cascade of inflammatory reactions. The symptoms of NLE can be divided into reversible symptoms, which concern skin, hematological, and hepatological changes, but 2% of children develop irreversible symptoms, which include disturbances of the cardiac stimulatory and conduction system. Preconceptive care and pharmacological prophylaxis of NLE in the case of mothers from the risk group are important, as well as the monitoring of the clinical condition of the mother and fetus throughout pregnancy and the neonatal period. The aim of this manuscript is to summarize the previous literature and current state of knowledge about neonatal lupus and to discuss the role of anti-Ro in the inflammatory process.
Collapse
Affiliation(s)
- Malgorzata Gryka-Marton
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland;
- Department of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Justyna Teliga-Czajkowska
- Department of Obstetrics and Gynecology Didactics, Faculty of Health Sciences, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Marzena Olesinska
- Department of Systemic Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
13
|
Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Front Immunol 2021; 12:686501. [PMID: 34335588 PMCID: PMC8319742 DOI: 10.3389/fimmu.2021.686501] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE), often considered the prototype of autoimmune diseases, is characterized by over-activation of the autoimmune system with abnormal functions of innate and adaptive immune cells and the production of a large number of autoantibodies against nuclear components. Given the highly complex and heterogeneous nature of SLE, the pathogenesis of this disease remains incompletely understood and is presumed to involve both genetic and environmental factors. Currently, disturbance of the gut microbiota has emerged as a novel player involved in the pathogenesis of SLE. With in-depth research, the understanding of the intestinal bacteria-host interaction in SLE is much more comprehensive. Recent years have also seen an increase in metabolomics studies in SLE with the attempt to identify potential biomarkers for diagnosis or disease activity monitoring. An intricate relationship between gut microbiome changes and metabolic alterations could help explain the mechanisms by which gut bacteria play roles in the pathogenesis of SLE. Here, we review the role of microbiota dysbiosis in the aetiology of SLE and how intestinal microbiota interact with the host metabolism axis. A proposed treatment strategy for SLE based on gut microbiome (GM) regulation is also discussed in this review. Increasing our understanding of gut microbiota and their function in lupus will provide us with novel opportunities to develop effective and precise diagnostic strategies and to explore potential microbiota-based treatments for patients with lupus.
Collapse
Affiliation(s)
- Lingshu Zhang
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Yang
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongkang Wu
- Department of Laboratory Medicine and Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhou C, Liu Y, Qiao L, Liu Y, Yang N, Meng Y, Yue B. The draft genome of the blood pheasant ( Ithaginis cruentus): Phylogeny and high-altitude adaptation. Ecol Evol 2020; 10:11440-11452. [PMID: 33144976 PMCID: PMC7593199 DOI: 10.1002/ece3.6782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
The blood pheasant (Ithaginis cruentus), the only species in the genus Ithaginis, lives in an extremely inhospitable high-altitude environment, coping with hypoxia and ultraviolet (UV) radiation. To further investigate the phylogeny of Phasianidae species based on complete genomes and understand the molecular genetic mechanisms of the high-altitude adaptation of the blood pheasant, we de novo assembled and annotated the complete genome of the blood pheasant. The blood pheasant genome size is 1.04 Gb with scaffold N50 of 10.88 Mb. We identified 109.92 Mb (10.62%) repetitive elements, 279,037 perfect microsatellites, and 17,209 protein-coding genes. The phylogenetic tree of Phasianidae based on whole genomes revealed three highly supported major clades with the blood pheasant included in the "erectile clade." Comparative genomics analysis showed that many genes were positively selected in the blood pheasant, which was associated with response to hypoxia and/or UV radiation. More importantly, among these positively selected genes (PSGs) which were related to high-altitude adaptation, sixteen PSGs had blood pheasant-specific missense mutations. Our data and analysis lay solid foundation to the study of Phasianidae phylogeny and provided new insights into the potential adaptation mechanisms to the high altitude employed by the blood pheasant.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Yi Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lu Qiao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Yang Liu
- Chengdu Zoo/Chengdu Wildlife Research InstituteChengduChina
| | - Nan Yang
- Institute of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduChina
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
15
|
Leng Y, Sim S, Magidson V, Wolin SL. Noncoding Y RNAs regulate the levels, subcellular distribution and protein interactions of their Ro60 autoantigen partner. Nucleic Acids Res 2020; 48:6919-6930. [PMID: 32469055 DOI: 10.1093/nar/gkaa414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Noncoding Y RNAs are abundant in animal cells and present in many bacteria. These RNAs are bound and stabilized by Ro60, a ring-shaped protein that is a target of autoantibodies in patients with systemic lupus erythematosus. Studies in bacteria revealed that Y RNA tethers Ro60 to a ring-shaped exoribonuclease, forming a double-ringed RNP machine specialized for structured RNA degradation. In addition to functioning as a tether, the bacterial RNA gates access of substrates to the Ro60 cavity. To identify roles for Y RNAs in mammals, we used CRISPR to generate mouse embryonic stem cells lacking one or both of the two murine Y RNAs. Despite reports that animal cell Y RNAs are essential for DNA replication, cells lacking these RNAs divide normally. However, Ro60 levels are reduced, revealing that Y RNA binding is required for Ro60 to accumulate to wild-type levels. Y RNAs regulate the subcellular location of Ro60, since Ro60 is reduced in the cytoplasm and increased in nucleoli when Y RNAs are absent. Last, we show that Y RNAs tether Ro60 to diverse effector proteins to generate specialized RNPs. Together, our data demonstrate that the roles of Y RNAs are intimately connected to that of their Ro60 partner.
Collapse
Affiliation(s)
- Yuanyuan Leng
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
17
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iga Kołodziejczak
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
18
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
19
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Chen S, Zhao Y, Jin H, Qi X, He J, Huang J, Ding Y, Chen W, Wu C, Ding X, Chen S, Zhang H, Shang Y, Du D, Zhao J. TROVE2 strengthens the anti-inflammatory effect via macrophage polarization by estrogen induction in abdominal aortic aneurysm. Life Sci 2020; 242:117207. [DOI: 10.1016/j.lfs.2019.117207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023]
|
21
|
Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, Ruiz DZ, Renfroe SC, Vieira SM, Ruff WE, Sim S, Kriegel C, Glanternik J, Chen X, Girardi M, Degnan P, Costenbader KH, Goodman AL, Wolin SL, Kriegel MA. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med 2019; 10:10/434/eaan2306. [PMID: 29593104 DOI: 10.1126/scitranslmed.aan2306] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/17/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
The earliest autoantibodies in lupus are directed against the RNA binding autoantigen Ro60, but the triggers against this evolutionarily conserved antigen remain elusive. We identified Ro60 orthologs in a subset of human skin, oral, and gut commensal bacterial species and confirmed the presence of these orthologs in patients with lupus and healthy controls. Thus, we hypothesized that commensal Ro60 orthologs may trigger autoimmunity via cross-reactivity in genetically susceptible individuals. Sera from human anti-Ro60-positive lupus patients immunoprecipitated commensal Ro60 ribonucleoproteins. Human Ro60 autoantigen-specific CD4 memory T cell clones from lupus patients were activated by skin and mucosal Ro60-containing bacteria, supporting T cell cross-reactivity in humans. Further, germ-free mice spontaneously initiated anti-human Ro60 T and B cell responses and developed glomerular immune complex deposits after monocolonization with a Ro60 ortholog-containing gut commensal, linking anti-Ro60 commensal responses in vivo with the production of human Ro60 autoantibodies and signs of autoimmunity. Together, these data support that colonization with autoantigen ortholog-producing commensal species may initiate and sustain chronic autoimmunity in genetically predisposed individuals. The concept of commensal ortholog cross-reactivity may apply more broadly to autoimmune diseases and lead to novel treatment approaches aimed at defined commensal species.
Collapse
Affiliation(s)
- Teri M Greiling
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA.,Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carina Dehner
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xinguo Chen
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kevin Hughes
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alonso J Iñiguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marco Boccitto
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Zegarra Ruiz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen C Renfroe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Silvio M Vieira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Ruff
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Soyeong Sim
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm SE-171 77, Sweden.,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christina Kriegel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Julia Glanternik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xindi Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael Girardi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Patrick Degnan
- Department of Microbial Pathogenesis and Yale Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karen H Costenbader
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Yale Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA. .,Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Kriegel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA. .,Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H, Lei Y, Michaeli S, Tschudi C. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J Biol Chem 2019; 294:15559-15574. [PMID: 31439669 DOI: 10.1074/jbc.ra119.008580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/07/2019] [Indexed: 11/06/2022] Open
Abstract
The vault ribonucleoprotein (RNP), comprising vault RNA (vtRNA) and telomerase-associated protein 1 (TEP1), is found in many eukaryotes. However, previous studies of vtRNAs, for example in mammalian cells, have failed to reach a definitive conclusion about their function. vtRNAs are related to Y RNAs, which are complexed with Ro protein and influence Ro's function in noncoding RNA (ncRNA) quality control and processing. In Trypanosoma brucei, the small noncoding TBsRNA-10 was first described in a survey of the ncRNA repertoire in this organism. Here, we report that TBsRNA-10 in T. brucei is a vtRNA, based on its association with TEP1 and sequence similarity to those of other known and predicted vtRNAs. We observed that like vtRNAs in other species, TBsRNA-10 is transcribed by RNA polymerase III, which in trypanosomes also generates the spliceosomal U-rich small nuclear RNAs. In T. brucei, spliced leader (SL)-mediated trans-splicing of pre-mRNAs is an obligatory step in gene expression, and we found here that T. brucei's vtRNA is highly enriched in a non-nucleolar locus in the cell nucleus implicated in SL RNP biogenesis. Using a newly developed permeabilized cell system for the bloodstream form of T. brucei, we show that down-regulated vtRNA levels impair trans-spliced mRNA production, consistent with a role of vtRNA in trypanosome mRNA metabolism. Our results suggest a common theme for the functions of vtRNAs and Y RNAs. We conclude that by complexing with their protein-binding partners TEP1 and Ro, respectively, these two RNA species modulate the metabolism of various RNA classes.
Collapse
Affiliation(s)
- Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Huafang Shi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Yuling Lei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut 06536
| |
Collapse
|
23
|
Boccitto M, Wolin SL. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 2019; 54:133-152. [PMID: 31084369 DOI: 10.1080/10409238.2019.1608902] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3' to 5' exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren's syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Marco Boccitto
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| | - Sandra L Wolin
- a RNA Biology Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , MD , USA
| |
Collapse
|
24
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
25
|
Abstract
Y RNAs are noncoding RNAs (ncRNAs) that are present in most animal cells and also in many bacteria. These RNAs were discovered because they are bound by the Ro60 protein, a major target of autoantibodies in patients with some systemic autoimmune rheumatic diseases. Studies of Ro60 and Y RNAs in Deinococcus radiodurans, the first sequenced bacterium with a Ro60 ortholog, revealed that they function with 3'-to-5' exoribonucleases to alter the composition of RNA populations during some forms of environmental stress. In the best-characterized example, Y RNA tethers the Ro60 protein to the exoribonuclease polynucleotide phosphorylase, allowing this exoribonuclease to degrade structured RNAs more effectively. Y RNAs can also function as gates to regulate access of other RNAs to the Ro60 central cavity. Recent studies in the enteric bacterium Salmonella enterica serovar Typhimurium resulted in the discovery that Y RNAs are widely present in bacteria. Remarkably, the most-conserved subclass of bacterial Y RNAs contains a domain that mimics tRNA. In this review, we discuss the structure, conservation, and known functions of bacterial Y RNAs as well as the certainty that more bacterial Y RNAs and additional roles for these ncRNAs remain to be uncovered.
Collapse
|
26
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Kim SY, Park MJ, Kwon JE, Choi SY, Seo HB, Jung KA, Choi JW, Baek JA, Lee HH, Lee BI, Park SH, Cho ML. Ro60 Inhibits Colonic Inflammation and Fibrosis in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. Immunol Lett 2018; 201:45-51. [PMID: 30395870 DOI: 10.1016/j.imlet.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease (IBD) is caused by chronic inflammation of the gastrointestinal tract. The pathogenesis of IBD remains unclear. The inflammation is associated with activation of T helper (Th) lymphocytes and chronic production of inflammatory cytokines. Ro60 suppresses the expression of tumor necrosis factor α, interleukin (IL)-6, and interferon α by inhibiting Alu transcription; control of Ro60 mRNA expression may thus be therapeutically useful. However, few studies have evaluated the anti-inflammatory activity of Ro60. The Ro60 level is decreased in IBD patients; we thus hypothesized that Ro60 was involved in the development of this autoimmune disease. We subjected mice with dextran sodium sulfate (DSS)-induced colitis to gene therapy using a vector that overexpressed Ro60 threefold. We scored IBD progression by repeatedly weighing the mice. Ro60 ameliorated colitis severity and reduced the levels of tumor necrosis factor α, IL-6, IL-17, IL-8, and vascular endothelial growth factor. Ro60 overexpression decreased the levels of α-smooth muscle actin (a marker of activated myofibroblasts) and type I collagen. The anti-inflammatory and anti-fibrotic activities of Ro60 ameliorated the severity of DSS-induced colitis in mice by repressing inflammation, fibrosis, angiogenesis, and the production of reactive oxygen species.
Collapse
Affiliation(s)
- Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Jeong-Eun Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Si-Young Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Kyung Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Han Hee Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-In Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
28
|
Scofield RH, Fayyaz A, Kurien BT, Koelsch KA. Prognostic value of Sjögren's syndrome autoantibodies. ACTA ACUST UNITED AC 2018; 3. [PMID: 32090197 DOI: 10.21037/jlpm.2018.08.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sjögren's syndrome is in part considered an autoimmune disease because patient sera contain antibodies binding self-structures. In fact, in addition to anti-Ro (or SSA) and anti-La (or SSB), which are included in the classification criteria, there are a wide variety of autoantibodies found among these patients. We reviewed English-language MEDLINE sources. Anti-Ro and anti-La found among healthy individuals, including mothers giving birth to infants with neonatal lupus, predicts future connective tissue disease. Those with Sjögren's syndrome can be divided into two groups; patients with only exocrine gland involvement and those with systemic disease. The presence of anti-Ro/La is associated with systemic, extraglandular disease. Rheumatoid factor is also associated with extraglandular disease while anti-cyclic citrullinated peptide (CCP) is likely associated with inflammatory arthritis and progression to rheumatoid arthritis. Anti-mitochondrial antibodies are uncommon but predict progression to primary biliary cirrhosis. Cryoglobulinemia is found in excess among those with non-Hodgkin's lymphoma. Determination of autoantibodies on the sera of Sjögren's syndrome patients has prognostic implications for Sjögren's syndrome itself as well as associated diseases.
Collapse
Affiliation(s)
- R Hal Scofield
- Arthritis & Clinical Immunol Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Medical and Research Services, US Department of Veterans Affairs Hospital, Oklahoma City, OK, USA
| | - Anum Fayyaz
- Arthritis & Clinical Immunol Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Medical and Research Services, US Department of Veterans Affairs Hospital, Oklahoma City, OK, USA
| | - Biji T Kurien
- Arthritis & Clinical Immunol Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Medical and Research Services, US Department of Veterans Affairs Hospital, Oklahoma City, OK, USA
| | - Kristi A Koelsch
- Arthritis & Clinical Immunol Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Medical and Research Services, US Department of Veterans Affairs Hospital, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Driedonks TAP, van der Grein SG, Ariyurek Y, Buermans HPJ, Jekel H, Chow FWN, Wauben MHM, Buck AH, 't Hoen PAC, Nolte-'t Hoen ENM. Immune stimuli shape the small non-coding transcriptome of extracellular vesicles released by dendritic cells. Cell Mol Life Sci 2018; 75:3857-3875. [PMID: 29808415 PMCID: PMC6154026 DOI: 10.1007/s00018-018-2842-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023]
Abstract
The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk P J Buermans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrike Jekel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Franklin W N Chow
- School of Biological Sciences, Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Marca H M Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Amy H Buck
- School of Biological Sciences, Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Biomolecular and Molecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
30
|
Sandhya P, Kurien BT, Danda D, Scofield RH. Update on Pathogenesis of Sjogren's Syndrome. Curr Rheumatol Rev 2018; 13:5-22. [PMID: 27412602 DOI: 10.2174/1573397112666160714164149] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 11/15/2015] [Accepted: 01/01/2016] [Indexed: 01/06/2023]
Abstract
Sjogren's syndrome is a common autoimmune disease that presents with sicca symptoms and extraglandular features. Sjogren's syndrome is presumably as common as RA; yet it is poorly understood, underdiagnosed and undertreated. From the usual identity as an autoimmune exocrinopathy to its most recent designate as an autoimmune epithelitis - the journey of SS is complex. We herein review some of the most important milestones that have shed light on different aspects of pathogenesis of this enigmatic disease. This includes role of salivary gland epithelial cells, and their interaction with cells of the innate and adaptive immune system. Non-immune factors acting in concert or in parallel with immune factors may also be important. The risk genes identified so far have only weak association, nevertheless advances in genetics have enhanced understanding of disease mechanisms. Role of epigenetic and environmental role factors is also being explored. SS has also some unique features such as congenital heart block and high incidence of lymphoma; disease mechanisms accounting for these manifestations are also reviewed.
Collapse
|
31
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
32
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
33
|
PARN Modulates Y RNA Stability and Its 3'-End Formation. Mol Cell Biol 2017; 37:MCB.00264-17. [PMID: 28760775 DOI: 10.1128/mcb.00264-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Loss-of-function mutations in 3'-to-5' exoribonucleases have been implicated in hereditary human diseases. For example, PARN mutations cause a severe form of dyskeratosis congenita (DC), wherein PARN deficiency leads to human telomerase RNA instability. Since the DC phenotype in PARN patients is even more severe than that of loss-of-function alleles in telomerase components, we hypothesized that PARN would also be required for the stability of other RNAs. Here, we show that PARN depletion reduces the levels of abundant human Y RNAs, which might contribute to the severe phenotype of DC observed in patients. Depletion of PAPD5 or the cytoplasmic exonuclease DIS3L rescues the effect of PARN depletion on Y RNA levels, suggesting that PARN stabilizes Y RNAs by removing oligoadenylated tails added by PAPD5, which would otherwise recruit DIS3L for Y RNA degradation. Through deep sequencing of 3' ends, we provide evidence that PARN can also deadenylate the U6 and RMRP RNAs without affecting their levels. Moreover, we observed widespread posttranscriptional oligoadenylation, uridylation, and guanylation of U6 and Y RNA 3' ends, suggesting that in mammalian cells, the formation of a 3' end for noncoding RNAs can be a complex process governed by the activities of various 3'-end polymerases and exonucleases.
Collapse
|
34
|
Clancy RM, Markham AJ, Buyon JP. Endosomal Toll-like receptors in clinically overt and silent autoimmunity. Immunol Rev 2016; 269:76-84. [PMID: 26683146 DOI: 10.1111/imr.12383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Toll-like receptors (TLRs), first identified as pattern recognition receptors, are now recognized to serve as a key interface between innate and adaptive immunity. Systemic lupus erythematosus (SLE) is characterized by both continuous and cyclic stimulation of the innate and adaptive immune system by endogenous nucleic acids released from apoptotic or necrotic cells. TLR7 and TLR9 function as innate sensors of viral infection as their ligands are ssRNA and dsDNA, respectively. Recognition of self nucleic acids by endosomal TLRs in B cells and pDCs is thought to be an important step in the pathogenesis of SLE, generating anti-nuclear antibodies and producing type I IFN. In this review, we take a specific look at how TLR7, non-coding RNA, and SSA/Ro60 can contribute to clinical autoimmunity and organ damage in the context of neonatal lupus (NL). Although 15 times less common than SLE, NL provides a unique opportunity to study two different aspects of autoimmunity: passively acquired tissue injury in a developing fetus and clinical progression of disease in an asymptomatic mother found to have anti-Ro60 autoantibodies only after identification of heart block/rash in a child. Finally, we discuss hydroxychloroquine (HCQ) use by asymptomatic subjects which may forestall the clinical expression of autoimmunity.
Collapse
Affiliation(s)
- Robert M Clancy
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Androo J Markham
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Telesnitsky A, Wolin SL. The Host RNAs in Retroviral Particles. Viruses 2016; 8:v8080235. [PMID: 27548206 PMCID: PMC4997597 DOI: 10.3390/v8080235] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA) are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA), some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs' packaging determinants differ from the viral genome's, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA) species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1) reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs-if any-have remained elusive.
Collapse
Affiliation(s)
- Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
36
|
Abstract
We compiled information on antibodies in Sjögren syndrome, focusing more on clinical manifestations associated with anti-Ro/SSA and anti-La/SSB antibodies and studies regarding novel antibodies. We reviewed previous as well as most recent studies with the subject heading Sjogren in combination with antibodies and congenital heart block (CHB). Almost half of asymptomatic mothers giving birth to children with CHB ultimately develop Sjögren. We discussed studies concerning the presence of antibodies predating clinical manifestations of disease. Studies in the future are required to ascertain the pathogenic mechanisms associated with these antibodies and the specific clinical manifestation related to new autoantibodies.
Collapse
Affiliation(s)
- Anum Fayyaz
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 Northeast, 13th Street, Oklahoma City, OK 73104, USA; Department of Medicine, College of Medicine, 1000 N Lincoln Boulevard, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Medical and Research Services, US Department of Veterans Affairs Hospital, 921 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Biji T Kurien
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 Northeast, 13th Street, Oklahoma City, OK 73104, USA; Department of Medicine, College of Medicine, 1000 N Lincoln Boulevard, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Medical and Research Services, US Department of Veterans Affairs Hospital, 921 NE 13th Street, Oklahoma City, OK 73104, USA
| | - R Hal Scofield
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 Northeast, 13th Street, Oklahoma City, OK 73104, USA; Department of Medicine, College of Medicine, 1000 N Lincoln Boulevard, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Medical and Research Services, US Department of Veterans Affairs Hospital, 921 NE 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
37
|
Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I, Kou Y, Haroutunian V, Ma'ayan A, Buxbaum JD, Darnell RB. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. eLife 2016; 5. [PMID: 26894958 PMCID: PMC4798961 DOI: 10.7554/elife.10421] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022] Open
Abstract
Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI:http://dx.doi.org/10.7554/eLife.10421.001 When a gene is active, its DNA is copied into a molecule of RNA. This molecule then undergoes a process called splicing which removes certain segments, and the resulting ‘messenger RNA’ molecule is then translated into protein. Many messenger RNAs go through alternative splicing, whereby different segments can be included or excluded from the final molecule. This allows more than one type of protein to be produced from a single gene. Specialized RNA binding proteins associate with messenger RNAs and regulate not only their splicing, but also their abundance and location within the cell. These activities are crucially important in the brain where forming memories and learning new skills requires thousands of proteins to be made rapidly. Many members of a family of RNA binding proteins called ELAV-like proteins are unique to neurons. These proteins have also been associated with conditions such as Alzheimer’s disease, but it was not known which messenger RNAs were the targets of these proteins in the human brain. Scheckel, Drapeau et al. have now addressed this question and used a method termed 'CLIP' to identify thousands of messenger RNAs that directly bind to neuronal ELAV-like proteins in the human brain. Many of these messenger RNAs coded for proteins that are important for the health of neurons, and neuronal ELAV-like proteins were shown to regulate both the alternative splicing and the abundance of these messenger RNAs. The regulation of RNA molecules in post-mortem brain samples of people with or without Alzheimer’s disease was then compared. Scheckel, Drapeau et al. unexpectedly observed that, in the Alzheimer’s disease patients, the neuronal ELAV-like proteins were very often associated with a class of RNA molecules known as Y RNAs. These RNA molecules do not code for proteins, and are therefore classified as non-coding RNA. Moreover, massive shifts in the binding of ELAV-like proteins onto Y RNAs were observed in neurons grown in the laboratory that had been briefly stressed by exposure to ultraviolet radiation. Scheckel, Drapeau et al. suggest that the strong tendency of neuronal ELAV-like proteins to bind to Y RNAs in conditions of short- or long-term stress, including Alzheimer’s disease, might prevent these proteins from associating with their normal messenger RNA targets. This was supported by finding that some messenger RNAs targeted by neuronal ELAV-like proteins showed altered regulation after stress. Such changes to the normal regulation of these messenger RNAs could have a large impact on the proteins that are produced from them. Together, these findings link Y RNAs to both neuronal stress and Alzheimer’s disease, and suggest a new way that a cell can alter which messenger RNAs are expressed in response to changes in its environment. The next step is to explore what causes the shift in neuronal ELAV-like protein binding from messenger RNAs to Y RNAs and how it might contribute to disease. DOI:http://dx.doi.org/10.7554/eLife.10421.002
Collapse
Affiliation(s)
- Claudia Scheckel
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maria A Frias
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,James J. Peters VA Medical Center, New York, United States
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| |
Collapse
|
38
|
Abstract
A fascinating aspect of retroviruses is their tendency to nonrandomly incorporate host cell RNAs into virions. In addition to the specific tRNAs that prime reverse transcription, all examined retroviruses selectively package multiple host cell noncoding RNAs (ncRNAs). Many of these ncRNAs appear to be encapsidated shortly after synthesis, before assembling with their normal protein partners. Remarkably, although some packaged ncRNAs, such as pre-tRNAs and the spliceosomal U6 small nuclear RNA (snRNA), were believed to reside exclusively within mammalian nuclei, it was demonstrated recently that the model retrovirus murine leukemia virus (MLV) packages these ncRNAs from a novel pathway in which unneeded nascent ncRNAs are exported to the cytoplasm for degradation. The finding that retroviruses package forms of ncRNAs that are rare in cells suggests several hypotheses for how these RNAs could assist retrovirus assembly and infectivity. Moreover, recent experiments in several laboratories have identified additional ways in which cellular ncRNAs may contribute to the retrovirus life cycle. This review focuses on the ncRNAs that are packaged by retroviruses and the ways in which both encapsidated ncRNAs and other cellular ncRNAs may contribute to retrovirus replication.
Collapse
|
39
|
Chakrabortty SK, Prakash A, Nechooshtan G, Hearn S, Gingeras TR. Extracellular vesicle-mediated transfer of processed and functional RNY5 RNA. RNA (NEW YORK, N.Y.) 2015; 21:1966-79. [PMID: 26392588 PMCID: PMC4604435 DOI: 10.1261/rna.053629.115] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 05/22/2023]
Abstract
Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion.
Collapse
Affiliation(s)
| | - Ashwin Prakash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gal Nechooshtan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
40
|
Ødum Nielsen I, Hartwig Trier N, Friis T, Houen G. Characterization of continuous monoclonal antibody epitopes in the N-terminus of Ro60. Biopolymers 2015; 106:62-71. [PMID: 26506479 DOI: 10.1002/bip.22758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/12/2015] [Accepted: 10/17/2015] [Indexed: 11/06/2022]
Abstract
One of the major targets of the autoimmune response in the rheumatic autoimmune diseases, Systemic Lupus Erythematosus and Sjögrens Syndrome, is the protein Ro60. Ro60 is known to associate with small misfolded RNAs, and is involved in RNA quality control and in enhancing cell survival during cellular stress, e.g. after ultaviolet irradiation. In this study, six monoclonal antibodies to Ro60 were analyzed in order to identify antigenic regions and the nature of these. Preliminary analyses revealed that two of the antibodies recognized continuous epitopes, while the remaining antibodies most likely recognized conformational epitopes. The continuous epitopes of Ro60 were characterised by modified immunoassays employing resin-bound peptides and free peptides. Peptide screenings located the epitopes to the N-terminus of Ro60, and further analyses indicated that the epitopes of the monoclonal antibodies TROVE2 and SSI-HYB 358-02 were located to amino acids 8-17 and 34-49, respectively. Moreover, charged amino acids were found to be especially important for antibody reactivity, although antibody reactivity of the monoclonal antibody TROVE2 primarily was found to be epitope backbone-dependent.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Nicole Hartwig Trier
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Tina Friis
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Gunnar Houen
- Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| |
Collapse
|
41
|
Zuo L, Saba L, Lin X, Tan Y, Wang K, Krystal JH, Tabakoff B, Luo X. Significant association between rare IPO11-HTR1A variants and attention deficit hyperactivity disorder in Caucasians. Am J Med Genet B Neuropsychiatr Genet 2015; 168:544-56. [PMID: 26079129 PMCID: PMC4851708 DOI: 10.1002/ajmg.b.32329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022]
Abstract
We comprehensively examined the rare variants in the IPO11-HTR1A region to explore their roles in neuropsychiatric disorders. Five hundred seventy-three to 1,181 rare SNPs in subjects of European descent and 1,234-2,529 SNPs in subjects of African descent (0 < minor allele frequency (MAF) < 0.05) were analyzed in a total of 49,268 subjects in 21 independent cohorts with 11 different neuropsychiatric disorders. Associations between rare variant constellations and diseases and associations between individual rare variants and diseases were tested. RNA expression changes of this region were also explored. We identified a rare variant constellation across the entire IPO11-HTR1A region that was associated with attention deficit hyperactivity disorder (ADHD) in Caucasians (T5: P = 7.9 × 10(-31) ; Fp: P = 1.3 × 10(-32) ), but not with any other disorder examined; association signals mainly came from IPO11 (T5: P = 3.6 × 10(-10) ; Fp: P = 3.2 × 1 0(-10) ) and the intergenic region between IPO11 and HTR1A (T5: P = 4.1 × 10(-30) ; Fp: P = 5.4 × 10(-32) ). One association between ADHD and an intergenic rare variant, i.e., rs10042956, exhibited region- and cohort-wide significance (P = 5.2 × 10(-6) ) and survived correction for false discovery rate (q = 0.006). Cis-eQTL analysis showed that, 29 among the 41 SNPs within or around IPO11 had replicable significant regulatory effects on IPO11 exon expression (1.5 × 10(-17) ≤P < 0.002) in human brain or peripheral blood mononuclear cell tissues. We concluded that IPO11-HTR1A was a significant risk gene region for ADHD in Caucasians.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Saba
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Alcohol Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
42
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
43
|
Spurlock CF, Tossberg JT, Guo Y, Sriram S, Crooke PS, Aune TM. Defective structural RNA processing in relapsing-remitting multiple sclerosis. Genome Biol 2015; 16:58. [PMID: 25885816 PMCID: PMC4403723 DOI: 10.1186/s13059-015-0629-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surveillance of integrity of the basic elements of the cell including DNA, RNA, and proteins is a critical element of cellular physiology. Mechanisms of surveillance of DNA and protein integrity are well understood. Surveillance of structural RNAs making up the vast majority of RNA in a cell is less well understood. Here, we sought to explore integrity of processing of structural RNAs in relapsing remitting multiple sclerosis (RRMS) and other inflammatory diseases. RESULTS We employed mononuclear cells obtained from subjects with RRMS and cell lines. We used quantitative-PCR and whole genome RNA sequencing to define defects in structural RNA surveillance and siRNAs to deplete target proteins. We report profound defects in surveillance of structural RNAs in RRMS exemplified by elevated levels of poly(A) + Y1-RNA, poly(A) + 18S rRNA and 28S rRNAs, elevated levels of misprocessed 18S and 28S rRNAs and levels of the U-class of small nuclear RNAs. Multiple sclerosis is also associated with genome-wide defects in mRNA splicing. Ro60 and La proteins, which exist in ribonucleoprotein particles and play different roles in quality control of structural RNAs, are also deficient in RRMS. In cell lines, silencing of the genes encoding Ro60 and La proteins gives rise to these same defects in surveillance of structural RNAs. CONCLUSIONS Our results establish that profound defects in structural RNA surveillance exist in RRMS and establish a causal link between Ro60 and La proteins and integrity of structural RNAs.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Medical Center North T3113, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|
44
|
Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev 2014; 17:86-98. [PMID: 24607831 DOI: 10.1016/j.arr.2014.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Small noncoding RNAs (sncRNAs) mediate a variety of cellular functions in animals and plants. Deep sequencing has made it possible to obtain highly detailed information on the types and abundance of sncRNAs in biological specimens, leading to the discovery that sncRNAs circulate in the blood of humans and mammals. The most abundant types of circulating sncRNAs are microRNAs (miRNAs), 5' transfer RNA (tRNA) halves, and YRNA fragments, with minute amounts of other types that may nevertheless be significant. Of the more abundant circulating sncRNAs only miRNAs have well described functions, but characteristics of the others suggest specific processing and secretion as complexes that protect the RNA from degradation. The properties of circulating sncRNAs are consistent with their serving as signaling molecules, and investigations of circulating miRNAs support the view that they can enter cells and regulate cellular functions. The serum levels of specific sncRNAs change markedly with age, and these changes can be mitigated by calorie restriction (CR), indicating that levels are under physiologic control. The ability of circulating sncRNAs to transmit functions between cells and to regulate a broad spectrum of cellular functions, and the changes in their levels with age, implicate them in the manifestations of aging. Our understanding of the functions of circulating sncRNA, particularly in relation to aging, is currently at a very early stage; results to date suggest that more extensive investigation will yield important insights into mechanisms of aging.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA; Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| |
Collapse
|
45
|
SnapShot-Seq: a method for extracting genome-wide, in vivo mRNA dynamics from a single total RNA sample. PLoS One 2014; 9:e89673. [PMID: 24586954 PMCID: PMC3935918 DOI: 10.1371/journal.pone.0089673] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022] Open
Abstract
mRNA synthesis, processing, and destruction involve a complex series of molecular steps that are incompletely understood. Because the RNA intermediates in each of these steps have finite lifetimes, extensive mechanistic and dynamical information is encoded in total cellular RNA. Here we report the development of SnapShot-Seq, a set of computational methods that allow the determination of in vivo rates of pre-mRNA synthesis, splicing, intron degradation, and mRNA decay from a single RNA-Seq snapshot of total cellular RNA. SnapShot-Seq can detect in vivo changes in the rates of specific steps of splicing, and it provides genome-wide estimates of pre-mRNA synthesis rates comparable to those obtained via labeling of newly synthesized RNA. We used SnapShot-Seq to investigate the origins of the intrinsic bimodality of metazoan gene expression levels, and our results suggest that this bimodality is partly due to spillover of transcriptional activation from highly expressed genes to their poorly expressed neighbors. SnapShot-Seq dramatically expands the information obtainable from a standard RNA-Seq experiment.
Collapse
|
46
|
Das U, Shuman S. 2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa. RNA (NEW YORK, N.Y.) 2013; 19:1355-62. [PMID: 23945037 PMCID: PMC3854526 DOI: 10.1261/rna.039917.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/20/2013] [Indexed: 05/19/2023]
Abstract
RNA terminal phosphate cyclase catalyzes the ATP-dependent conversion of a 3'-phosphate RNA end to a 2',3'-cyclic phosphate via covalent enzyme-(histidinyl-Nε)-AMP and RNA(3')pp(5')A intermediates. Here, we report that Escherichia coli RtcA (and its human homolog Rtc1) are capable of cyclizing a 2'-phosphate RNA end in high yield. The rate of 2'-phosphate cyclization by RtcA is five orders of magnitude slower than 3'-phosphate cyclization, notwithstanding that RtcA binds with similar affinity to RNA3'p and RNA2'p substrates. These findings expand the functional repertoire of RNA cyclase and suggest that phosphate geometry during adenylate transfer to RNA is a major factor in the kinetics of cyclization. RtcA is coregulated in an operon with an RNA ligase, RtcB, that splices RNA 5'-OH ends to either 3'-phosphate or 2',3'-cyclic phosphate ends. Our results suggest that RtcA might serve an end healing function in an RNA repair pathway, by converting RNA 2'-phosphates, which cannot be spliced by RtcB, to 2',3'-cyclic phosphates that can be sealed. The rtcBA operon is controlled by the σ(54) coactivator RtcR encoded by an adjacent gene. This operon arrangement is conserved in diverse bacterial taxa, many of which have also incorporated the RNA-binding protein Ro (which is implicated in RNA quality control under stress conditions) as a coregulated component of the operon.
Collapse
|
47
|
Wolin SL, Belair C, Boccitto M, Chen X, Sim S, Taylor DW, Wang HW. Non-coding Y RNAs as tethers and gates: Insights from bacteria. RNA Biol 2013; 10:1602-8. [PMID: 24036917 DOI: 10.4161/rna.26166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA; Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Cedric Belair
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Marco Boccitto
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Xinguo Chen
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - Soyeong Sim
- Department of Cell Biology; Yale School of Medicine; New Haven, CT USA
| | - David W Taylor
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA
| | - Hong-Wei Wang
- Department of Molecular Biophysics and Biochemistry; Yale School of Medicine; New Haven, CT USA; Tsinghua-Peking Center for Life Sciences; School of Life Sciences; Tsinghua University; Beijing, P.R. China
| |
Collapse
|
48
|
Precocious detection on amphibian oocyte lampbrush chromosomes of subtle changes in the cellular localisation of the Ro52 protein induced by in vitro culture. Chromosome Res 2013; 20:1033-44. [PMID: 23149575 DOI: 10.1007/s10577-012-9325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Subterminal lampbrush loops of one of the 12 bivalents of the oocyte karyotype of Pleurodeles waltl (Amphibian, Urodele) underwent prominent morphological changes upon in vitro culture. These loops exhibited a fine ribonucleoprotein (RNP) granular matrix, which evolved during culture into huge structures that we have named 'chaussons' (slippers). This phenomenon involved progressive accumulation of proteins in the RNP matrix without protein neosynthesis. One of these proteins, which translocated into the nucleus during the culture, was identified as a homolog of the human Ro52 E3 ubiquitin ligase. RNA polymerase III was also found to accumulate on the same loops. These results suggest that the subterminal loops of bivalent XII act as a storage site for the components of a nuclear machinery involved in the quality control of RNA synthesis and maturation in response to cellular stress. They also emphasise the considerable value of the lampbrush chromosome system for a direct visualisation of modifications in gene expression and open the question of a nuclear accumulation of Ro52 in human or animal oocytes cultured in vitro for assisted reproductive technologies (ART).
Collapse
|
49
|
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013; 19:604-24. [PMID: 23856356 DOI: 10.1093/humupd/dmt031] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are known to act as epigenetic modifiers, inducing histone modifications and DNA methylation, perhaps playing a role in transgenerational epigenetic inherence. Transcript profiling holds considerable potential for the discovery of fertility biomarkers for both agriculture and human medicine. Comparing the differential RNA profiles of infertile and fertile individuals as well as assessing species similarities, should resolve the regulatory pathways contributing to male factor infertility. CONCLUSIONS Dad delivers a complex population of RNAs to the oocyte at fertilization that likely influences fertilization, embryo development, the phenotype of the offspring and possibly future generations. Development is continuing on the use of spermatozoal RNA profiles as phenotypic markers of male factor status for use as clinical diagnostics of the father's contribution to the birth of a healthy child.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 2013; 153:166-77. [PMID: 23540697 DOI: 10.1016/j.cell.2013.02.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 01/10/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
Abstract
Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.
Collapse
Affiliation(s)
- Xinguo Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|