1
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
2
|
Patwardhan R, Nanda S, Wagner J, Stockter T, Dehmelt L, Nalbant P. Cdc42 activity in the trailing edge is required for persistent directional migration of keratinocytes. Mol Biol Cell 2024; 35:br1. [PMID: 37910204 PMCID: PMC10881163 DOI: 10.1091/mbc.e23-08-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.
Collapse
Affiliation(s)
- Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Suchet Nanda
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom Stockter
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Leif Dehmelt
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
3
|
Lv T, Xu J, Yuan H, Wang J, Jiang X. Dual Function of Par3 in Tumorigenesis. Front Oncol 2022; 12:915957. [PMID: 35875120 PMCID: PMC9305838 DOI: 10.3389/fonc.2022.915957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Cell maintenance and the establishment of cell polarity involve complicated interactions among multiple protein complexes as well as the regulation of different signaling pathways. As an important cell polarity protein, Par3 is evolutionarily conserved and involved in tight junction formation as well as tumorigenesis. In this review, we aimed to explore the function of Par3 in tumorigenesis. Research has shown that Par3 exhibits dual functions in human cancers, both tumor-promoting and tumor-suppressive. Here, we focus on the activities of Par3 in different stages and types of tumors, aiming to offer a new perspective on the molecular mechanisms that regulate the functions of Par3 in tumor development. Tumor origin, tumor microenvironment, tumor type, cell density, cell–cell contact, and the synergistic effect of Par3 and other tumor-associated signaling pathways may be important reasons for the dual function of Par3. The important role of Par3 in mammalian tumorigenesis and potential signaling pathways is context dependent.
Collapse
Affiliation(s)
- Tao Lv
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, China
- Key Laboratory of Yunnan Province Universities of Qujing Natural History and Early Vertebrate Evolution, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jiashun Xu
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Hemei Yuan
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Jianling Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
- *Correspondence: Jianling Wang, ; Xinni Jiang,
| |
Collapse
|
4
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
5
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Mashukova A, Forteza R, Shah VN, Salas PJ. The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell 2021; 32:690-702. [PMID: 33596087 PMCID: PMC8108508 DOI: 10.1091/mbc.e20-10-0646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Par1b/MARK2 is a Ser/Thr kinase with pleiotropic effects that participates in the generation of apico-basal polarity in Caenorhabditis elegans. It is phosphorylated by atypical PKC(ι/λ) in Thr595 and inhibited. Because previous work showed a decrease in atypical protein kinase C (aPKC) activity under proinflammatory conditions, we analyzed the hypothesis that the resulting decrease in Thr595-MARK2 with increased kinase activity may also participate in innate immunity. We confirmed that pT595-MARK2 was decreased under inflammatory stimulation. The increase in MARK2 activity was verified by Par3 delocalization and rescue with a specific inhibitor. MARK2 overexpression significantly enhanced the transcriptional activity of NF-kB for a subset of transcripts. It also resulted in phosphorylation of a single band (∼Mr 80,000) coimmunoprecipitating with RelA, identified as Med17. In vitro phosphorylation showed direct phosphorylation of Med17 in Ser152 by recombinant MARK2. Expression of S152D-Med17 mimicked the effect of MARK2 activation on downstream transcriptional regulation, which was antagonized by S152A-Med17. The decrease in pThr595 phosphorylation was validated in aPKC-deficient mouse jejunal mucosae. The transcriptional effects were confirmed in transcriptome analysis and transcript enrichment determinations in cells expressing S152D-Med17. We conclude that theMARK2-Med17 axis represents a novel form of cross-talk between polarity signaling and transcriptional regulation including, but not restricted to, innate immunity responses.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.,Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314
| | - Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Viraj N Shah
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
8
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Díaz-Coránguez M, Liu X, Antonetti DA. Tight Junctions in Cell Proliferation. Int J Mol Sci 2019; 20:E5972. [PMID: 31783547 PMCID: PMC6928848 DOI: 10.3390/ijms20235972] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
Collapse
Affiliation(s)
| | | | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; (M.D.-C.); (X.L.)
| |
Collapse
|
10
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
11
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Del Valle Batalla F, Lennon-Dumenil AM, Yuseff MI. Tuning B cell responses to antigens by cell polarity and membrane trafficking. Mol Immunol 2018; 101:140-145. [PMID: 29935436 DOI: 10.1016/j.molimm.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023]
Abstract
The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated.
Collapse
Affiliation(s)
- Felipe Del Valle Batalla
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| |
Collapse
|
13
|
Ong T, Solecki DJ. Seven in Absentia E3 Ubiquitin Ligases: Central Regulators of Neural Cell Fate and Neuronal Polarity. Front Cell Neurosci 2017; 11:322. [PMID: 29081737 PMCID: PMC5646344 DOI: 10.3389/fncel.2017.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
During neural development, neural precursors transition from a proliferative state within their germinal niches to a migratory state as they relocate to their final laminar positions. Transitions across these states are coupled with dynamic alterations in cellular polarity. This key feature can be seen throughout the developing vertebrate brain, in which neural stem cells give rise to multipolar or unpolarized transit-amplifying progenitors. These transit-amplifying progenitors then expand to give rise to mature neuronal lineages that become polarized as they initiate radial migration to their final laminar positions. The conventional understanding of the cellular polarity regulatory program has revolved around signaling cascades and transcriptional networks. In this review, we discuss recent discoveries concerning the role of the Siah2 ubiquitin ligase in initiating neuronal polarity during cerebellar development. Given the unique features of Siah ubiquitin ligases, we highlight some of the key substrates that play important roles in cellular polarity and propose a function for the Siah ubiquitin proteasome pathway in mediating a post-translational regulatory network to control the onset of polarization.
Collapse
Affiliation(s)
- Taren Ong
- Cancer and Developmental Biology Track, Integrated Biomedical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
14
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Gen Y, Yasui K, Kitaichi T, Iwai N, Terasaki K, Dohi O, Hashimoto H, Fukui H, Inada Y, Fukui A, Jo M, Moriguchi M, Nishikawa T, Umemura A, Yamaguchi K, Konishi H, Naito Y, Itoh Y. ASPP2 suppresses invasion and TGF-β1-induced epithelial-mesenchymal transition by inhibiting Smad7 degradation mediated by E3 ubiquitin ligase ITCH in gastric cancer. Cancer Lett 2017; 398:52-61. [PMID: 28400336 DOI: 10.1016/j.canlet.2017.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
ASPP2 regulates cell polarity and cell-cell adhesion by binding to, and co-localizing with PAR3 at tight junctions. Here we show a novel role of ASPP2 in suppressing gastric cancer (GC) invasiveness. Immunoprecipitation and immunofluorescence analyses showed that ASPP2 promoted the recruitment of PAR3 to cell-cell junctions in GC cells. Diminished expression of ASPP2 and loss of junctional PAR3 localization were significantly associated with diffuse-type histology, deeper invasion depth, positive peritoneal dissemination and worse prognosis in primary GC. ASPP2 suppressed migration and invasion of GC cells in vitro and peritoneal dissemination of GC cells in vivo in a mouse model. ASPP2 suppressed epithelial-mesenchymal transition (EMT) induced by TGF-β1-Smad2/3 signaling in GC cells through suppression of the degradation of Smad7, a negative regulator of TGF-β1-Smad2/3 signaling, by interacting with the E3 ubiquitin ligase ITCH. In conclusion, ASPP2 suppresses invasion, peritoneal dissemination and TGF-β1-induced EMT by inhibiting Smad7 degradation mediated by ITCH.
Collapse
Affiliation(s)
- Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Terasaki
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hikaru Hashimoto
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Fukui
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Inada
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akifumi Fukui
- Department of Gastroenterology and Hepatology, North Medical Center Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masayasu Jo
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Melo MDO, Moraes Borges R, Yan CYI. Par3 in chick lens placode development. Genesis 2017; 55. [PMID: 28319357 DOI: 10.1002/dvg.23032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
The lens originates from a simple cuboidal epithelium, which, on its basal side, contacts the optic vesicle, whilst facing the extraembryonic environment on its apical side. As this epithelium changes into the pseudostratified lens placode, its cells elongate and become narrower at their apical ends. This is due to the formation of an apical actin network, whose appearance is restricted to cells of the placodal region, as a result of region-specific signaling mechanisms that remain largely unknown. Here, we investigated the role of the polarity protein PAR3 and the phosphorylation state of its Threonine 833 (T833) aPKC-binding site in the recruitment of aPKC and in the establishment of actin network in the chick lens placode. Overexpression of wild type PAR3 recruited aPKC and punctate actin clusters to the basolateral membranes of the placodal cells. Recruitment of aPKC depended on the charge of the residue that replaced the T833 residue. In contrast, induction of the ectopic actin spots was independent on the charge of this residue.
Collapse
Affiliation(s)
- Maraysa de Oliveira Melo
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, São Paulo, SP, 05508-900, Brazil
| | - Ricardo Moraes Borges
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, São Paulo, SP, 05508-900, Brazil
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, Universidade de São Paulo, Av. Prof. Lineu Prestes, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
17
|
Nakamura H, Nagasaka K, Kawana K, Taguchi A, Uehara Y, Yoshida M, Sato M, Nishida H, Fujimoto A, Inoue T, Adachi K, Nagamatsu T, Arimoto T, Oda K, Osuga Y, Fujii T. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer. BMC Cancer 2016; 16:897. [PMID: 27855669 PMCID: PMC5114836 DOI: 10.1186/s12885-016-2929-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/06/2016] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. METHODS First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. RESULTS Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. CONCLUSION Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.
Collapse
Affiliation(s)
- Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yuriko Uehara
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655 Japan
| |
Collapse
|
18
|
Jordan SN, Davies T, Zhuravlev Y, Dumont J, Shirasu-Hiza M, Canman JC. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 2016; 212:39-49. [PMID: 26728855 PMCID: PMC4700484 DOI: 10.1083/jcb.201510063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In asymmetrically dividing C. elegans embryos, the core cortical PAR proteins are required to retain septin and anillin at the anterior cortex away from the contractile ring and to promote normal F-actin levels at the contractile ring and successful cytokinesis. Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Yelena Zhuravlev
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unites Mixtes de Recherche 7592, Universite Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
19
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [PMID: 25808930 DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 02/14/2025] Open
Abstract
G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27.
Collapse
Affiliation(s)
- Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
21
|
Sozen B, Can A, Demir N. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Dev Biol 2014; 395:73-83. [PMID: 25176042 DOI: 10.1016/j.ydbio.2014.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/01/2022]
Abstract
In the developmental process of the early mammalian embryo, it is crucial to understand how the identical cells in the early embryo later develop different fates. Along with existing models, many recently discovered molecular, cellular and developmental factors play roles in cell position, cell polarity and transcriptional networks in cell fate regulation during preimplantation. A structuring process known as compaction provides the "start signal" for cells to differentiate and orchestrates the developmental cascade. The proper intercellular junctional complexes assembled between blastomeres act as a conducting mechanism governing cellular diversification. Here, we provide an overview of the diversification process during preimplantation development as it relates to intercellular junctional complexes. We also evaluate transcriptional differences between embryonic lineages according to cell- cell adhesion and the contributions of adhesion to lineage commitment. These series of processes indicate that proper cell fate specification in the early mammalian embryo depends on junctional interactions and communication, which play essential roles during early morphogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey
| | - Alp Can
- Department of Histology and Embryology, School of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey.
| |
Collapse
|
22
|
Berika M, Elgayyar ME, El-Hashash AHK. Asymmetric cell division of stem cells in the lung and other systems. Front Cell Dev Biol 2014; 2:33. [PMID: 25364740 PMCID: PMC4206988 DOI: 10.3389/fcell.2014.00033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/14/2014] [Indexed: 01/29/2023] Open
Abstract
New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms.
Collapse
Affiliation(s)
- Mohamed Berika
- Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, KSA and Anatomy Department, Faculty of Medicine, Mansoura University Mansoura, Egypt
| | - Marwa E Elgayyar
- Department of Pediatric and Neonatology, Benha Children Hospital Benha City, Egypt
| | - Ahmed H K El-Hashash
- Developmental Biology, Stem Cells and Regenerative Medicine Program, Keck School of Medicine and Ostrow School of Dentistry, Children's Hospital Los Angeles, University of Southern California Los Angeles, USA
| |
Collapse
|
23
|
Meyer AE, Gatza CE, How T, Starr M, Nixon AB, Blobe GC. Role of TGF-β receptor III localization in polarity and breast cancer progression. Mol Biol Cell 2014; 25:2291-304. [PMID: 24870032 PMCID: PMC4116303 DOI: 10.1091/mbc.e14-03-0825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The majority of breast cancers originate from the highly polarized luminal epithelial cells lining the breast ducts. However, cell polarity is often lost during breast cancer progression. The type III transforming growth factor-β cell surface receptor (TβRIII) functions as a suppressor of breast cancer progression and also regulates the process of epithelial-to-mesenchymal transition (EMT), a consequence of which is the loss of cell polarity. Many cell surface proteins exhibit polarized expression, being targeted specifically to the apical or basolateral domains. Here we demonstrate that TβRIII is basolaterally localized in polarized breast epithelial cells and that disruption of the basolateral targeting of TβRIII through a single amino acid mutation of proline 826 in the cytosolic domain results in global loss of cell polarity through enhanced EMT. In addition, the mistargeting of TβRIII results in enhanced proliferation, migration, and invasion in vitro and enhanced tumor formation and invasion in an in vivo mouse model of breast carcinoma. These results suggest that proper localization of TβRIII is critical for maintenance of epithelial cell polarity and phenotype and expand the mechanisms by which TβRIII prevents breast cancer initiation and progression.
Collapse
Affiliation(s)
- Alison E Meyer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Catherine E Gatza
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Tam How
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Mark Starr
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
24
|
Dugay F, Le Goff X, Rioux-Leclerq N, Chesnel F, Jouan F, Henry C, Cabillic F, Verhoest G, Vigneau C, Arlot-Bonnemains Y, Belaud-Rotureau MA. Overexpression of the polarity protein PAR-3 in clear cell renal cell carcinoma is associated with poor prognosis. Int J Cancer 2014; 134:2051-60. [PMID: 24136590 DOI: 10.1002/ijc.28548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/10/2013] [Indexed: 01/09/2023]
Abstract
The partition-defective 3 (PAR-3) protein is implicated in the development and maintenance of cell polarity and is associated with proteins that mediate the changes in cytoskeleton organization required for cell polarity establishment. In this work, we used two original primary cell lines (R-180 and R-305) derived from clear cell Renal Cell Carcinoma (ccRCC) surgical specimens of a patient with unfavorable clinical course (R-180 cells) and a patient with favorable prognosis (R-305 cells) to identify genetic and molecular features that may explain the survival difference of the two patients. The cytogenetic analysis of these cell lines revealed that the PARD3 gene was amplified only in the R-180 cell line that was derived from an aggressive ccRCC. PARD3 gene amplification was associated with overexpression of the encoded protein and altered cytoskeleton organization. Consistently, PARD3 knockdown in R-180 cells restored the cytoskeleton organization and reduced cell migration in comparison to non-transfected cells. Immunohistochemical analysis of ccRCC samples from a cohort of 96 patients with a follow-up of 6 years revealed that PAR-3 overexpression was correlated with poor survival. Our results suggest that PAR-3 has a role in the clinical aggressiveness of ccRCC, possibly by promoting cell migration.
Collapse
|
25
|
Teng B, Duong M, Tossidou I, Yu X, Schiffer M. Role of protein kinase C in podocytes and development of glomerular damage in diabetic nephropathy. Front Endocrinol (Lausanne) 2014; 5:179. [PMID: 25414693 PMCID: PMC4220730 DOI: 10.3389/fendo.2014.00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
The early glomerular changes in diabetes include a podocyte phenotype with loss of slit diaphragm proteins, changes in the actin cytoskeleton and foot process architecture. This review focuses on the role of the protein kinase C (PKC) family in podocytes and points out the differential roles of classical, novel, and atypical PKCs in podocytes. Some PKC isoforms are indispensable for proper glomerular development and slit diaphragm maintenance, whereas others might be harmful when activated in the diabetic milieu. Therefore, some might be interesting treatment targets in the early phase of diabetes.
Collapse
Affiliation(s)
- Beina Teng
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Michelle Duong
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Irini Tossidou
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Xuejiao Yu
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- *Correspondence: Mario Schiffer, Department of Medicine/Nephrology, Hannover Medical School, Carl Neuberg Street 1-OE6840, Hannover 30625, Germany e-mail:
| |
Collapse
|
26
|
Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M, Shepherd TR, Fuentes EJ, Tzima E. A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. ACTA ACUST UNITED AC 2013; 201:863-73. [PMID: 23733346 PMCID: PMC3678169 DOI: 10.1083/jcb.201207115] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The GEF Tiam1 acts as a novel molecular link to the VE-cadherin–p67phox–Par3 polarity complex, leading to localized activation of Rac1 and NADPH oxidase in response to fluid flow. Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin–p67phox–Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.
Collapse
Affiliation(s)
- Yunhao Liu
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen J, Zhang M. The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res 2013; 319:1357-64. [PMID: 23535009 DOI: 10.1016/j.yexcr.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 12/20/2022]
Abstract
Apical-basal polarity is the basic organizing principle of epithelial cells, and endows epithelial cells to function as defensive barriers and as mediators of vectorial transport of nutrients in and out of organisms. Apical-basal polarity is controlled by a number of conserved polarity factors that regulate cytoskeletal organizations, asymmetric distributions of cellular components, and directional transports across cells. Polarity factors often occupy specific membrane regions in response to the adhesion forces generated by cell-cell and cell-extracellular matrix interactions. Both internal polarity factors and the external extracellular matrices play fundamental roles in epithelial cell polarity establishment and maintenance. This review focuses on recent developments of the Par3/Par6/aPKC complex and its interacting proteins in epithelial cell polarity.
Collapse
Affiliation(s)
- Jia Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|
28
|
Yang Z, Xue B, Umitsu M, Ikura M, Muthuswamy SK, Neel BG. The signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold. Mol Cell 2012; 47:469-83. [PMID: 22883624 DOI: 10.1016/j.molcel.2012.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022]
Abstract
Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1 and PAR6 bind the PAR3 PDZ1 domain and thereby compete for PAR3 binding. Consequently, GAB1 depletion causes PAR3 hypophosphorylation and increases PAR3/PAR6 complex formation, resulting in accelerated and enhanced tight junction formation, increased transepithelial resistance, and lateral domain shortening. Conversely, GAB1 overexpression, in a PAR1/PAR3-dependent manner, disrupts epithelial apical-basal polarity, promotes multilumen cyst formation, and enhances growth factor-induced epithelial cell scattering. Our results identify GAB1 as a negative regulator of epithelial cell polarity that functions as a scaffold for modulating PAR protein complexes on the lateral membrane.
Collapse
Affiliation(s)
- Ziqiang Yang
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Iden S, van Riel WE, Schäfer R, Song JY, Hirose T, Ohno S, Collard JG. Tumor type-dependent function of the par3 polarity protein in skin tumorigenesis. Cancer Cell 2012; 22:389-403. [PMID: 22975380 DOI: 10.1016/j.ccr.2012.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/31/2012] [Accepted: 08/06/2012] [Indexed: 12/20/2022]
Abstract
Cell polarization is crucial during development and tissue homeostasis and is regulated by conserved proteins of the Scribble, Crumbs, and Par complexes. In mouse skin tumorigenesis, Par3 deficiency results in reduced papilloma formation and growth. Par3 mediates its tumor-promoting activity through regulation of growth and survival, since Par3 deletion increases apoptosis and reduces growth in vivo and in vitro. In contrast, Par3-deficient mice are predisposed to formation of keratoacanthomas, cutaneous tumors thought to originate from different cellular origin and frequently observed in humans. Par3 expression is reduced in both mouse and human keratoacanthomas, indicating tumor-suppressive properties of Par3. Our results identify a dual function of Par3 in skin cancer, with both pro-oncogenic and tumor-suppressive activity depending on the tumor type.
Collapse
Affiliation(s)
- Sandra Iden
- Division of Cell Biology I, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Pittman KJ, Skop AR. Anterior PAR proteins function during cytokinesis and maintain DYN-1 at the cleavage furrow in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2012; 69:826-39. [PMID: 22887994 DOI: 10.1002/cm.21053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time.
Collapse
Affiliation(s)
- Kelly J Pittman
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
31
|
Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity. ACTA ACUST UNITED AC 2012; 94:804-16. [PMID: 22865775 DOI: 10.1002/bdra.23052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND A critical event in neural tube closure is the formation of median hinge points (MHPs) and dorsolateral hinge points (DLHPs). Together, they buckle the ventral midline and elevate and juxtapose the neural folds for proper neural tube closure. Dynamic cell behaviors occur at hinge points (HPs), but their molecular regulation is largely unexplored. Bone morphogenetic proteins (BMPs) have been implicated in a variety of neural tube closure defects, although the underlying mechanisms are poorly understood. METHODS In this study, we used in vivo electroporations, high-resolution microscopy, and biochemical analyses to explore the role of BMP signaling in chick midbrain neural tube closure. RESULTS We identified a cell-cycle-dependent BMP gradient in the midbrain neural plate, which results in low-level BMP activity at the MHP. We show that although BMP signaling does not have a role in midbrain cell-fate specification, its attenuation is necessary and sufficient for MHP formation and midbrain closure. BMP blockade induces MHP formation by regulating apical constriction and basal nuclear migration. Furthermore, BMP signaling is critically important for maintaining epithelial organization by biochemically interacting with apicobasal polarity proteins (e.g., PAR3). As a result, prolonged BMP blockade disrupts apical junctions, desegregating the apical (PAR3(+), ZO1(+)) and basolateral (LGL(+)) compartments. Direct apical LGL-GFP misexpression in turn is sufficient to induce ectopic HPs. CONCLUSIONS BMPs have a critical role in maintaining epithelial organization, a role that is conserved across species and tissue types. Its cell-cycle-dependent modulation in the neural plate dynamically regulates apicobasal polarity and helps to bend, shape, and close the neural tube.
Collapse
Affiliation(s)
- Dae Seok Eom
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
32
|
Abstract
From the very early days of nuclear factor-κB (NF-κB) research, it was recognized that different protein kinase C (PKC) isoforms might be involved in the activation of NF-κB. Pharmacological tools and pseudosubstrate inhibitors suggested that these kinases play a role in this important inflammatory and survival pathway; however, it was the analysis of several genetic mouse knockout models that revealed the complexity and interrelations between the different components of the PB1 network in several cellular functions, including T-cell biology, bone homeostasis, inflammation associated with the metabolic syndrome, and cancer. These studies unveiled, for example, the critical role of PKCζ as a positive regulator of NF-κB through the regulation of RelA but also its inflammatory suppressor activities through the regulation of the interleukin-4 signaling cascade. This observation is of relevance in T cells, where p62, PKCζ, PKCλ/ι, and NBR1 establish a mesh of interactions that culminate in the regulation of T-cell effector responses through the modulation of T-cell polarity. Many questions remain to be answered, not just from the point of view of the implication for NF-κB activation but also with regard to the in vivo interplay between these pathways in pathophysiological processes like obesity and cancer.
Collapse
|
33
|
p62: a versatile multitasker takes on cancer. Trends Biochem Sci 2012; 37:230-6. [PMID: 22424619 DOI: 10.1016/j.tibs.2012.02.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
Since its initial discovery as an atypical protein kinase C (PKC)-interacting protein, p62 has emerged as a crucial molecule in a myriad of cellular functions. This multifunctional role of p62 is explained by its ability to interact with several key components of various signaling mechanisms. Not surprisingly, p62 is required for tumor transformation owing to its roles as a key molecule in nutrient sensing, as a regulator and substrate of autophagy, as an inducer of oxidative detoxifying proteins, and as a modulator of mitotic transit and genomic stability; all crucial events in the control of cell growth and cancer.
Collapse
|
34
|
Zhang J, Yang X, Wang Z, Zhou H, Xie X, Shen Y, Long J. Structure of an L27 domain heterotrimer from cell polarity complex Patj/Pals1/Mals2 reveals mutually independent L27 domain assembly mode. J Biol Chem 2012; 287:11132-40. [PMID: 22337881 DOI: 10.1074/jbc.m111.321216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The assembly of supramolecular complexes in multidomain scaffold proteins is crucial for the control of cell polarity. The scaffold protein of protein associated with Lin-7 1 (Pals1) forms a complex with two other scaffold proteins, Pals-associated tight junction protein (Patj) and mammalian homolog-2 of Lin-7 (Mals2), through its tandem Lin-2 and Lin-7 (L27) domains to regulate apical-basal polarity. Here, we report the crystal structure of a 4-L27 domain-containing heterotrimer derived from the tripartite complex Patj/Pals1/Mals2. The heterotrimer consists of two cognate pairs of heterodimeric L27 domains with similar conformations. Structural analysis and biochemical data further show that the dimers assemble mutually independently. Additionally, such mutually independent assembly of the two heterodimers can be observed in another tripartite complex, Disks large homolog 1 (DLG1)/calcium-calmodulin-dependent serine protein kinase (CASK)/Mals2. Our results reveal a novel mechanism for tandem L27 domain-mediated, supramolecular complex assembly with a mutually independent mode.
Collapse
Affiliation(s)
- Jinxiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Migration is a key cellular process, involved during morphogenetic movements as well as in the adult where it participates in immune cell trafficking, wound healing or tumour invasion. As they migrate, cells interact with a microenvironment composed of extracellular matrix and neighbouring cells. Cell-cell adhesions ensure tissue integrity while they allow migration of single or grouped cells within this tissue. Cadherin and nectin-based adherens junctions are key players in intercellular interactions. They are used as adhesive complexes whose mechanical properties improve cell coordination during collective migration and promote cell motility on cadherin substrates. In addition, adherens junctions transduce signals that actively participate in the control of directed cell migration, by providing polarity cues and also participating in contact inhibition of motility.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France,
| |
Collapse
|
36
|
Abstract
The ability to form and maintain a functional system of contiguous hollow tubes is a critical feature of vascular endothelial cells (ECs). Lumen formation, or tubulogenesis, occurs in blood vessels during both vasculogenesis and angiogenesis in the embryo. Formation of vascular lumens takes place prior to the establishment of blood flow and to vascular remodeling which results in a characteristic hierarchical vessel organization. While epithelial lumen formation has received intense attention in past decades, more recent work has only just begun to elucidate the mechanisms controlling the initiation and morphogenesis of endothelial lumens. Studies using in vitro and in vivo models, including zebrafish and mammals, are beginning to paint an emerging picture of how blood vessels establish their characteristic morphology and become patent. In this article, we review and discuss the molecular and cellular mechanisms driving the formation of vascular tubes, primarily in vivo, and we compare and contrast proposed models for blood vessel lumen formation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
37
|
Cha SW, Tadjuidje E, Wylie C, Heasman J. The roles of maternal Vangl2 and aPKC in Xenopus oocyte and embryo patterning. Development 2011; 138:3989-4000. [PMID: 21813572 DOI: 10.1242/dev.068866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Xenopus oocyte contains components of both the planar cell polarity and apical-basal polarity pathways, but their roles are not known. Here, we examine the distribution, interactions and functions of the maternal planar cell polarity core protein Vangl2 and the apical-basal complex component aPKC. We show that Vangl2 is distributed in animally enriched islands in the subcortical cytoplasm in full-grown oocytes, where it interacts with a post-Golgi v-SNARE protein, VAMP1, and acetylated microtubules. We find that Vangl2 is required for the stability of VAMP1 as well as for the maintenance of the stable microtubule architecture of the oocyte. We show that Vangl2 interacts with atypical PKC, and that both the acetylated microtubule cytoskeleton and the Vangl2-VAMP1 distribution are dependent on the presence of aPKC. We also demonstrate that aPKC and Vangl2 are required for the cell membrane asymmetry that is established during oocyte maturation, and for the asymmetrical distribution of maternal transcripts for the germ layer and dorsal/ventral determinants VegT and Wnt11. This study demonstrates the interaction and interdependence of Vangl2, VAMP1, aPKC and the stable microtubule cytoskeleton in the oocyte, shows that maternal Vangl2 and aPKC are required for specific oocyte asymmetries and vertebrate embryonic patterning, and points to the usefulness of the oocyte as a model to study the polarity problem.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
38
|
El-Hashash AHK, Turcatel G, Al Alam D, Buckley S, Tokumitsu H, Bellusci S, Warburton D. Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium. Development 2011; 138:1395-407. [PMID: 21385765 DOI: 10.1242/dev.058479] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Whyte J, Thornton L, McNally S, McCarthy S, Lanigan F, Gallagher WM, Stein T, Martin F. PKCzeta regulates cell polarisation and proliferation restriction during mammary acinus formation. J Cell Sci 2011; 123:3316-28. [PMID: 20844151 DOI: 10.1242/jcs.065243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mammary epithelial cells organize in three dimensions and generate acini when supported on laminin-rich extracellular matrix. Acinus formation begins with the apicobasal polarisation of the outer cells of the assembly and the withdrawal of these cells from the cell cycle. Internal cells then clear out to form a hollow lumen. Here, we show that PKCζ is phosphorylated (at T410) and activated in the early stages of acinus formation in both primary cells and MCF10A cells, and during mammary tree maturation in vivo. Phospho-PKCζ colocalised with tight junction components and bound to the Par polarising complex in developing acini. To further investigate the importance of PKCζ phosphorylation in this context, acinus formation was studied in MCF10A cells overexpressing non-phosphorylatable (T410A) or 'constitutively phosphorylated' (T410E) PKCζ. In both cell types, acinus-associated cell polarisation and lumen clearance were compromised, emphasising the importance of regulated phosphorylation of PKCζ at T410 for successful acinus formation. PKCζ can be activated in a phosphorylation (at T410)-dependent and a phosphorylation-independent manner. Cells overexpressing a complete kinase-deficient PKCζ (K281W) displayed a cell polarising deficit, but also generated large 'multi-acinar' structures with associated early lumenal cell hyperproliferation. Therefore our data shows, for the first time, that two separable PKCζ activities (one phosphorylation-dependent, the other not) are required to support the cell polarisation and proliferation restriction that underpins successful acinus formation. Paralleling these contributions, we found that low levels of PKCζ mRNA expression are associated with more 'poorly differentiated' tumours and a poor outcome in a cohort of 295 breast cancer patients.
Collapse
Affiliation(s)
- Jacqueline Whyte
- UCD Conway Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Davis GE, Stratman AN, Sacharidou A. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell–Pericyte Interactions. BIOPHYSICAL REGULATION OF VASCULAR DIFFERENTIATION AND ASSEMBLY 2011. [DOI: 10.1007/978-1-4419-7835-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Davis GE, Stratman AN, Sacharidou A, Koh W. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:101-65. [PMID: 21482411 DOI: 10.1016/b978-0-12-386041-5.00003-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an endothelial cell (EC) lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between ECs and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation.
Collapse
Affiliation(s)
- George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
42
|
Yuki T, Hachiya A, Kusaka A, Sriwiriyanont P, Visscher MO, Morita K, Muto M, Miyachi Y, Sugiyama Y, Inoue S. Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes. J Invest Dermatol 2010; 131:744-52. [PMID: 21160495 DOI: 10.1038/jid.2010.385] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has not been confirmed whether tight junctions (TJs) function as a paracellular permeability barrier in adult human skin. To clarify this issue, we performed a TJ permeability assay using human skin obtained from abdominal plastic surgery. Occludin, a marker protein of TJs, was expressed in the granular layer, in which a subcutaneously injected paracellular tracer, Sulfo-NHS-LC-Biotin (556.59 Da), was halted. Incubation with ochratoxin A decreased the expression of claudin-4, an integral membrane protein of TJs, and the diffusion of paracellular tracer was no longer prevented at the TJs. These results demonstrate that human epidermis possesses TJs that function as an intercellular permeability barrier at least against small molecules (∼550 Da). UVB irradiation of human skin xenografts and human skin equivalents (HSEs) resulted in functional deterioration of TJs. Immunocytochemical staining of cultured keratinocytes showed that occludin was localized into dot-like shapes and formed a discontinuous network when exposed to UVB irradiation. Furthermore, UVB irradiation downregulated the active forms of Rac1 and atypical protein kinase C, suggesting that their inactivation caused functional deterioration of TJs. In conclusion, TJs function as a paracellular barrier against small molecules (∼550 Da) in human epidermis and are functionally deteriorated by UVB irradiation.
Collapse
Affiliation(s)
- Takuo Yuki
- Innovative Beauty Science Laboratory, Kanebo Cosmetics Inc., Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 2010; 5:e13741. [PMID: 21060791 PMCID: PMC2966423 DOI: 10.1371/journal.pone.0013741] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/24/2010] [Indexed: 01/21/2023] Open
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis and limits the entry of toxins and pathogens into the brain. Despite its importance, little is known about the molecular mechanisms regulating the development and function of this crucial barrier. In this study we have developed methods to highly purify and gene profile endothelial cells from different tissues, and by comparing the transcriptional profile of brain endothelial cells with those purified from the liver and lung, we have generated a comprehensive resource of transcripts that are enriched in the BBB forming endothelial cells of the brain. Through this comparison we have identified novel tight junction proteins, transporters, metabolic enzymes, signaling components, and unknown transcripts whose expression is enriched in central nervous system (CNS) endothelial cells. This analysis has identified that RXRalpha signaling cascade is specifically enriched at the BBB, implicating this pathway in regulating this vital barrier. This dataset provides a resource for understanding CNS endothelial cells and their interaction with neural and hematogenous cells.
Collapse
Affiliation(s)
- Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | |
Collapse
|
44
|
McCarter SD, Johnson DL, Kitt KN, Donohue C, Adams A, Wilson JM. Regulation of tight junction assembly and epithelial polarity by a resident protein of apical endosomes. Traffic 2010; 11:856-66. [PMID: 20214753 PMCID: PMC3392093 DOI: 10.1111/j.1600-0854.2010.01052.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C-terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three-dimensional culture. In addition, in cells overexpressing the C-terminal domain of endotubin, we observe a delay in re-establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.
Collapse
Affiliation(s)
- Sarah D. McCarter
- Department of Cell Biology & Anatomy, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Debra L. Johnson
- Department of Cell Biology & Anatomy, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Khameeka N. Kitt
- Department of Cell Biology & Anatomy, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Carolyn Donohue
- Department of Cell Biology & Anatomy, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | - Alison Adams
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Jean M. Wilson
- Department of Cell Biology & Anatomy, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
45
|
Lelièvre SA. Tissue polarity-dependent control of mammary epithelial homeostasis and cancer development: an epigenetic perspective. J Mammary Gland Biol Neoplasia 2010; 15:49-63. [PMID: 20101444 PMCID: PMC2861422 DOI: 10.1007/s10911-010-9168-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022] Open
Abstract
The basoapical organization of monolayered epithelia is defined by the presence of hemidesmosomes at the basal cellular pole, where the cell makes contacts with the basement membrane, and tight junctions at the opposite apical pole. In the mammary gland, tight junctions seal cell-cell contacts against the lumen and separate the apical and basolateral cell membranes. This separation is critical to organize intracellular signaling pathways and the cytoskeleton. The study of the impact of the highly organized apical pole, and notably apical polarity regulators (Crb complex, Par complex, and Scrib, Dlg, Lgl proteins) and tight junction proteins on cell phenotype and gene expression has revealed an intricate relationship between apical polarity and the cell nucleus. The goal of this review is to highlight the role of the apical pole of the tissue polarity axis in the epigenetic control of tissue phenotype. The organization of the apical pole and its importance in mammary homeostasis and tumorigenesis will be emphasized before presenting how apical polarity proteins impact gene expression indirectly, by influencing signal transduction and the location of transcription regulators, and directly, by participating in chromatin-associated complexes. The relationship between apical polarity and cell nucleus organizations might explain how apical polarity proteins could switch from nuclear repressors to nuclear promoters of cancerous behavior following alterations in the apical pole. The impact of apical polarity proteins on epigenetic mechanisms of gene expression will be discussed in light of increased evidence supporting a role for apical polarity in the fate of breast neoplasms.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47907-2026, USA.
| |
Collapse
|
46
|
Wen J, Zhang H, Li G, Mao G, Chen X, Wang J, Guo M, Mu X, Ouyang H, Zhang M, Xia G. PAR6, a potential marker for the germ cells selected to form primordial follicles in mouse ovary. PLoS One 2009; 4:e7372. [PMID: 19809506 PMCID: PMC2753645 DOI: 10.1371/journal.pone.0007372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022] Open
Abstract
Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Hua Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Ge Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Guanping Mao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Xiufen Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Jianwei Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Meng Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Xinyi Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Hong Ouyang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
- * E-mail: (MZ); (GX)
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing, People's Republic of China
- * E-mail: (MZ); (GX)
| |
Collapse
|
47
|
Moscat J, Diaz-Meco MT, Wooten MW. Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 2009; 16:1426-37. [PMID: 19713972 DOI: 10.1038/cdd.2009.119] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The recent identification of a novel protein-protein interaction module, termed PB1, in critical signaling molecules such as p62 (also known as sequestosome1), the atypical PKCs, and Par-6, has unveiled the existence of a new set of signaling complexes, which can be central to several biological processes from development to cancer. In this review, we will discuss the most recent advances on the role that the different components of these complexes have in vivo and that are relevant to human disease. In particular, we will review what we are learning from new data from knockout mice, and the indications from human mutations on the real role of these proteins in the physiology and biology of human diseases. The role that PKCzeta, PKClambda/iota, and Par-4 have in lung and prostate cancer in vivo and in humans will be extensively covered in this article, as will the multifunctional role of p62 as a novel hub in cell signaling during cancer and inflammation, and the mechanistic details and controversial data published on its potential role in aggregate formation and signaling. All this published information is shedding new light on the proposed pathological implications of these PB1-regulators in disease and shows their important role in cell physiology.
Collapse
Affiliation(s)
- J Moscat
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | |
Collapse
|
48
|
Abstract
Cancer is a disease in which many of the characteristics of normal cell behavior are lost or perturbed. Uncontrolled cell proliferation and inappropriate cell survival are common features of all cancers, but in addition defects in cellular morphogenesis that lead to tissue disruption, the acquisition of inappropriate migratory and invasive characteristics and the generation of genomic instability through defects in mitosis also accompany progression of the disease. This volume is focused on the actin and microtubule cytoskeletons, key players that underpin these cellular processes. Actin and tubulin form highly versatile, dynamic polymers that are capable of organizing cytoplasmic organelles and intracellular compartments, defining cell polarity and generating both pushing and contractile forces. In the cell cycle, these two cytoskeletal structures drive chromosomal separation and cell division. During morphogenesis, they determine cell shape and polarity, and promote stable cell-cell and cell-matrix adhesions through their interactions with cadherins and integrins, respectively. Finally, during cell migration they generate protrusive forces at the front and retraction forces at the rear. These are all aspects of cell behavior than often go awry in cancer. This volume brings together those interested in understanding the contribution of the actin and microtubule cytoskeletons to the cell biology of cancer.
Collapse
|
49
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:313-43. [PMID: 19215908 DOI: 10.1016/s1937-6448(08)01808-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polarity is a prerequisite for proper development and function of epithelia in metazoa. The major feature of polarized epithelial cells is the presence of specialized domains with asymmetric distribution of macromolecular contents including proteins and lipids. The apical domain is involved in exchange with the organ lumen, and the basolateral membrane maintains contact with neighboring cells and the underlying extracellular matrix. The two domains are separated by tight junctions, which act as a diffusion barrier to prevent free mixing of domain-specific proteins and lipids. Extensive studies have shed light on the numerous protein families involved in cell polarization. However, many questions still remain regarding the molecular mechanisms of polarity regulation and in particular very little is known about the role of lipids in building polarity. In this chapter, essential determinants of epithelial polarity will be reviewed with a particular focus on metabolism and function of phosphoinositides.
Collapse
Affiliation(s)
- Ama Gassama-Diagne
- Unité Mixte INSERM U785/Université Paris XI, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif, France
| | | |
Collapse
|