1
|
Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer. Cytotechnology 2018; 70:593-601. [PMID: 29455393 DOI: 10.1007/s10616-017-0140-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/02/2017] [Indexed: 01/09/2023] Open
Abstract
Breast tumour progression results from the advancement of the disease to a metastatic phenotype. Rac1 and Cdc42 belong to the Rho family of genes that, together with their downstream effectors, Wiskott-Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, assume a vital part in cytoskeletal rearrangement and the arrangement of film projections that advance malignant cell relocation and invasion. Mangiferin is a characteristic polyphenolic compound from Mangifera indica L. (Anacardiaceae), ordinarily referred to as mango, that is consumed worldwide as a natural product, including culinary and seasoning applications. Mangiferin delays breast malignancy development and progression by inhibiting different signalling pathways required in mitogenic signalling and metastatic progression. Studies were performed to analyse the impact of mangiferin on Rac1/WAVE2 flagging, relocation and invasion in highly metastatic human MDA-MB-231 mammary cells. Additional studies led to the observation that comparative treatment with mangiferin caused marked reduction in tumour cell movement and invasion. Taken together, these discoveries demonstrate that mangiferin treatment adequately hinders Rac1/WAVE2 flagging and diminishes metastatic phenotypic expression in malignant mammary cells, indicating that mangiferin may provide a benefit as a novel restorative approach in the treatment of metastatic breast cancer.
Collapse
|
2
|
Algayadh IG, Dronamraju V, Sylvester PW. Role of Rac1/WAVE2 Signaling in Mediating the Inhibitory Effects of γ-Tocotrienol on Mammary Cancer Cell Migration and Invasion. Biol Pharm Bull 2017; 39:1974-1982. [PMID: 27904039 DOI: 10.1248/bpb.b16-00461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of breast cancer deaths result from the progression of this disease to a metastatic phenotype. Rac1 and Cdc42 are Rho family members that together with their downstream effectors, Wiskott-Aldrich Syndrome protein-family verprolin-homologous protein 2 (WAVE2) and Arp2/3, play an important role in cytoskeletal reorganization and the formation of membrane protrusions that promote cancer cell migration and invasion. γ-Tocotrienol, is a natural isoform within the vitamin E family of compounds that inhibits breast cancer cell growth and progression by suppressing various signaling pathways involved in mitogenic signaling and metastatic progression. Studies were conducted to examine the effects of γ-tocotrienol on Rac1/WAVE2 signaling dependent migration and invasion in highly metastatic mouse +SA and human MDA-MB-231 mammary cancer cells. Exposure to γ-tocotrienol resulted in a dose-responsive decrease in Rac1/WAVE2 signaling as characterized by a suppression in the levels of Rac1/Cdc42, phospho-Rac1/Cdc42, WAVE2, Arp2, and Arp3 expression. Additional studies also demonstrated that similar treatment with γ-tocotrienol resulted in a significant reduction in tumor cell migration and invasion. Taken together, these findings indicate that γ-tocotrienol treatment effectively inhibits Rac1/WAVE2 signaling and reduces metastatic phenotypic expression in mammary cancer cells, suggesting that γ-tocotrienol may provide some benefit as a novel therapeutic approach in the treatment of metastatic breast cancer.
Collapse
|
3
|
Lin Y, Shenoy V, Hu B, Bai L. A microscopic formulation for the actin-driven motion of listeria in curved paths. Biophys J 2010; 99:1043-52. [PMID: 20712987 PMCID: PMC2920721 DOI: 10.1016/j.bpj.2010.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/22/2010] [Accepted: 06/01/2010] [Indexed: 11/16/2022] Open
Abstract
Using a generalized Brownian ratchet model that accounts for the interactions of actin filaments with the surface of Listeria mediated by proteins like ActA and Arp2/3, we have developed a microscopic model for the movement of Listeria. Specifically, we show that a net torque can be generated within the comet tail, causing the bacteria to spin about its long axis, which in conjunction with spatially varying polymerization at the surface leads to motions of bacteria in curved paths that include circles, sinusoidal-like curves, translating figure eights, and serpentine shapes, as observed in recent experiments. A key ingredient in our formulation is the coupling between the motion of Listeria and the force-dependent rate of filament growth. For this reason, a numerical scheme was developed to determine the kinematic parameters of motion and stress distribution among filaments in a self-consistent manner. We find that a 5-15% variation in polymerization rates can lead to radii of curvatures of the order of 4-20 microm, measured in experiments. In a similar way, our results also show that most of the observed trajectories can be produced by a very low degree of correlation, <10%, among filament orientations. Since small fluctuations in polymerization rate, as well as filament orientation, can easily be induced by various factors, our findings here provide a reasonable explanation for why Listeria can travel along totally different paths under seemingly identical experimental conditions. Besides trajectories, stress distributions corresponding to different polymerization profiles are also presented. We have found that although some actin filaments generate propelling forces that push the bacteria forward, others can exert forces opposing the movement of Listeria, consistent with recent experimental observations.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - V.B. Shenoy
- Division of Engineering, Brown University, Providence, Rhode Island
| | - Bin Hu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Limiao Bai
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci 2009; 122:2935-45. [PMID: 19638408 DOI: 10.1242/jcs.048355] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.
Collapse
Affiliation(s)
- David Liebl
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
5
|
Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, Briggs S, Firtel RA. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell 2008; 20:699-707. [PMID: 19037099 DOI: 10.1091/mbc.e08-09-0899] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell motility of amoeboid cells is mediated by localized F-actin polymerization that drives the extension of membrane protrusions to promote forward movements. We show that deletion of either of two members of the Dictyostelium Dock180 family of RacGEFs, DockA and DockD, causes decreased speed of chemotaxing cells. The phenotype is enhanced in the double mutant and expression of DockA or DockD complements the reduced speed of randomly moving DockD null cells' phenotype, suggesting that DockA and DockD are likely to act redundantly and to have similar functions in regulating cell movement. In this regard, we find that overexpressing DockD causes increased cell speed by enhancing F-actin polymerization at the sites of pseudopod extension. DockD localizes to the cell cortex upon chemoattractant stimulation and at the leading edge of migrating cells and this localization is dependent on PI3K activity, suggesting that DockD might be part of the pathway that links PtdIns(3,4,5)P(3) production to F-actin polymerization. Using a proteomic approach, we found that DdELMO1 is associated with DockD and that Rac1A and RacC are possible in vivo DockD substrates. In conclusion, our work provides a further understanding of how cell motility is controlled and provides evidence that the molecular mechanism underlying Dock180-related protein function is evolutionarily conserved.
Collapse
Affiliation(s)
- Alessia Para
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Enculescu M, Gholami A, Falcke M. Dynamic regimes and bifurcations in a model of actin-based motility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031915. [PMID: 18851073 DOI: 10.1103/physreve.78.031915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Indexed: 05/26/2023]
Abstract
Propulsion by actin polymerization is widely used in cell motility. Here, we investigate a model of the brush range of an actin gel close to a propelled object, describing the force generation and the dynamics of the propagation velocity. We find transitions between stable steady states and relaxation oscillations when the attachment rate of actin filaments to the obstacle is varied. The oscillations set in at small values of the attachment rate via a homoclinic bifurcation. A second transition from a stable steady state to relaxation oscillations, found for higher values of the attachment rate, occurs via a supercritical Hopf bifurcation. The behavior of the model near the second transition is similar that of a system undergoing a canard explosion. Consequently, we observe excitable dynamics also. The model further exhibits bistability between stationary states or stationary states and limit cycles. Therefore, the brush of actin filament ends appears to have a much richer dynamics than was assumed until now.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Department of Theoretical Physics, Hahn-Meitner-Institute, Glienicker Strasse 100, 14109 Berlin, Germany
| | | | | |
Collapse
|
7
|
Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc Natl Acad Sci U S A 2007; 104:2181-6. [PMID: 17277076 PMCID: PMC1892916 DOI: 10.1073/pnas.0607052104] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022] Open
Abstract
Actin filament polymerization generates force for protrusion of the leading edge in motile cells. In protrusive structures, multiple actin filaments are arranged in cross-linked webs (as in lamellipodia or pseudopodia) or parallel bundles (as in filopodia). We have used an optical trap to directly measure the forces generated by elongation of a few parallel-growing actin filaments brought into apposition with a rigid barrier, mimicking the geometry of filopodial protrusion. We find that the growth of approximately eight actin parallel-growing filaments can be stalled by relatively small applied load forces on the order of 1 pN, consistent with the theoretical load required to stall the elongation of a single filament under our conditions. Indeed, large length fluctuations during the stall phase indicate that only the longest actin filament in the bundle is in contact with the barrier at any given time. These results suggest that force generation by small actin bundles is limited by a dynamic instability of single actin filaments, and therefore living cells must use actin-associated factors to suppress this instability to generate substantial forces by elongation of parallel bundles of actin filaments.
Collapse
Affiliation(s)
- Matthew J Footer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
8
|
Leshansky AM. Actin-based propulsion of a microswimmer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:012901. [PMID: 16907142 DOI: 10.1103/physreve.74.012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Indexed: 05/11/2023]
Abstract
A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.
Collapse
Affiliation(s)
- A M Leshansky
- Department of Chemical Engineering, Technion-IIT, Haifa, 32000, Israel.
| |
Collapse
|
9
|
McDonough WS, Tran NL, Berens ME. Regulation of glioma cell migration by serine-phosphorylated P311. Neoplasia 2006; 7:862-72. [PMID: 16229809 PMCID: PMC1501936 DOI: 10.1593/neo.05190] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/18/2022] Open
Abstract
P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59) near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation and induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311 and reduced glioma cell migration. Coimmunoprecipitation coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, and immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of beta1 integrin function using TACbeta1A, a dominant-negative inhibitor of beta1 integrin signaling, suggesting that P311 acts downstream of beta1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Rac1 GTPase; small interfering RNA-mediated depletion of Rac1 suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility and invasion through the reorganization of actin cytoskeleton at the cell periphery.
Collapse
Affiliation(s)
- Wendy S McDonough
- The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | |
Collapse
|
10
|
Fass J, Gehler S, Sarmiere P, Letourneau P, Bamburg JR. Regulating filopodial dynamics through actin-depolymerizing factor/cofilin. Anat Sci Int 2005; 79:173-83. [PMID: 15633455 DOI: 10.1111/j.1447-073x.2004.00087.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of filopodial dynamics by neurotrophins and other guidance cues plays an integral role in growth cone pathfinding. Filopodia are F-actin-based structures that explore the local environment, generate forces and play a role in growth cone translocation. Here, we review recent research showing that the actin-depolymerizing factor (ADF)/cofilin family of proteins mediates changes in the length and number of growth cone filopodia in response to brain-derived neurotrophic factor (BDNF). Although inhibition of myosin contractility also causes filopodial elongation, the elongation in response to BDNF does not occur through a myosin-dependent pathway. Active ADF/cofilin increases the rate of cycling between the monomer and polymer pools and is critical for the BDNF-induced changes. Thus, we discuss potential mechanisms by which ADF/cofilin may affect filopodial initiation and length change via its effects on F-actin dynamics in light of past research on actin and myosin function in growth cones.
Collapse
Affiliation(s)
- Joseph Fass
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|