1
|
Bian W, Yang J, Xia Y, Li Y, Cheng Y, Wu Y, Gan J, Zhong J. Megavirus baoshanense Mb0671 modulates host translation and increases viral fitness. Front Microbiol 2025; 16:1574090. [PMID: 40356658 PMCID: PMC12066439 DOI: 10.3389/fmicb.2025.1574090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Amoeba giant viruses encode many translation-related proteins, but the function of these proteins remains obscure. In the current work, we studied the potential eukaryotic translation initiation factor 4A (eIF4A, Mb0671) encoded by Megavirus baoshanense, a member of the family Mimiviridae. The protein was shown to possesse ATPase activity and RNA-binding capacity, localize in the cytoplasm of infected cells, and present in mature virions. Interactome analysis showed that Mb0671 interacted primarily with ribosomal proteins and translation-related proteins. Specifically, Mb0671 was found to interact indirectly with host eIF4A, suggesting that it was associated with the translation apparatus. Proteomic analysis revealed that the protein profile of Acanthamoeba castellanii cells stably expressing Mb0671 was altered significantly compared to wild-type cells. The cellular proteins that were significantly upregulated included those in the pathways of spliceosome, amino acids biosynthesis, ribosome biogenesis, vesicular transportation, mTOR signaling pathway, etc. Both Mb0671 overexpression or siRNA-mediated reduction of its expression level significantly affected the synthesis of viral proteins. Furthermore, overexpressing Mb0671 accelerated cell growth and virus replication, whereas reduction of Mb0671 expression by siRNA delayed virus replication. These results suggested that Mb0671 altered cellular translation, possibly through its association with the host translation machinery, and played an important role in enhancing virus adaptability.
Collapse
Affiliation(s)
- Wenya Bian
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yucheng Xia
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yun Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjin Cheng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Wu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Zhong
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Zhang F, Cheng T, Zhang SX. Mechanistic target of rapamycin (mTOR): a potential new therapeutic target for rheumatoid arthritis. Arthritis Res Ther 2023; 25:187. [PMID: 37784141 PMCID: PMC10544394 DOI: 10.1186/s13075-023-03181-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proinflammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presentation, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the development of RA therapeutic targets and new drugs.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
4
|
Casanova-Maldonado I, Arancibia D, Lois P, Peña-Villalobos I, Palma V. Hyperbaric oxygen treatment increases intestinal stem cell proliferation through the mTORC1/S6K1 signaling pathway in Mus musculus. Biol Res 2023; 56:41. [PMID: 37438828 DOI: 10.1186/s40659-023-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.
Collapse
Affiliation(s)
- Ignacio Casanova-Maldonado
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - David Arancibia
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
| | - Pablo Lois
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
- Education Department, Faculty of Humanities, Universidad Mayor, Santiago de Chile, Providencia, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| |
Collapse
|
5
|
Huang P, Wu L, Zhu N, Zhao H, Du J. The polymerase δ-interacting protein family and their emerging roles in diseases. Front Med (Lausanne) 2022; 9:1026931. [PMID: 36425112 PMCID: PMC9679015 DOI: 10.3389/fmed.2022.1026931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 10/08/2023] Open
Abstract
The polymerase δ-interacting protein (POLDIP) family is a new family that can interact with DNA polymerase δ (delta). The members of the POLDIP family include POLDIP1, POLDIP2, and POLDIP3. Screened by the two-hybrid method, POLDIP1, POLDIP2, and POLDIP3 were initially discovered and named for their ability to bind to the p50 subunit of DNA polymerase δ. Recent studies have confirmed that POLDIPs are involved in the regulation of signal transduction pathways in neurodevelopment, neuropsychiatric diseases, cardiovascular diseases, tumors, and other diseases. However, each protein participates in different signaling pathways. In this review, we elucidate upon the family in terms of their genes and protein structures, their biological functions, in addition to the pathways that they are involved in during the development of diverse diseases. Finally, to provide new insights to the scientific community, we used the TCGA database to analyze and summarize the gene expressions of POLDIP family members in various tumors, as well as the correlations between their expressions and the overall survival times of tumor patients. Our data summary will give researchers working on cancer new concepts.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lei Wu
- College of Continuing Education, Guilin Medical University, Guilin, China
| | - Ningxia Zhu
- Department of Pathophysiology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Singh M, Zhang S, Perez AM, Lee EYC, Lee MYWT, Zhang D. POLDIP3: At the Crossroad of RNA and DNA Metabolism. Genes (Basel) 2022; 13:1921. [PMID: 36360158 PMCID: PMC9690394 DOI: 10.3390/genes13111921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in recent years revealed that POLDIP3 also plays critical roles in disassembling genome wide R-loop formation and activating the DNA damage checkpoint in vivo. Here, we review the functions of POLDIP3 in various RNA and DNA related cellular processes. We then propose a unified model to illustrate how POLDIP3 plays such a versatile role at the crossroad of the RNA and DNA metabolism.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Alexis M. Perez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Ernest Y. C. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y. W. T. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| |
Collapse
|
7
|
Zhang S, Lee EYC, Lee MYWT, Zhang D. DNA polymerase delta interacting protein 3 facilitates the activation and maintenance of DNA damage checkpoint in response to replication stress. Animal Model Exp Med 2022; 5:461-469. [PMID: 36168146 PMCID: PMC9610138 DOI: 10.1002/ame2.12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. Methods We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. Results We showed that although the POLDIP3‐KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. Conclusion Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| |
Collapse
|
8
|
Fumagalli S, Pende M. S6 kinase 1 at the central node of cell size and ageing. Front Cell Dev Biol 2022; 10:949196. [PMID: 36036012 PMCID: PMC9417411 DOI: 10.3389/fcell.2022.949196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
Collapse
Affiliation(s)
| | - Mario Pende
- *Correspondence: Stefano Fumagalli, ; Mario Pende,
| |
Collapse
|
9
|
Sridhar J, Komati R, Kumar S. Targeting RPS6K1 for Refractory Breast Cancer Therapy. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-rps6k1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
11
|
Yang M, Lu Y, Piao W, Jin H. The Translational Regulation in mTOR Pathway. Biomolecules 2022; 12:biom12060802. [PMID: 35740927 PMCID: PMC9221026 DOI: 10.3390/biom12060802] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) plays a master role in cell proliferation and growth in response to insulin, amino acids, energy levels, and oxygen. mTOR can coordinate upstream signals with downstream effectors, including transcriptional and translational apparatuses to regulate fundamental cellular processes such as energy utilization, protein synthesis, autophagy, cell growth, and proliferation. Of the above, protein synthesis is highly energy-consuming; thus, mRNA translation is under the tight and immediate control of mTOR signaling. The translational regulation driven by mTOR signaling mainly relies on eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP), ribosomal protein S6 kinase (S6K), and its downstream players, which are significant in rapid cellular response to environmental change. mTOR signaling not only controls the general mRNA translation, but preferential mRNA translation as well. This means that mTOR signaling shows the stronger selectivity to particular target mRNAs. Some evidence has supported the contribution of 4E-BP and La-related proteins 1 (LARP1) to such translational regulation. In this review, we summarize the mTOR pathway and mainly focus on mTOR-mediated mRNA translational regulation. We introduce the major components of mTOR signaling and their functions in translational control in a general or particular manner, and describe how the specificity of regulation is coordinated. Furthermore, we summarize recent research progress and propose additional ideas for reference. Because the mTOR pathway is on the center of cell growth and metabolism, comprehensively understanding this pathway will contribute to the therapy of related diseases, including cancers, type 2 diabetes, obesity, and neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Hua Jin
- Correspondence: (W.P.); (H.J.)
| |
Collapse
|
12
|
Wang G, Chen L, Qin S, Zhang T, Yao J, Yi Y, Deng L. Mechanistic Target of Rapamycin Complex 1: From a Nutrient Sensor to a Key Regulator of Metabolism and Health. Adv Nutr 2022; 13:1882-1900. [PMID: 35561748 PMCID: PMC9526850 DOI: 10.1093/advances/nmac055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a multi-protein complex widely found in eukaryotes. It serves as a central signaling node to coordinate cell growth and metabolism by sensing diverse extracellular and intracellular inputs, including amino acid-, growth factor-, glucose-, and nucleotide-related signals. It is well documented that mTORC1 is recruited to the lysosomal surface, where it is activated and, accordingly, modulates downstream effectors involved in regulating protein, lipid, and glucose metabolism. mTORC1 is thus the central node for coordinating the storage and mobilization of nutrients and energy across various tissues. However, emerging evidence indicated that the overactivation of mTORC1 induced by nutritional disorders leads to the occurrence of a variety of metabolic diseases, including obesity and type 2 diabetes, as well as cancer, neurodegenerative disorders, and aging. That the mTORC1 pathway plays a crucial role in regulating the occurrence of metabolic diseases renders it a prime target for the development of effective therapeutic strategies. Here, we focus on recent advances in our understanding of the regulatory mechanisms underlying how mTORC1 integrates metabolic inputs as well as the role of mTORC1 in the regulation of nutritional and metabolic diseases.
Collapse
Affiliation(s)
- Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, China
| | - Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanglei Yi
- Address correspondence to YLY (e-mail: )
| | - Lu Deng
- Address correspondence to LD (e-mail: )
| |
Collapse
|
13
|
Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. FRONTIERS IN AGING 2021; 2:707372. [PMID: 35822019 PMCID: PMC9261424 DOI: 10.3389/fragi.2021.707372] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
14
|
Genetic removal of p70 S6K1 corrects coding sequence length-dependent alterations in mRNA translation in fragile X syndrome mice. Proc Natl Acad Sci U S A 2021; 118:2001681118. [PMID: 33906942 DOI: 10.1073/pnas.2001681118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Loss of the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS). FMRP is widely thought to repress protein synthesis, but its translational targets and modes of control remain in dispute. We previously showed that genetic removal of p70 S6 kinase 1 (S6K1) corrects altered protein synthesis as well as synaptic and behavioral phenotypes in FXS mice. In this study, we examined the gene specificity of altered messenger RNA (mRNA) translation in FXS and the mechanism of rescue with genetic reduction of S6K1 by carrying out ribosome profiling and RNA sequencing on cortical lysates from wild-type, FXS, S6K1 knockout, and double knockout mice. We observed reduced ribosome footprint (RF) abundance in the majority of differentially translated genes in the cortices of FXS mice. We used molecular assays to discover evidence that the reduction in RF abundance reflects an increased rate of ribosome translocation, which is captured as a decrease in the number of translating ribosomes at steady state and is normalized by inhibition of S6K1. We also found that genetic removal of S6K1 prevented a positive-to-negative gradation of alterations in translation efficiencies (RF/mRNA) with coding sequence length across mRNAs in FXS mouse cortices. Our findings reveal the identities of dysregulated mRNAs and a molecular mechanism by which reduction of S6K1 prevents altered translation in FXS.
Collapse
|
15
|
Li K, Shen X, Qiu H, Zhao T, Ai K, Li C, Zhang Y, Li K, Duan M, Wei X, Yang J. S6K1/S6 axis-regulated lymphocyte activation is important for adaptive immune response of Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1120-1130. [PMID: 32971270 DOI: 10.1016/j.fsi.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Ribosomal protein S6 kinase beta-1 (S6K1) is a serine/threonine kinase downstream of the mechanistic target of rapamycin (mTOR) pathway, and plays crucial roles in immune regulation. Although remarkable progress has been achieved with a mouse model, how S6K1 regulates adaptive immunity is largely unknown in early vertebrates. In this study, we identified an S6K1 from Nile tilapia Oreochromis niloticus (OnS6K1), and further investigated its potential regulatory role on the adaptive immunity of this fish species. Both sequence and structure of OnS6K1 were highly conserved with its homologs from other vertebrates and invertebrates. OnS6K1 was widely expressed in immune tissues, and with a relative higher expression level in the liver, spleen and head kidney. At the adaptive immune stage of Nile tilapia that infected with Aeromonas hydrophila, mRNA expression of OnS6K1 and its downstream effector S6 was significantly up-regulated in spleen lymphocytes. Meanwhile, their phosphorylation level was also enhanced during this process, suggesting that S6K1/S6 axis participated in the primary response of anti-bacterial adaptive immunity in Nile tilapia. Furthermore, after spleen lymphocytes were activated by the T cell-specific mitogen PHA or lymphocytes agonist PMA in vitro, mRNA and phosphorylation levels of S6K1 were elevated, and phosphorylation of S6 was also enhanced. Once S6K1 activity was blocked by a specific inhibitor, both mRNA and phosphorylation levels of S6 were severely impaired. More importantly, blockade of S6K1/S6 axis reduced the expression of T cell activation marker IFN-γ and CD122 in PHA-activated spleen lymphocytes, indicating the essential role of S6K1/S6 axis in regulating T cell activation of Nile tilapia. Together, our study suggests that S6K1 and its effector S6 regulate lymphocyte activation of Nile tilapia, and in turn promote lymphocyte-mediated adaptive immunity. This study enriched the mechanism of adaptive immune response in teleost and provided useful clues to understand the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaotong Shen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hong Qiu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
16
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
17
|
Ashraf S, Yilmaz G, Chen X, Harmancey R. Dietary Fat and Sugar Differentially Affect β-Adrenergic Stimulation of Cardiac ERK and AKT Pathways in C57BL/6 Male Mice Subjected to High-Calorie Feeding. J Nutr 2020; 150:1041-1050. [PMID: 31950177 PMCID: PMC7198302 DOI: 10.1093/jn/nxz342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High dietary fat and sugar promote cardiac hypertrophy independently from an increase in blood pressure. The respective contribution that each macronutrient exerts on cardiac growth signaling pathways remains unclear. OBJECTIVE The goal of this study was to investigate the mechanisms by which high amounts of dietary fat and sugar affect cardiac growth regulatory pathways. METHODS Male C57BL/6 mice (9 wk old; n = 20/group) were fed a standard rodent diet (STD; kcal% protein-fat-carbohydrate, 29-17-54), a high-fat diet (HFD; 20-60-20), a high-fat and high-sugar Western diet (WD; 20-45-35), a high-sugar diet with mixed carbohydrates (HCD; 20-10-70), or a high-sucrose diet (HSD; 20-10-70). Body composition was assessed weekly by EchoMRI. Whole-body glucose utilization was assessed with an intraperitoneal glucose tolerance test. After 6 wk on diets, mice were treated with saline or 20 mg/kg isoproterenol (ISO), and the activity of cardiac growth regulatory pathways was analyzed by immunoblotting. Data were analyzed by ANOVA with data from the STD group included for references only. RESULTS Compared with HCD and HSD, WD and HFD increased body fat mass 2.7- to 3.8-fold (P < 0.001), induced glucose intolerance (P < 0.001), and increased insulin concentrations >1.5-fold (P < 0.05), thereby enhancing basal and ISO-stimulated AKT phosphorylation at both threonine 308 and serine 473 residues (+25-63%; P < 0.05). Compared with HFD, the high-sugar diets potentiated ISO-mediated stimulation of the glucose-sensitive kinases PYK2 (>47%; P < 0.05 for HCD and HSD) and ERK (>34%; P < 0.05 for WD, HCD, and HSD), thereby leading to increased phosphorylation of protein synthesis regulator S6K1 at threonine 389 residue (>64%; P < 0.05 for WD, HCD, and HSD). CONCLUSIONS Dietary fat and sugar affect cardiac growth signaling pathways in C57BL/6 mice through distinct and additive mechanisms. The findings may provide new insights into the role of overnutrition in pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Gizem Yilmaz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Xu Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS
| | - Romain Harmancey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS,Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS,Address correspondence to RH (e-mail: )
| |
Collapse
|
18
|
Melick CH, Meng D, Jewell JL. A-kinase anchoring protein 8L interacts with mTORC1 and promotes cell growth. J Biol Chem 2020; 295:8096-8105. [PMID: 32312749 DOI: 10.1074/jbc.ac120.012595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Indexed: 01/28/2023] Open
Abstract
mTOR complex 1 (mTORC1) senses nutrients to mediate anabolic processes within the cell. Exactly how mTORC1 promotes cell growth remains unclear. Here, we identified a novel mTORC1-interacting protein called protein kinase A anchoring protein 8L (AKAP8L). Using biochemical assays, we found that the N-terminal region of AKAP8L binds to mTORC1 in the cytoplasm. Importantly, loss of AKAP8L decreased mTORC1-mediated processes such as translation, cell growth, and cell proliferation. AKAPs anchor protein kinase A (PKA) through PKA regulatory subunits, and we show that AKAP8L can anchor PKA through regulatory subunit Iα. Reintroducing full-length AKAP8L into cells restored mTORC1-regulated processes, whereas reintroduction of AKAP8L missing the N-terminal region that confers the interaction with mTORC1 did not. Our results suggest a multifaceted role for AKAPs in the cell. We conclude that mTORC1 appears to regulate cell growth, perhaps in part through AKAP8L.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
19
|
Li D, Ni XF, Tang H, Zhang J, Zheng C, Lin J, Wang C, Sun L, Chen B. KRT17 Functions as a Tumor Promoter and Regulates Proliferation, Migration and Invasion in Pancreatic Cancer via mTOR/S6k1 Pathway. Cancer Manag Res 2020; 12:2087-2095. [PMID: 32256116 PMCID: PMC7090205 DOI: 10.2147/cmar.s243129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most well-known malignancies with high mortality, but the underlying mechanism of PC remains unknown. Keratin17 (KRT17) expression has been reported in many malignancies, but its functions in PC are not clear. The aim of our study was to evaluate KRT17 expression and its potential role in PC. Methods The online databases GEPIA and THPA were used to identify KRT17 expression in tissues. Quantitative real-time PCR (qRT-PCR) was used to determine KRT17 expression in cell lines. Ki67 and ROS levels were detected by immunofluorescence assay and a 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. KRT17 downregulation was induced by the small interfering RNA (siRNA) technique. Proliferation function was evaluated by colony formation assay and RTCA. Migration and invasion were evaluated by transwell migration assay. A Western blot assay was used to detect protein levels. Results KRT17 was overexpressed in PC tissues compared to that in normal tissues. The results showed that Ki67 and ROS levels were decreased in pancreatic cancer cells after transfection with siKRT17. After KRT17 downregulation in PC cell lines, cell viability functions, including proliferation, migration and invasion, and mTOR/S6K1 phosphorylation levels were attenuated. Conclusion KRT17 knockdown significantly inhibited proliferation, migration and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiao-Feng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jiecheng Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianhu Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
20
|
Hodson N, West DWD, Philp A, Burd NA, Moore DR. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol 2019; 317:C1061-C1078. [PMID: 31461340 DOI: 10.1152/ajpcell.00209.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle mass, a strong predictor of longevity and health in humans, is determined by the balance of two cellular processes, muscle protein synthesis (MPS) and muscle protein breakdown. MPS seems to be particularly sensitive to changes in mechanical load and/or nutritional status; therefore, much research has focused on understanding the molecular mechanisms that underpin this cellular process. Furthermore, older individuals display an attenuated MPS response to anabolic stimuli, termed anabolic resistance, which has a negative impact on muscle mass and function, as well as quality of life. Therefore, an understanding of which, if any, molecular mechanisms contribute to anabolic resistance of MPS is of vital importance in formulation of therapeutic interventions for such populations. This review summarizes the current knowledge of the mechanisms that underpin MPS, which are broadly divided into mechanistic target of rapamycin complex 1 (mTORC1)-dependent, mTORC1-independent, and ribosomal biogenesis-related, and describes the evidence that shows how they are regulated by anabolic stimuli (exercise and/or nutrition) in healthy human skeletal muscle. This review also summarizes evidence regarding which of these mechanisms may be implicated in age-related skeletal muscle anabolic resistance and provides recommendations for future avenues of research that can expand our knowledge of this area.
Collapse
Affiliation(s)
- Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Philp
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Jiménez-González V, Ogalla-García E, García-Quintanilla M, García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca 2+ Homeostasis and Vesicle Transport. Int J Mol Sci 2019; 20:ijms20164005. [PMID: 31426446 PMCID: PMC6719933 DOI: 10.3390/ijms20164005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023] Open
Abstract
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein–protein interaction network of GRINA.
Collapse
Affiliation(s)
| | - Elena Ogalla-García
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Meritxell García-Quintanilla
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
22
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
23
|
Pang K, Zhang Z, Hao L, Shi Z, Chen B, Zang G, Dong Y, Li R, Liu Y, Wang J, Zhang J, Cai L, Han X, Han C. The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells. BMC Cancer 2019; 19:225. [PMID: 30866868 PMCID: PMC6417071 DOI: 10.1186/s12885-019-5423-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to determine whether the enhancer of the rudimentary homolog (ERH) gene regulates cell migration and invasion in human bladder urothelial carcinoma (BUC) T24 cells and the underlying mechanism. Methods First, we knocked down ERH in BUC T24 and 5637 cells by shRNA and then used wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays to determine the migration and invasion ability after ERH was knocked down. Moreover, we used gene expression profiling chip analysis and further functional experiments to explore the possible mechanism through which ERH knockdown downregulated metastasis ability in T24 cells. Results Wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays all showed that the metastasis ability was significantly inhibited in human BUC T24 and 5637 cells with ERH knockdown. A gene expression profiling chip analysis in T24 cells showed that the MYC gene may be an important downstream target of the ERH gene, and the functional experiments showed that MYC is a functional target of ERH in BUC T24 cells. Conclusion ERH knockdown could inhibit the metastasis of BUC T24 cells in vitro and in vivo. This study further explored the mechanism of the ERH gene in the metastasis of the T24 human bladder cancer cell line and found that ERH may regulate MYC gene expression. The results of this research provide a basis for the clinical application of ERH as a potential target for BUC treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5423-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Zhiguo Zhang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Rui Li
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Ying Liu
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jie Wang
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jianjun Zhang
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Longjun Cai
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Xiaoxiao Han
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, No. 2699 Gaoke West Road, Pudong District, Shanghai, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China. .,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China. .,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
24
|
Goodman CA. Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J Appl Physiol (1985) 2019; 127:581-590. [PMID: 30676865 DOI: 10.1152/japplphysiol.01011.2018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mass is, in part, regulated by the rate of mRNA translation (i.e., protein synthesis). The conserved serine/threonine kinase, mTOR (the mammalian/mechanistic target of rapamycin), found in the multiprotein complex, mTOR complex 1 (mTORC1), is a major positive regulator of protein synthesis. The purpose of this review is to describe some of the critical steps in translation initiation, mTORC1 and its potential direct and indirect roles in regulating translation, and evidence that mTORC1 regulates protein synthesis and muscle mass, with a particular focus on basal conditions and the response to mechanical stimuli. Current evidence suggests that for acute contraction models of mechanical stimuli, there is an emerging pattern suggesting that there is an early increase in protein synthesis governed by a rapamycin-sensitive mTORC1-dependent mechanism, while at later poststimulation time points, the mechanism may change to a rapamycin-insensitive mTORC1-dependent or even an mTORC1-independent mechanism. Furthermore, evidence suggests that mTORC1 appears to be absolutely necessary for muscle fiber hypertrophy induced by chronic mechanical loading but may only play a partial role in the hypertrophy induced by more intermittent types of acute resistance exercise, with the possibility of mTORC1-independent mechanisms also playing a role. Despite the progress that has been made, many questions about the activation of mTORC1, and its downstream targets, remain to be answered. Further research will hopefully provide novel insights into the regulation of skeletal muscle mTORC1 that may eventually be translated into novel exercise programing and/or targeted pharmacological therapies aimed at preventing muscle wasting and/or increasing muscle mass.
Collapse
Affiliation(s)
- Craig A Goodman
- Institute of Health and Sport; Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Victoria, Australia
| |
Collapse
|
25
|
Sever Nİ, Cengiz Şahin S. S6K2 promises an important therapeutic potential for cancer. Future Oncol 2018; 15:95-102. [PMID: 30730779 DOI: 10.2217/fon-2018-0332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
S6K2, the newer member of S6 Kinase family, is a crucial modulator of Akt/mTOR signaling pathway and is a member of AGC kinase family that regulates cellular growth and survival. S6K1 and S6K2 share high sequence similarity; therefore, S6K2 had been underestimated. However, recent studies displayed distinct functions of S6K2. Activated by both Akt/mTOR and Ras/Raf/Mek/Erk signaling pathways, S6K2 regulates cancer cell survival via different routes. Complexation with antiapoptotic proteins BRAF and PKCε avoids non-small-cell lung cancer cells from apoptosis upon FGF-2 stimulation. Indirect upregulation of the translation of antiapoptotic proteins Bcl-XL and XIAP in HEK293T cells and interference with TNF-induced apoptosis in MCF-7 cells are other routes of cancer cell survival. The aforementioned studies on S6K2 necessitate the development of therapies targeting only on S6K2. Studies targeting S6K2 may help to build important roads for cancer therapy.
Collapse
Affiliation(s)
- Nurettin İlter Sever
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Pamukkale University, Denizli, Turkey
| | - Sevilay Cengiz Şahin
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Pamukkale University, Denizli, Turkey
| |
Collapse
|
26
|
Abstract
Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus.
Collapse
|
27
|
mTOR Signaling and Neural Stem Cells: The Tuberous Sclerosis Complex Model. Int J Mol Sci 2018; 19:ijms19051474. [PMID: 29772672 PMCID: PMC5983755 DOI: 10.3390/ijms19051474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), a serine-threonine kinase, plays a pivotal role in regulating cell growth and proliferation. Notably, a great deal of evidence indicates that mTOR signaling is also crucial in controlling proliferation and differentiation of several stem cell compartments. Consequently, dysregulation of the mTOR pathway is often associated with a variety of disease, such as cancer and metabolic and genetic disorders. For instance, hyperactivation of mTORC1 in neural stem cells (NSCs) is associated with the insurgence of neurological manifestation characterizing tuberous sclerosis complex (TSC). In this review, we survey the recent contributions of TSC physiopathology studies to understand the role of mTOR signaling in both neurogenesis and tumorigenesis and discuss how these new insights can contribute to developing new therapeutic strategies for neurological diseases and cancer.
Collapse
|
28
|
Yi SA, Lee J, Park JW, Han J, Lee MG, Nam KH, Park JH, Oh H, Ahn SJ, Kim S, Kwon SH, Jo DG, Han JW. S6K1 controls epigenetic plasticity for the expression of pancreatic α/β cell marker genes. J Cell Biochem 2018; 119:6674-6683. [PMID: 29665055 DOI: 10.1002/jcb.26853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
The failure of insulin production by pancreatic β cells is a common hallmark of type 1 diabetes mellitus (T1DM). Because administration of exogenous insulin is associated with diabetes-derived complications, endogenous α to β cell transition can be an attractive alternative. Although decreased β cell size and hypoinsulinaemia have been observed in S6K1-deficient mice, the molecular mechanism underlying the involvement of S6K1 in the transcriptional regulation of insulin remains elusive. Here, we show that the hypoinsulinaemic phenotype of S6K1-deficient mice stems from the dysregulated transcription of a set of genes required for insulin and glucagon production. First, we observed that increased expression of α cell marker genes and decreased expression of β cell marker genes in pancreas tissues from S6K1-deficient mice. Furthermore, S6K1 was highly activated in murine β cell line, βTC6, compared to murine α cell line αTC1. In both α and β cells, active S6K1 promoted the transcription of β cell marker genes, including insulin, whereas S6K1 inhibition increased the transcription of α cell marker genes. Moreover, S6K1 mediated pancreatic gene regulation by modifying two histone marks (activating H3K4me3 and repressing H3K27me3) on gene promoters. These results suggest that S6K1 drives the α to β transition through the epigenetic regulation of cell-specific genes, including insulin and glucagon. This novel role of S6K1 in islet cells provides basic clues to establish therapeutic strategies against T1DM.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Jin Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saetbyul Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
29
|
|
30
|
Leohr JK, Luffer-Atlas D, Luo MJ, DeBrota DJ, Green C, Mabry TE, Suico JG. Serum Lipid and Protein Changes in Healthy Dyslipidemic Subjects Given a Selective Inhibitor of p70 S6 Kinase-1. J Clin Pharmacol 2017; 58:412-424. [PMID: 29178617 DOI: 10.1002/jcph.1032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/16/2017] [Indexed: 11/08/2022]
Abstract
The safety, pharmacokinetic, and pharmacodynamic effects of LY2584702, a selective inhibitor for p70 S6 serine/threonine protein kinase-1, were evaluated in healthy dyslipidemic volunteers. LY2584702 was tolerated well as a monotherapy and dose-dependently reduced low-density lipoprotein cholesterol and triglycerides by up to 60% and 50%, respectively, without significantly changing high-density lipoprotein cholesterol levels in plasma. LY2584702 also dose-dependently decreased factor V activity. Alanine aminotransferase elevations were noted in 2 subjects when LY2584702 was given with atorvastatin. We suspect that the formation of 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) during metabolism may have contributed to some of the adverse effects of LY2584702, and the contribution of 4-APP to the pharmacology merits further investigation. Although clinical investigation of LY2584702 has been terminated because of hepatotoxicity risk, we suggest that a selective inhibitor of p70 S6 serine/threonine protein kinase-1 with a larger margin of safety and without the possibility of being metabolized to 4-APP may be useful in the treatment of dyslipidemia.
Collapse
Affiliation(s)
| | | | - M Jane Luo
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Colin Green
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
31
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
32
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
33
|
Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 2017; 45:72-82. [PMID: 28411448 PMCID: PMC5545101 DOI: 10.1016/j.ceb.2017.02.012] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
mTOR [mechanistic target of rapamycin] is a serine/threonine protein kinase that, as part of mTORC1 (mTOR complex 1), acts as an important molecular connection between nutrient signals and the metabolic processes indispensable for cell growth. While there has been pronounced interest in the upstream mechanisms regulating mTORC1, the full range of downstream molecular targets through which mTORC1 signaling stimulates cell growth is only recently emerging. It is now evident that mTORC1 promotes cell growth primarily through the activation of key anabolic processes. Through a diverse set of downstream targets, mTORC1 promotes the biosynthesis of macromolecules, including proteins, lipids, and nucleotides to build the biomass underlying cell, tissue, and organismal growth. Here, we focus on the metabolic functions of mTORC1 as they relate to the control of cell growth. As dysregulated mTORC1 underlies a variety of human diseases, including cancer, diabetes, autoimmune diseases, and neurological disorders, understanding the metabolic program downstream of mTORC1 provides insights into its role in these pathological states.
Collapse
Affiliation(s)
- Issam Ben-Sahra
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
34
|
Ghosh J, Kapur R. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Exp Hematol 2017; 50:13-21. [PMID: 28342808 DOI: 10.1016/j.exphem.2017.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-p70 ribosomal protein kinase 1 (S6K1) signaling pathway occurs frequently in acute myeloid leukemia (AML) patients. This pathway also plays a critical role in maintaining normal cellular processes. Given the importance of leukemia stem cells (LSCs) in the development of minimal residual disease, it is critical to use therapeutic interventions that target the LSC population to prevent disease relapse. The mTORC1-S6K1 pathway has been identified as an important regulator of hematopoietic stem cell (HSC) and LSC functions. Both HSC and LSC functions require regulation of key cellular processes including proliferation, metabolism, and autophagy, which are regulated by mTORC1 pathway. Despite the mTORC1-S6K1 pathway being a critical regulator of AML initiation and progression, inhibitors of this pathway alone have yielded mixed results in clinical studies. Recent studies have identified strategies to develop new mTORC1-S6K1 inhibitors such as RapaLink-1, which could circumvent the drug resistance observed in AML cells and in LSCs. Here, we review recent advances made in identifying the role of different components of this pathway in the regulation of HSCs and LSCs and discuss possible therapeutic approaches.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Liu XN, Yuan JH, Wang TT, Pan W, Sun SH. An alternative POLDIP3 transcript promotes hepatocellular carcinoma progression. Biomed Pharmacother 2017; 89:276-283. [PMID: 28236701 DOI: 10.1016/j.biopha.2017.01.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing plays critical roles in many pathophysiological processes and splicing dysregulation is a hallmark of cancer. The different isoforms may have significantly different effects on cancers. POLDIP3 is a target of ribosomal protein S6 kinase 1, and regulates DNA replication and mRNA translation. In this study, we measured the expression of an alternative POLDIP3 transcript (POLDIP3-β), which lacks exon 3 and 29 amine acids, in clinical hepatocellular carcinoma (HCC) tissues. The roles of POLDIP3-β on HCC cell proliferation, apoptosis, and migration were assessed by Glo cell viability assays, Ethynyl deoxyuridine incorporation assays, colony formation assays, TUNEL assays, Annexin V-propidium iodide staining and flow cytometry, transwell assays, wound healing assays, and in vivo xenograft growth. Our results showed that POLDIP3-β was significantly upregulated in HCC tissues compared with paired adjacent noncancerous hepatic tissues. In vitro and in vivo functional experiments results demonstrated that overexpression of POLDIP3-β drastically increased HCC cell proliferation, inhibited HCC cell apoptosis, enhanced HCC cell migration, and promoted xenograft growth. While the effects of normal POLDIP3, which contains exon 3, were much weaker. In conclusion, our study demonstrated that an alternative transcript of POLDIP3 is upregulated and functions as a critical oncogene in HCC. Selectively targeting this isoform of POLDIP3 would be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiao-Ning Liu
- Department of Medical Genetics, Second Military Medical University, No. 800 Xiang-Yin Road, Shanghai 200433, China
| | - Ji-Hang Yuan
- Department of Medical Genetics, Second Military Medical University, No. 800 Xiang-Yin Road, Shanghai 200433, China.
| | - Tian-Tian Wang
- Department of Medical Genetics, Second Military Medical University, No. 800 Xiang-Yin Road, Shanghai 200433, China
| | - Wei Pan
- Department of Medical Genetics, Second Military Medical University, No. 800 Xiang-Yin Road, Shanghai 200433, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, No. 800 Xiang-Yin Road, Shanghai 200433, China.
| |
Collapse
|
36
|
mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Mol Cell Biol 2017; 37:MCB.00577-16. [PMID: 27956700 DOI: 10.1128/mcb.00577-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
mTOR coordinates growth signals with metabolic pathways and protein synthesis and is hyperactivated in many human cancers. mTOR exists in two complexes: mTORC1, which stimulates protein, lipid, and ribosome biosynthesis, and mTORC2, which regulates cytoskeleton functions. While mTOR is known to be involved in the DNA damage response, little is actually known regarding the functions of mTORC1 compared to mTORC2 in this regard or the respective impacts on transcriptional versus translational regulation. We show that mTORC1 and mTORC2 are both required to enact DNA damage repair and cell survival, resulting in increased cancer cell survival during DNA damage. Together mTORC1 and -2 enact coordinated transcription and translation of protective cell cycle and DNA replication, recombination, and repair genes. This coordinated transcriptional-translational response to DNA damage was not impaired by rapalog inhibition of mTORC1 or independent inhibition of mTORC1 or mTORC2 but was blocked by inhibition of mTORC1/2. Only mTORC1/2 inhibition reversed cancer cell resistance to DNA damage and replicative stress and increased tumor cell killing and tumor control by DNA damage therapies in animal models. When combined with DNA damage, inhibition of mTORC1/2 blocked transcriptional induction more strongly than translation of DNA replication, survival, and DNA damage response mRNAs.
Collapse
|
37
|
Wang X, Zhang S, Zheng R, Yue F, Lin SHS, Rahmeh AA, Lee EYC, Zhang Z, Lee MYWT. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ. Oncotarget 2017; 7:6294-313. [PMID: 26819372 PMCID: PMC4868757 DOI: 10.18632/oncotarget.7034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Rong Zheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Fu Yue
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Amal A Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
38
|
Pavan ICB, Yokoo S, Granato DC, Meneguello L, Carnielli CM, Tavares MR, do Amaral CL, de Freitas LB, Paes Leme AF, Luchessi AD, Simabuco FM. Different interactomes for p70-S6K1 and p54-S6K2 revealed by proteomic analysis. Proteomics 2016; 16:2650-2666. [PMID: 27493124 DOI: 10.1002/pmic.201500249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 06/28/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023]
Abstract
S6Ks are major effectors of the mTOR (mammalian target of rapamycin) pathway, signaling for increased protein synthesis and cell growth in response to insulin, AMP/ATP levels, and amino acids. Deregulation of this pathway has been related to disorders and diseases associated with metabolism, such as obesity, diabetes, and cancer. S6K family is composed of two main members, S6K1 and S6K2, which comprise different isoforms resulted from alternative splicing or alternative start codon use. Although important molecular functions have been associated with p70-S6K1, the most extensively studied isoform, the S6K2 counterpart lacks information. In the present study, we performed immunoprecipitation assays followed by mass spectrometry (MS) analysis of FLAG-tagged p70-S6K1 and p54-S6K2 interactomes, after expression in HEK293 cells. Protein lists were submitted to CRAPome (Contaminant Repository for Affinity Purification) and SAINT (Significance Analysis of INTeractome) analysis, which allowed the identification of high-scoring interactions. By a comparative approach, p70-S6K1 interacting proteins were predominantly related to "cytoskeleton" and "stress response," whereas p54-S6K2 interactome was more associated to "transcription," "splicing," and "ribosome biogenesis." Moreover, we have found evidences for new targets or regulators of the S6K protein family, such as proteins NCL, NPM1, eIF2α, XRCC6, PARP1, and ILF2/ILF3 complex. This study provides new information about the interacting networks of S6Ks, which may contribute for future approaches to a better understanding of the mTOR/S6K pathway.
Collapse
Affiliation(s)
- Isadora C B Pavan
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Sami Yokoo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Daniela C Granato
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Letícia Meneguello
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Carolina M Carnielli
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Mariana R Tavares
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Camila L do Amaral
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Lidia B de Freitas
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Augusto D Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Fernando M Simabuco
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil.
| |
Collapse
|
39
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
40
|
Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget 2016; 6:24361-75. [PMID: 26172298 PMCID: PMC4695191 DOI: 10.18632/oncotarget.4458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
All multicellular organisms require a life-long regulation of the number and the size of cells, which build up their organs. mTOR acts as a signaling nodule for the regulation of protein synthesis and growth. To activate the translational cascade, mTOR phosphorylates S6 kinase (S6K1), which is liberated from the eIF3-complex and mobilized for activation of its downstream targets. How S6K1 regulates cell size remains unclear. Here, we challenged cell size control through S6K1 by specifically depleting its binding partner eIF3 in normal and transformed cell lines. We show that loss of eIF3 leads to a massive reduction of cell size and cell number accompanied with an unexpected increase in S6K1-activity. The hyperactive S6K1-signaling was rapamycin-sensitive, suggesting an upstream mTOR-regulation. A selective S6K1 inhibitor (PF-4708671) was unable to interfere with the reduced size, despite efficiently inhibiting S6K1-activity. Restoration of eIF3 expression recovered size defects, without affecting the p-S6 levels. We further show that two, yet uncharacterized, cancer-associated mutations in the eIF3-complex, have the capacity to recover from reduced size phenotype, suggesting a possible role for eIF3 in regulating cancer cell size. Collectively, our results uncover a role for eIF3-complex in maintenance of normal and neoplastic cell size - independent of S6K1-signaling.
Collapse
Affiliation(s)
- Katharina Schipany
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Loredana Ionce
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
41
|
Gao CQ, Zhi R, Yang Z, Li HC, Yan HC, Wang XQ. Low dose of IGF-I increases cell size of skeletal muscle satellite cells via Akt/S6K signaling pathway. J Cell Biochem 2016; 116:2637-48. [PMID: 25923195 DOI: 10.1002/jcb.25212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway.
Collapse
Affiliation(s)
- Chun-qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Rui Zhi
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,Guizhou Agricultural Vocational College, Guiyang, Guizhou, China
| | - Zhou Yang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,College of Science and Engineering, Guangxi Open University, Nanning, Guangxi, China
| | - Hai-chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, Ohio
| | - Hui-chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Xiu-qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| |
Collapse
|
42
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
43
|
Colombrita C, Onesto E, Buratti E, de la Grange P, Gumina V, Baralle FE, Silani V, Ratti A. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1398-410. [PMID: 26514432 DOI: 10.1016/j.bbagrm.2015.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.
Collapse
Affiliation(s)
- Claudia Colombrita
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Elisa Onesto
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | | | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
| |
Collapse
|
44
|
Liko D, Hall MN. mTOR in health and in sickness. J Mol Med (Berl) 2015; 93:1061-73. [DOI: 10.1007/s00109-015-1326-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/12/2023]
|
45
|
Ribosomal Protein S6 Phosphorylation: Four Decades of Research. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:41-73. [PMID: 26614871 DOI: 10.1016/bs.ircmb.2015.07.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The phosphorylation of ribosomal protein S6 (rpS6) has been described for the first time about four decades ago. Since then, numerous studies have shown that this modification occurs in response to a wide variety of stimuli on five evolutionarily conserved serine residues. However, despite a large body of information on the respective kinases and the signal transduction pathways, the physiological role of rpS6 phosphorylation remained obscure until genetic manipulations were applied in both yeast and mammals in an attempt to block this modification. Thus, studies based on both mice and cultured cells subjected to disruption of the genes encoding rpS6 and the respective kinases, as well as the substitution of the phosphorylatable serine residues in rpS6, have laid the ground for the elucidation of the multiple roles of this protein and its posttranslational modification. This review focuses primarily on newly identified kinases that phosphorylate rpS6, pathways that transduce various signals into rpS6 phosphorylation, and the recently established physiological functions of this modification. It should be noted, however, that despite the significant progress made in the last decade, the molecular mechanism(s) underlying the diverse effects of rpS6 phosphorylation on cellular and organismal physiology are still poorly understood.
Collapse
|
46
|
McGlory C, Phillips SM. Exercise and the Regulation of Skeletal Muscle Hypertrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:153-73. [PMID: 26477914 DOI: 10.1016/bs.pmbts.2015.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle is a critical organ serving as the primary site for postprandial glucose disposal and the generation of contractile force. The size of human skeletal muscle mass is dependent upon the temporal relationship between changes in muscle protein synthesis (MPS) and muscle protein breakdown. The aim of this chapter is to review our current understanding of how resistance exercise influences protein turnover with a specific emphasis on the molecular factors regulating MPS. We also will discuss recent data relating to the prescription of resistance exercise to maximize skeletal muscle hypertrophy. Finally, we evaluate the impact of age and periods of disuse on the loss of muscle mass and the controversy surround the etiology of muscle disuse atrophy.
Collapse
Affiliation(s)
- Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
47
|
Xie Y, Jin Y, Merenick BL, Ding M, Fetalvero KM, Wagner RJ, Mai A, Gleim S, Tucker DF, Birnbaum MJ, Ballif BA, Luciano AK, Sessa WC, Rzucidlo EM, Powell RJ, Hou L, Zhao H, Hwa J, Yu J, Martin KA. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Sci Signal 2015; 8:ra44. [PMID: 25969542 DOI: 10.1126/scisignal.2005482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This dedifferentiation also contributes to VSMC hyperplasia after vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, its transactivation of promoters encoding contractile proteins, and its inhibition of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser(290), potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2(-/-) mice. Intimal hyperplasia after arterial injury was greater in Akt2(-/-) mice than in wild-type mice, and the exacerbated response in Akt2(-/-) mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs.
Collapse
Affiliation(s)
- Yi Xie
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Yu Jin
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Bethany L Merenick
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Min Ding
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA. Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kristina M Fetalvero
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Robert J Wagner
- Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Alice Mai
- Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott Gleim
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - David F Tucker
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morris J Birnbaum
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Amelia K Luciano
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - William C Sessa
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Eva M Rzucidlo
- Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Richard J Powell
- Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Lin Hou
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA. Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jun Yu
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Departments of Medicine and Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA. Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. Department of Surgery, Section of Vascular Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
48
|
The S6K protein family in health and disease. Life Sci 2015; 131:1-10. [PMID: 25818187 DOI: 10.1016/j.lfs.2015.03.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
The S6K proteins are mTOR pathway effectors and accumulative evidence suggest that mTOR/S6K signaling contributes to several pathological conditions, such as diabetes, cancer and obesity. The activation of the mTOR/S6K axis stimulates protein synthesis and cell growth. S6K1 has two well-known isoforms, p70-S6K1 and p85-S6K1, generated by alternative translation initiation sites. A third isoform, named p31-S6K1, has been characterized as a truncated type of the protein due to alternative splicing, and reports have shown its important role in cancer. Studies involving S6K2 are scarce. This article aims to review what is new in the literature about these kinases and establish differences regarding their interacting proteins, activation and function, connecting their roles in the homeostasis of the cell and in pathological conditions.
Collapse
|
49
|
Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 2014; 33:55-66. [PMID: 25554914 DOI: 10.1016/j.ceb.2014.12.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
Mammalian TOR (mTOR) signaling controls growth, metabolism and energy homeostasis in a cell autonomous manner. Recent findings indicate that mTOR signaling in one tissue can also affect other organs thereby affecting whole body metabolism and energy homeostasis in a non-cell autonomous manner. It is thus not surprising that mTOR signaling mediates aging and is often deregulated in metabolic disorders, such as obesity, diabetes and cancer. This review discusses the regulation of cellular and whole body energy metabolism by mTOR, with particular focus on the non-cell autonomous function of mTOR.
Collapse
Affiliation(s)
- Verena Albert
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
50
|
Gao B, Roux PP. Translational control by oncogenic signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:753-65. [PMID: 25477072 DOI: 10.1016/j.bbagrm.2014.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023]
Abstract
Messenger RNA (mRNA) translation is highly regulated in cells and plays an integral role in the overall process of gene expression. The initiation phase of translation is considered to be the most rate-limiting and is often targeted by oncogenic signaling pathways to promote global protein synthesis and the selective translation of tumor-promoting mRNAs. Translational control is a crucial component of cancer development as it allows cancer cells to adapt to the altered metabolism that is generally associated with the tumor state. The phosphoinositide 3-kinase (PI3K)/Akt and Ras/mitogen-activated protein kinase (MAPK) pathways are strongly implicated in cancer etiology, and they exert their biological effects by modulating both global and specific mRNA translation. In addition to having respective translational targets, these pathways also impinge on the mechanistic/mammalian target of rapamycin (mTOR), which acts as a critical signaling node linking nutrient sensing to the coordinated regulation of cellular metabolism. mTOR is best known as a central regulator of protein synthesis and has been implicated in an increasing number of pathological conditions, including cancer. In this article, we describe the current knowledge on the roles and regulation of mRNA translation by various oncogenic signaling pathways, as well as the relevance of these molecular mechanisms to human malignancies. This article is part of a Special Issue entitled: Translation and cancer.
Collapse
Affiliation(s)
- Beichen Gao
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|