1
|
Phiwthong T, Limkul S, Aunkam P, Seabkongseng T, Teaumroong N, Tittabutr P, Boonchuen P. Quaking RNA-Binding protein (QKI) mediates circular RNA biogenesis in Litopenaeus vannamei during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110178. [PMID: 39921020 DOI: 10.1016/j.fsi.2025.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The Quaking RNA-binding protein (QKI), a member of the STAR family, is considered critical in the formation of circular RNAs (circRNAs), as it aids in catalyzing a back-splicing phenomenon by interacting with RNA precursors. CircRNAs have progressively been revealed to play central roles in the regulation of various biological processes, such as antiviral defense mechanisms. This study identifies a QKI in L. vannamei, referred to as LvQKI, comprised of conserved STAR and KH RNA-binding domains. Analysis through tissue-specific expression using qRT-PCR has revealed a high expression level of LvQKI in the gill - one of the primary regions heavily populated by the white spot syndrome virus (WSSV) - and its activation was triggered during WSSV infection. From an RNA interference-mediated suppression targeting LvQKI, a decrease and increase in survival rates and WSSV copy number were observed, respectively. Notably, circRNA levels were significantly lowered in LvQKI-silenced shrimp, whereas linear RNAs remained stable. Conversely, administration of recombinant LvQKI (rLvQKI) protein before a WSSV challenge not only enhanced survival rates but also reduced viral load, wherein both circRNAs and linear RNAs underwent up-regulation in rLvQKI-treated shrimp. Our results introduce LvQKI as a crucial factor in circRNA biogenesis and immune defense in shrimp, emphasizing the interplay between LvQKI's and circRNAs' roles in fighting viral invasion.
Collapse
Affiliation(s)
- Tannatorn Phiwthong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Phirom Aunkam
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Tuangrak Seabkongseng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Mushtaq A, Mir US, Altaf M. Multifaceted functions of RNA-binding protein vigilin in gene silencing, genome stability, and autism-related disorders. J Biol Chem 2023; 299:102988. [PMID: 36758804 PMCID: PMC10011833 DOI: 10.1016/j.jbc.2023.102988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important players in regulating eukaryotic gene expression and genome stability. Specific RBPs have been shown to mediate various chromatin-associated processes ranging from transcription to gene silencing and DNA repair. One of the prominent classes of RBPs is the KH domain-containing proteins. Vigilin, an evolutionarily conserved KH domain-containing RBP has been shown to be associated with diverse biological processes like RNA transport and metabolism, sterol metabolism, chromosome segregation, and carcinogenesis. We have previously reported that vigilin is essential for heterochromatin-mediated gene silencing in fission yeast. More recently, we have identified that vigilin in humans plays a critical role in efficient repair of DNA double-stranded breaks and functions in homology-directed DNA repair. In this review, we highlight the multifaceted functions of vigilin and discuss the findings in the context of gene expression, genome organization, cancer, and autism-related disorders.
Collapse
Affiliation(s)
- Arjamand Mushtaq
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
3
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Farooq Z, Abdullah E, Banday S, Ganai SA, Rashid R, Mushtaq A, Rashid S, Altaf M. Vigilin protein Vgl1 is required for heterochromatin-mediated gene silencing in Schizosaccharomyces pombe. J Biol Chem 2019; 294:18029-18040. [PMID: 31554660 DOI: 10.1074/jbc.ra119.009262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic genomes and regulates various cellular processes, including gene silencing, chromosome segregation, and maintenance of genome stability. In the fission yeast Schizosaccharomyces pombe, heterochromatin formation involves methylation of lysine 9 in histone H3 (H3K9), which recruits Swi6/HP1 proteins to heterochromatic loci. The Swi6/HP1-H3K9me3 chromatin complex lies at the center of heterochromatic macromolecular assemblies and mediates many functions of heterochromatin by recruiting a diverse set of regulators. However, additional factors may be required for proper heterochromatin organization, but they are not fully known. Here, using several molecular and biochemical approaches, we report that Vgl1, a member of a large family of multiple KH-domain proteins, collectively known as vigilins, is indispensable for the heterochromatin-mediated gene silencing in S. pombe ChIP analysis revealed that Vgl1 binds to pericentromeric heterochromatin in an RNA-dependent manner and that Vgl1 deletion leads to loss of H3K9 methylation and Swi6 recruitment to centromeric and telomeric heterochromatic loci. Furthermore, we show that Vgl1 interacts with the H3K9 methyltransferase, Clr4, and that loss of Vgl1 impairs Clr4 recruitment to heterochromatic regions of the genome. These findings uncover a novel role for Vgl1 as a key regulator in heterochromatin-mediated gene silencing in S. pombe.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ehsaan Abdullah
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Romana Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Samia Rashid
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
6
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
7
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
8
|
Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28975734 DOI: 10.1002/wrna.1448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Matthew Hk Cheng
- International Max Planck Research School, Tuebingen, Germany.,Interfaculty Institute of Biochemistry, Tuebingen, Germany
| | | |
Collapse
|
9
|
Mobin MB, Gerstberger S, Teupser D, Campana B, Charisse K, Heim MH, Manoharan M, Tuschl T, Stoffel M. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nat Commun 2016; 7:12848. [PMID: 27665711 PMCID: PMC5052685 DOI: 10.1038/ncomms12848] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/01/2016] [Indexed: 01/07/2023] Open
Abstract
The liver is essential for the synthesis of plasma proteins and integration of lipid metabolism. While the role of transcriptional networks in these processes is increasingly understood, less is known about post-transcriptional control of gene expression by RNA-binding proteins (RBPs). Here, we show that the RBP vigilin is upregulated in livers of obese mice and in patients with fatty liver disease. By using in vivo, biochemical and genomic approaches, we demonstrate that vigilin controls very-low-density lipoprotein (VLDL) secretion through the modulation of apolipoproteinB/Apob mRNA translation. Crosslinking studies reveal that vigilin binds to CU-rich regions in the mRNA coding sequence of Apob and other proatherogenic secreted proteins, including apolipoproteinC-III/Apoc3 and fibronectin/Fn1. Consequently, hepatic vigilin knockdown decreases VLDL/low-density lipoprotein (LDL) levels and formation of atherosclerotic plaques in Ldlr−/− mice. These studies uncover a role for vigilin as a key regulator of hepatic Apob translation and demonstrate the therapeutic potential of inhibiting vigilin for cardiovascular diseases. RNA-binding proteins (RBP) are an emerging group of post-translational regulators. Here the authors show that the RBP vigilin regulates translation of mRNA encoding for proatherogenic proteins—apoB, apoC-III and fibronectin—representing a potential therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Mehrpouya B Mobin
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern Weg 7, 8093 Zurich, Switzerland
| | - Stefanie Gerstberger
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Benedetta Campana
- Department of Biomedicine and Clinic for Gastroenterology and Hepatology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, USA
| | - Markus H Heim
- Department of Biomedicine and Clinic for Gastroenterology and Hepatology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Dev Biol 2015; 405:260-8. [DOI: 10.1016/j.ydbio.2015.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023]
|
11
|
Wei L, Xie X, Li J, Li R, Shen W, Duan S, Zhao R, Yang W, Liu Q, Fu Q, Qin Y. Disruption of human vigilin impairs chromosome condensation and segregation. Cell Biol Int 2015; 39:1234-41. [PMID: 26032007 DOI: 10.1002/cbin.10496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/23/2015] [Indexed: 11/08/2022]
Abstract
Appropriate packaging and condensation are critical for eukaryotic chromatin's accommodation and separation during cell division. Human vigilin, a multi-KH-domain nucleic acid-binding protein, is associated with alpha satellites of centromeres. DDP1, a vigilin's homolog, is implicated with chromatin condensation and segregation. The expression of vigilin was previously reported to elevate in highly proliferating tissues and increased in a subset of hepatocellular carcinoma patients. Other studies showed that vigilin interacts with CTCF, contributes to regulation of imprinted genes Igf2/H19, and colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. These studies indicate that human vigilin might be involved in chromatin remodeling and regular cell growth. To investigate the potential role of human vigilin in cell cycle, the correlations between vigilin and chromosomal condensation and segregation were studied. Depletion of human vigilin by RNA interference in HepG2 cells resulted in chromosome undercondensation and various chromosomal defects during mitotic phase, including chromosome misalignments, lagging chromosomes, and chromosome bridges. Aberrant polyploid nucleus in telophase was also observed. Unlike the abnormal staining pattern of chromosomes, the shape of spindle was normal. Furthermore, the chromatin showed a greater sensitivity to MNase digestion. Collectively, our findings show that human vigilin apparently participates in chromatin condensation and segregation.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyan Xie
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junhong Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ran Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenyan Shen
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuwang Duan
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rongce Zhao
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenli Yang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.,Sichuan University "985 Project-Science and Technology Innovation Platform for Novel Drug Development", Chengdu, 610041, Sichuan, China
| |
Collapse
|
12
|
Liu Q, Yang B, Xie X, Wei L, Liu W, Yang W, Ge Y, Zhu Q, Zhang J, Jiang L, Yu X, Shen W, Li R, Shi X, Li B, Qin Y. Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J 2014; 281:2713-25. [PMID: 24725430 DOI: 10.1111/febs.12816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
CCCTC-binding factor (CTCF), a highly conserved zinc finger protein, is a master organizer of genome spatial organization and has multiple functions in gene regulation. Mounting evidence indicates that CTCF regulates the imprinted genes Igf2 and H19 by organizing chromatin at the Igf2/H19 locus, although the mechanism by which CTCF carries out this function is not fully understood. By yeast two-hybrid screening, we identified vigilin, a multi-KH-domain protein, as a new partner of CTCF. Subsequent coimmunoprecipitation and glutathione S-transferase pulldown experiments confirmed that vigilin interacts with CTCF. Moreover, vigilin is present at several known CTCF target sites, such as the promoter regions of c-myc and BRCA1, the locus control region of β-globin, and several regions within the Igf2/H19 locus. In vivo depletion of vigilin did not affect CTCF binding; however, knockdown of CTCF reduced vigilin binding to the H19 imprinting control region. Furthermore, ectopic expression of vigilin significantly downregulated Igf2 and upregulated H19, whereas depletion of vigilin upregulated Igf2 and downregulated H19, in HepG2, CNE1 and HeLa cells. These results reveal the functional relevance of vigilin and CTCF, and show that the CTCF-vigilin complex contributes to regulation of Igf2/H19.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shen WY, Liu QY, Wei L, Yu XQ, Li R, Yang WL, Xie XY, Liu WQ, Huang Y, Qin Y. CTCF-mediated reduction of vigilin binding affects the binding of HP1α to the satellite 2 locus. FEBS Lett 2014; 588:1549-55. [DOI: 10.1016/j.febslet.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022]
|
14
|
Pérez-Montero S, Carbonell A, Morán T, Vaquero A, Azorín F. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 2013; 26:578-90. [PMID: 24055651 DOI: 10.1016/j.devcel.2013.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/21/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023]
Abstract
Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
Batlle M, Marsellach FX, Huertas D, Azorín F. Drosophila vigilin, DDP1, localises to the cytoplasm and associates to the rough endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:46-55. [DOI: 10.1016/j.bbagrm.2010.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023]
|
16
|
Fukui T, Itoh M. RNA editing in P transposable element read-through transcripts in Drosophila melanogaster. Genetica 2010; 138:1119-26. [DOI: 10.1007/s10709-010-9499-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|
17
|
Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet 2009; 5:e1000670. [PMID: 19798443 PMCID: PMC2743825 DOI: 10.1371/journal.pgen.1000670] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA–immunoprecipitation on microarrays), and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role on both RNA and heterochromatin metabolisms. Heterochromatin Protein 1 (HP1a) is a very well known prototype protein of a general model for heterochromatin formation and epigenetic gene silencing in different species including humans. Here, we report our experiments showing that HP1a is also required for the positive regulation of more than one hundred euchromatic genes by its association with the corresponding RNA transcripts and by its interaction with heterogeneous nuclear ribonucleoproteins (hnRNPs) belonging to different classes. Importantly, we also found that all the tested hnRNP proteins bind to the heterochromatin and are dominant suppressors of position effect variegation, thus suggesting they also have a role in heterochromatin organization. Taken together, our data show novel and important functions, not only for HP1a, but also for hnRNPs, which were previously believed to participate only in RNA processing. These results shed new light on the epigenetic mechanisms of gene silencing and gene expression. They also establish a link between RNA transcript metabolism and heterochromatin formation and change several aspects of the canonical views about these apparently different processes.
Collapse
|
18
|
St Laurent G, Savva YA, Reenan R. Enhancing non-coding RNA information content with ADAR editing. Neurosci Lett 2009; 466:89-98. [PMID: 19751800 DOI: 10.1016/j.neulet.2009.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/02/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
Abstract
The depth and complexity of the non-coding transcriptome in nervous system tissues provides a rich substrate for adenosine de-amination acting on RNA (ADAR). Non-coding RNAs (ncRNAs) serve diverse regulatory and computational functions, coupling signal flow from the environment to evolutionarily coded analog and digital information elements within the transcriptome. We present a perspective of ADARs interaction with the non-coding transcriptome as a computational matrix, enhancing the information processing power of the cell, adding flexibility, rapid response, and fine tuning to critical pathways. Dramatic increases in ADAR activity during stress response and inflammation result in powerful information processing events that change the functional state of the cell. This review examines the pathways and mechanisms of ADAR interaction with the non-coding transcriptome, and their functional consequences for information processing in nervous system tissues.
Collapse
Affiliation(s)
- Georges St Laurent
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
19
|
Adkins NL, McBryant SJ, Johnson CN, Leidy JM, Woodcock CL, Robert CH, Hansen JC, Georgel PT. Role of nucleic acid binding in Sir3p-dependent interactions with chromatin fibers. Biochemistry 2009; 48:276-88. [PMID: 19099415 DOI: 10.1021/bi801705g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies of the mechanisms involved in the regulation of gene expression in eukaryotic organisms depict a highly complex process requiring a coordinated rearrangement of numerous molecules to mediate DNA accessibility. Silencing in Saccharomyces cerevisiae involves the Sir family of proteins. Sir3p, originally described as repressing key areas of the yeast genome through interactions with the tails of histones H3 and H4, appears to have additional roles in that process, including involvement with a DNA binding component. Our in vitro studies focused on the characterization of Sir3p-nucleic acid interactions and their biological functions in Sir3p-mediated silencing using binding assays, EM imaging, and theoretical modeling. Our results suggest that the initial Sir3p recruitment is partially DNA-driven, highly cooperative, and dependent on nucleosomal features other than histone tails. The initial step appears to be rapidly followed by the spreading of silencing using linker DNA as a track.
Collapse
Affiliation(s)
- Nicholas L Adkins
- Department of Biological Sciences and Cell Differentiation and Development Center, Marshall University, Huntington, West Virginia 25755, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Wang Q, Chen LL, Carmichael GG. On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin. RNA (NEW YORK, N.Y.) 2008; 14:1773-1781. [PMID: 18648073 PMCID: PMC2525967 DOI: 10.1261/rna.1036308] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
Vigilin is an RNA-binding protein localized to both the cytoplasm and the nucleus and has been previously implicated in heterochromatin formation and chromosome segregation. We demonstrate here that the C-terminal domain of human vigilin binds to the histone methyltransferase SUV39H1 in vivo. This association is independent of RNA and maps to a site on vigilin that is not involved in its interaction with several other known protein partners. Cells that express high levels of the C-terminal fragment display chromosome segregation defects, and ChIP analyses show changes in the status of pericentric beta-satellite and rDNA chromatin from heterochromatic to more euchromatic form. Finally, a cell line with inducible expression of the vigilin C-terminal fragment displays inducible alterations in beta-satellite chromatin. These and other results lead us to present a new model for vigilin-mediated, RNA-induced gene silencing.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Heterochromatin is a specialized form of DNA packaging that results in a transcriptionally inactive conformation. While much progress has been made in characterizing the heterochromatin structure biochemically and via its effects on genes and transgenes, very little is known about how heterochromatin formation is initiated. Recent evidence from the yeast Saccharomyces pombe suggests the involvement of the RNA interference (RNAi) machinery in heterochromatin formation, and in particular in the targeting of the heterochromatin machinery to specific sites in the genome. In this article, we review the evidence for an involvement of RNAi in heterochromatin formation in the model system Drosophila melanogaster. It appears that while there are numerous threads that connect heterochromatin formation and gene silencing with the RNAi pathways in Drosophila, a direct role for RNAi in particular in the targeting of heterochromatin formation is still lacking.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University, One Brookings Dr., Campus Box 1137 St. Louis, MO 63130, USA
| | | |
Collapse
|
22
|
Denisenko O, Bomsztyk K. Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast. J Mol Biol 2008; 375:1178-87. [PMID: 18067921 PMCID: PMC2367324 DOI: 10.1016/j.jmb.2007.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
In budding yeast, telomeres, the ribosomal DNA array, and HM loci are transcriptionally silenced by chromatin complexes containing Sir proteins. Hek2, a protein containing three evolutionary conserved RNA-binding K-homology domains, was identified as a suppressor of telomeric silencing [telomeric position effect (TPE)]. To explore the mechanisms of Hek2p action in gene silencing, we examined its relationship with Sir proteins. This search revealed an epistatic interaction between HEK2 and SIR1 at telomeres. Both single mutations, sir1Delta and hek2Delta, enhanced TPE, whereas the effect of double mutation, sir1Delta hek2Delta, did not exceed that of the single mutations. The results of chromatin immunoprecipitation analysis demonstrate that the TPE enhancement observed in these mutants is associated with increased binding of Sir2 protein to telomeres. At the HMR locus, hek2Delta rescues the silencing defect caused by sir1Delta mutation and reverses the loss of Sir2p and Sir3p. These data suggest that the epistatic interaction of HEK2 and SIR1 reflects competition between telomeres and HMR for Sir2/3 factors where HEK2 acts to suppress silencing. Because chromatin immunoprecipitation analysis reveals the presence of Hek2p at a subtelomeric region and HMR, its silencing effects at these loci are likely direct. These observations suggest that HEK2 regulates the composition of Sir complexes at HMR and telomeres.
Collapse
Affiliation(s)
- Oleg Denisenko
- Department of Medicine, Room 242, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | |
Collapse
|
23
|
Kavi HH, Fernandez H, Xie W, Birchler JA. Genetics and biochemistry of RNAi in Drosophila. Curr Top Microbiol Immunol 2008; 320:37-75. [PMID: 18268839 DOI: 10.1007/978-3-540-75157-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. It has gained wide usage in genetics. While having the potential for many practical applications, it is a reflection of a much broader spectrum of small RNA-mediated processes in the cell. The RNAi machinery was originally perceived as a defense mechanism against viruses and transposons. While this is certainly true, small RNAs have now been implicated in many other aspects of cell biology. Here we review the current knowledge of the biochemistry of RNAi in Drosophila and the involvement of small RNAs in RNAi, transposon silencing, virus defense, transgene silencing, pairing-sensitive silencing, telomere function, chromatin insulator activity, nucleolar stability, and heterochromatin formation. The discovery of the role of RNA molecules in the degradation of mRNA transcripts leading to decreased gene expression resulted in a paradigm shift in the field of molecular biology. Transgene silencing was first discovered in plant cells (Matzke et al. 1989; van der Krol et al. 1990; Napoli et al. 1990) and can occur on both the transcriptional and posttranscriptional levels, but both involve short RNA moieties in their mechanism. RNA interference (RNAi) is a type of gene silencing mechanism in which a double-stranded RNA (dsRNA) molecule directs the specific degradation of the corresponding mRNA (target RNA). The technique of RNAi was first discovered in Caenorhabditis elegans in 1994 (Guo and Kemphues 1994). Later the active component was found to be a dsRNA (Fire et al. 1998). In subsequent years, it has been found to occur in diverse eukaryotes
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
24
|
Brykailo MA, McLane LM, Fridovich-Keil J, Corbett AH. Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160. Nucleic Acids Res 2007; 35:6862-9. [PMID: 17933776 PMCID: PMC2175298 DOI: 10.1093/nar/gkm776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 12/25/2022] Open
Abstract
Gene expression is controlled by RNA-binding proteins that modulate the synthesis, processing, transport and stability of various classes of RNA. Some RNA-binding proteins shuttle between the nucleus and cytoplasm and are thought to bind to RNA transcripts in the nucleus and remain bound during translocation to the cytoplasm. One RNA-binding protein that has been hypothesized to function in this manner is the Saccharomyces cerevisiae Scp160 protein. Although the steady-state localization of Scp160 is cytoplasmic, previous studies have identified putative nuclear localization (NLS) and nuclear export (NES) signals. The goal of this study was to test the hypothesis that Scp160 is a nucleocytoplasmic shuttling protein. We exploited a variety of yeast export mutants to capture any potential nuclear accumulation of Scp160 and found no evidence that Scp160 enters the nucleus. These localization studies were complemented by a mutational analysis of the predicted NLS. Results indicate that key basic residues within the predicted NLS of Scp160 can be altered without severely affecting Scp160 function. This finding has important implications for understanding the function of Scp160, which is likely limited to the cytoplasm. Additionally, our results provide strong evidence that the presence of a predicted nuclear localization signal within the sequence of a protein should not lead to the assumption that the protein enters the nucleus in the absence of additional experimental evidence.
Collapse
Affiliation(s)
- Melissa A. Brykailo
- Department of Human Genetics and Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Laura M. McLane
- Department of Human Genetics and Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Judith Fridovich-Keil
- Department of Human Genetics and Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Human Genetics and Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Probst AV, Almouzni G. Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation 2007; 76:15-23. [PMID: 17825083 DOI: 10.1111/j.1432-0436.2007.00220.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constitutive heterochromatin in mammals is essentially found at centromeres, which are key chromosomal elements that ensure proper chromosome segregation. These regions are considered to be epigenetically defined, given that it is not sequence composition but chromatin organization that defines centromere function. How such an epigenetically defined domain, like the centromere, can be established during development and maintained during somatic cell life are fundamental questions. This review discusses the most recent insights into centromeric heterochromatin organization and replication. We further highlight the plasticity of this domain by describing the large-scale re-organization that occurs during development.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Genome Plasticity, UMR 218 CNRS/Institut Curie 26, rue d'Ulm, 75248 Paris Cedex 5, France
| | | |
Collapse
|
26
|
Przewloka MR, Zhang W, Costa P, Archambault V, D'Avino PP, Lilley KS, Laue ED, McAinsh AD, Glover DM. Molecular analysis of core kinetochore composition and assembly in Drosophila melanogaster. PLoS One 2007; 2:e478. [PMID: 17534428 PMCID: PMC1868777 DOI: 10.1371/journal.pone.0000478] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/01/2007] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. METHODOLOGY/PRINCIPAL FINDINGS We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. CONCLUSIONS/SIGNIFICANCE The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms.
Collapse
Affiliation(s)
- Marcin R. Przewloka
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Patricia Costa
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Pier Paolo D'Avino
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. McAinsh
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, United Kingdom
| | - David M. Glover
- Cancer Research UK, Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Abstract
Transcription in heterochromatin seems to be an oxymoron--surely the 'silenced' form of chromatin should not be transcribed. But there have been frequent reports of low-level transcription in heterochromatic regions, and several hundred genes are found in these regions in Drosophila. Most strikingly, recent investigations implicate RNA interference mechanisms in targeting and maintaining heterochromatin, and these mechanisms are inherently dependent on transcription. Silencing of chromatin might involve trans-acting sources of the crucial small RNAs that carry out RNA interference, but in some cases, transcription of the region to be silenced seems to be required--an apparent contradiction.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
28
|
Bickel KS, Morris DR. Silencing the transcriptome's dark matter: mechanisms for suppressing translation of intergenic transcripts. Mol Cell 2006; 22:309-16. [PMID: 16678103 DOI: 10.1016/j.molcel.2006.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Large portions of the genomes of higher eukaryotes are transcribed into RNA molecules that are never destined for translation into proteins. Although some of these transcripts have clearly defined biological roles other than protein coding, most arise from genomic regions devoid of functional genes and many are antisense to regions containing annotated genes. A variety of mechanisms exist to prevent adventitious production of proteins from these transcripts, ranging from degradation within the nucleus to translational silencing in the cytosol.
Collapse
Affiliation(s)
- Kellie S Bickel
- Department of Biochemistry, University of Washington, Box 357350, Seattle, 98133, USA
| | | |
Collapse
|
29
|
Marsellach FX, Huertas D, Azorín F. The multi-KH domain protein of Saccharomyces cerevisiae Scp160p contributes to the regulation of telomeric silencing. J Biol Chem 2006; 281:18227-35. [PMID: 16632467 DOI: 10.1074/jbc.m601671200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multi-KH domain proteins are highly evolutionarily conserved proteins that associate to polyribosomes and participate in RNA metabolism. Recent evidence indicates that multi-KH domain proteins also contribute to the structural organization of heterochromatin both in mammals and Drosophila. Here, we show that the multi-KH domain protein of Saccharomyces cerevisiae, Scp160p, contributes to silencing at telomeres and at the mating-type locus, but not to ribosomal silencing. The contribution of Scp160p to silencing is independent of its binding to the ribosome as deletion of the last two KH domains, which mediate ribosomal binding, has no effect on silencing. Disruption of SCP160 increases cell ploidy but this effect is also independent of the contribution of Scp160p to telomeric silencing as strong relief of silencing is observed in Deltascp160 cells with normal ploidy and, vice versa, Deltascp160 cells with highly increased ploidy show no significant silencing defects. The TPE phenotype of Deltascp160 cells associates to a decreased Sir3p deposition at telomeres and, in good agreement, silencing is rescued by SIR3 overexpression and in a Deltarif1Deltarif2 mutant. Scp160p shows a distinct perinuclear localization that is independent of its ability to bind ribosomes. Moreover, telomere clustering at the nuclear envelope is perturbed in Deltascp160 cells and disruption of the histone deacetylase RPD3, which is known to improve telomere clustering, rescues telomeric silencing in Deltascp160 cells. These results are discussed in the context of a model in which Scp160p contributes to silencing by helping telomere clustering.
Collapse
Affiliation(s)
- Francesc-Xavier Marsellach
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Mao C, Flavin KG, Wang S, Dodson R, Ross J, Shapiro DJ. Analysis of RNA-protein interactions by a microplate-based fluorescence anisotropy assay. Anal Biochem 2006; 350:222-32. [PMID: 16448619 DOI: 10.1016/j.ab.2005.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/29/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
Quantitative studies of RNA-protein interactions are quite cumbersome using traditional methods. We developed a rapid microplate-based fluorescence anisotropy (FA)/fluorescence polarization assay that works well, even with RNA probes >90 nucleotides long. We analyzed binding of RNA targets by vigilin/DDP1/SCP160p and by c-myc coding region instability determinant (CRD) binding protein, CRD-BP. Vigilin is essential for cell viability and functions in heterochromatin formation and mRNA decay. The CRD-BP stabilizes c-myc mRNA. Vigilin bound to a vitellogenin mRNA 3'-UTR probe with a two to three-fold lower affinity than to a Drosophila dodecasatellite ssDNA binding site and bound to the c-myc CRD with a two- to three-fold lower affinity than to the vitellogenin mRNA 3'-UTR. Competition between vigilin and CRD-BP for binding to the CRD may therefore play a role in regulating c-myc mRNA degradation. We analyzed suitability of the microplate-based FA assay for high-throughput screening for small-molecule regulators of RNA-protein interactions. The assay exhibits high reproducibility and precision and works well in 384-well plates and in 5 microl to 20 microl samples. To demonstrate the potential of this assay for screening libraries of small molecules to identify novel regulators of RNA-protein interactions, we identified neomycin and H33342 as inhibitors of binding of vigilin to the vitellogenin mRNA 3'-UTR.
Collapse
Affiliation(s)
- Chengjian Mao
- Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801-3602, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
32
|
Wynter CVA. The dialectics of cancer: A theory of the initiation and development of cancer through errors in RNAi. Med Hypotheses 2005; 66:612-35. [PMID: 16359827 DOI: 10.1016/j.mehy.2005.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022]
Abstract
The recent discoveries of the RNA-mediated interference system in cells could explain all of the known features of human carcinogenesis. A key, novel idea, proposed here, is that the cell has the ability to recognise a mutated protein and/or mRNA. Secondly, the cell can generate its own short interfering RNA (siRNA) using an RNA polymerase to destroy mutated mRNA, even when only a single base pair in the gene has mutated. The anti-sense strand of the short RNA molecule (called sicRNA), targets the mutated mRNA of an oncogene or a tumour suppressor. The resulting double stranded RNA, using the RNA-induced silencing complex in the cytoplasm dices the mutated mRNA. In cancer-prone tissues, during cell mitosis, the sicRNA complex can move into the nucleus to target the mutated gene. The sicRNA, possibly edited by dsRNA-specific adenosine deaminase, converting adenosines to inosines, can be retained in the nucleus, with enhanced destructive capability. The sicRNA triggers the assembly of protein complexes leading to epigenetic modification of the promoter site of the mutant gene, specifically methylation of cytosines. In some instances, instead of methylation, the homologous DNA is degraded, leading to loss of heterozygosity. The factors controlling these two actions are unknown but the result is gene silencing or physical destruction of the mutant gene. The cell survives dependent on the functioning of the single, wild-type allele. An error in RNAi defence occurs when the sicRNA enters the nucleus and targets the sense strand of the wrong DNA. The sicRNA, because of the similarity of its short sequence and relaxed stringency, can target other RNAs, which are being transcribed. This can result in the methylation of the wrong promoter site of a gene or LOH of that region. In the vast majority of these cases, the aberrant hybridisations will have no effect on cell function or apoptosis eliminates non-viable cells. On a rare occasion, a preneoplastic cell is initiated when aberrant hybridisations switches on/off a gene involved in apoptosis, as well as a gene involved in cell proliferation and DNA damage surveillance. Genetic instability results when the sicRNA competes for a repeat sequence in the centromere or telomere, leading to gross chromosomal rearrangements. A malignancy develops when the sicRNAs fortuitously targets a microRNA (miRNA) or activates a transcription factor, resulting in the translation of a large number of new genes, alien to that tissue. This leads to dedifferentiation of the tissue, a resculpting of the histone code, chromosomal rearrangements, along a number of specific pathways, the gain of immortality and the dissemination of a metastatic cancer.
Collapse
Affiliation(s)
- Coral V A Wynter
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4029, Australia.
| |
Collapse
|
33
|
Wallace JA, Orr-Weaver TL. Replication of heterochromatin: insights into mechanisms of epigenetic inheritance. Chromosoma 2005; 114:389-402. [PMID: 16220346 DOI: 10.1007/s00412-005-0024-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/13/2005] [Accepted: 08/15/2005] [Indexed: 12/20/2022]
Abstract
Heterochromatin is composed of tightly condensed chromatin in which the histones are deacetylated and methylated, and specific nonhistone proteins are bound. Additionally, in vertebrates and plants, the DNA within heterochromatin is methylated. As the heterochromatic state is stably inherited, replication of heterochromatin requires not only duplication of the DNA but also a reinstallment of the appropriate protein and DNA modifications. Thus replication of heterochromatin provides a framework for understanding mechanisms of epigenetic inheritance. In recent studies, roles have been identified for replication factors in reinstating heterochromatin, particularly functions for origin recognition complex, proliferating cell nuclear antigen, and chromatin-assembly factor 1 in recruiting the heterochromatin binding protein HP1, a histone methyltransferase, a DNA methyltransferase, and a chromatin remodeling complex. Potential mechanistic links between these factors are discussed. In some cells, replication of the heterochromatin is blocked, and in Drosophila this inhibition is mediated by a chromatin binding protein SuUR.
Collapse
|
34
|
Kavi HH, Fernandez HR, Xie W, Birchler JA. RNA silencing inDrosophila. FEBS Lett 2005; 579:5940-9. [PMID: 16198344 DOI: 10.1016/j.febslet.2005.08.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 11/18/2022]
Abstract
Knowledge of the role of RNA in affecting gene expression has expanded in the past several years. Small RNAs serve as homology guides to target messenger RNAs for destruction at the post-transcriptional level in the experimental technique known as RNA interference and in the silencing of some transgenes. These small RNAs are also involved in sequence-specific targeting of chromatin modifications for transcriptional silencing of transgenes, transposable elements, heterochromatin and some cases of Polycomb-mediated gene silencing. RNA silencing processes in Drosophila are described.
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, 117 Tucker Hall, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Double-stranded RNA (dsRNA) is often formed in the nuclei of mammalian cells, but in this compartment it does not induce the effects characteristic of cytoplasmic dsRNA. Rather, recent work has suggested that nuclear dsRNA is a target for the ADAR class of enzymes, which deaminate adenosines to inosines. Further, there are a number of distinct fates of such edited RNA, including nuclear retention and perhaps also gene silencing.
Collapse
Affiliation(s)
- Joshua DeCerbo
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | |
Collapse
|
36
|
Abstract
In the universe of science, two worlds have recently collided-those of RNA and chromatin. The intersection of these two fields has been impending, but evidence for such a meaningful collision has only recently become apparent. In this review, we discuss the implications for noncoding RNAs and the formation of specialized chromatin domains in various epigenetic processes as diverse as dosage compensation, RNA interference-mediated heterochromatin assembly and gene silencing, and programmed DNA elimination. While mechanistic details as to how the RNA and chromatin worlds connect remain unclear, intriguing parallels exist in the overall design and machinery used in model organisms from all eukaryotic kingdoms. The role of potential RNA-binding chromatin-associated proteins will be discussed as one possible link between RNA and chromatin.
Collapse
Affiliation(s)
- Emily Bernstein
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
37
|
Wang Q, Zhang Z, Blackwell K, Carmichael GG. Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 2005; 15:384-91. [PMID: 15723802 DOI: 10.1016/j.cub.2005.01.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/27/2004] [Accepted: 11/30/2004] [Indexed: 01/09/2023]
Abstract
The fate of double-stranded RNA (dsRNA) in the cell depends on both its length and location . The expression of dsRNA in the nucleus leads to several distinct consequences. First, the promiscuous deamination of adenosines to inosines by dsRNA-specific adenosine deaminase (ADAR) can lead to the nuclear retention of edited transcripts . Second, dsRNAs might induce heterochromatic gene silencing through an RNAi-related mechanism . Is RNA editing also connected to heterochromatin? We report that members of the conserved Vigilin class of proteins have a high affinity for inosine-containing RNAs. In agreement with other work , we find that these proteins localize to heterochromatin and that mutation or depletion of the Drosophila Vigilin, DDP1, leads to altered nuclear morphology and defects in heterochromatin and chromosome segregation. Furthermore, nuclear Vigilin is found in complexes containing not only the editing enzyme ADAR1 but also RNA helicase A and Ku86/70. In the presence of RNA, the Vigilin complex recruits the DNA-PKcs enzyme, which appears to phosphorylate a discrete set of targets, some or all of which are known to participate in chromatin silencing. These results are consistent with a mechanistic link between components of the DNA-repair machinery and RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | |
Collapse
|
38
|
Abstract
Vigilin proteins, the absence of which is known to cause abnormalities in heterochromatin, have been found to bind edited RNAs. Molecular complexes including vigilin comprise proteins involved with RNA editing and with DNA repair, making connections between these processes and RNA-based silencing mechanisms.
Collapse
Affiliation(s)
- H R Fernandez
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|