1
|
Dobersch S, Yamamoto N, Schutter A, Cavender SM, Robertson TM, Kartha N, Samraj AN, Doron B, Poole LA, Wladyka CL, Zhang A, Jang GH, Mahalingam AH, Barreto G, Raghavan S, Narla G, Notta F, Eisenman RN, Hsieh AC, Kugel S. HMGA2 and protein leucine methylation drive pancreatic cancer lineage plasticity. Nat Commun 2025; 16:4866. [PMID: 40419509 PMCID: PMC12106622 DOI: 10.1038/s41467-025-60129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Basal pancreatic ductal adenocarcinoma (PDAC) has the worst overall survival and is the only subtype that serves as an independent poor prognostic factor. We identify elevated levels of LIN28B and its downstream target, HMGA2, in basal PDAC. Notably, LIN28B significantly accelerates KRAS-driven PDAC progression in a mouse model. Here, we show that HMGA2 promotes basal PDAC pathogenesis by enhancing mRNA translation downstream of LIN28B. Mechanistically, HMGA2 suppresses leucine carboxyl methyltransferase 1 (LCMT1) at the chromatin level, reducing PP2A methylation and activity. This leads to increased phosphorylation of S6K and eIF4B, boosting mRNA translation. Additionally, HMGA2 downregulates B56α (PPP2R5A), disrupting functional PP2A holoenzyme assembly and further sustaining phosphorylated S6K levels. Impaired PP2A function mimics HMGA2's effects, reinforcing increased mRNA translation and basal lineage features. This work uncovers a critical link between the LIN28B/HMGA2 axis, protein synthesis, and PDAC lineage specificity via LCMT1-mediated PP2A methylation and B56α-PP2A disruption.
Collapse
Affiliation(s)
| | - Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Aidan Schutter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah M Cavender
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tess M Robertson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nithya Kartha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Annie N Samraj
- Division of Transfusion Medicine, Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ben Doron
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lisa A Poole
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Patel S, Jenkins E, Kusurkar RP, Lee S, Jiang W, Nevler A, McCoy M, Pishvaian MJ, Sears RC, Brody JR, Yeo CJ, Jain A. Targeting BARD1 suppresses a Myc-dependent transcriptional program and tumor growth in pancreatic ductal adenocarcinoma. Neoplasia 2025; 63:101152. [PMID: 40096771 PMCID: PMC11957605 DOI: 10.1016/j.neo.2025.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers demanding better and more effective therapies. BARD1 or BRCA1-Associated -Ring Domain-1 plays a pivotal role in homologous recombination repair (HRR). However, its function and the underlying molecular mechanisms in PDAC are still not fully elucidated. Here, we demonstrate that BARD1 is overexpressed in PDAC and its genetic inhibition suppresses c-Myc and disrupts c-Myc dependent transcriptional program. Mechanistically, BARD1 stabilizes c-Myc through ubiquitin-proteasome system by regulating FBXW7. Importantly, targeting BARD1 using either siRNAs or CRISPR/Cas9 deletion blocks PDAC growth in vitro and in vivo, without any signs of toxicity to mice. Using a focused drug library of 477 DNA damage response compounds, we also found that BARD1 inhibition enhances therapeutic efficacy of several clinically relevant agents (fold changes ≥4), including PARPi, in HRR proficient PDAC cells. These data uncover BARD1 as an attractive therapeutic target for HRR proficient PDAC.
Collapse
Affiliation(s)
- Sohum Patel
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eleanor Jenkins
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rutuj P Kusurkar
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sherry Lee
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Jiang
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avinoam Nevler
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics & Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Michael J Pishvaian
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, and Brenden-Colson Center for Pancreatic Care Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan R Brody
- Department of Surgery, and Brenden-Colson Center for Pancreatic Care Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles J Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aditi Jain
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
4
|
Lacroix E, Momchilova EA, Chandhok S, Padavu M, Zapf R, Audas TE. PI3K/AKT signaling mediates stress-inducible amyloid formation through c-Myc. Cell Rep 2025; 44:115617. [PMID: 40272983 DOI: 10.1016/j.celrep.2025.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
In response to environmental stress, eukaryotic cells reversibly form functional amyloid aggregates called amyloid bodies (A-bodies). While these solid-like biomolecular condensates share many biophysical characteristics with pathological amyloids, A-bodies are non-toxic, and they induce a protective state of cellular dormancy. As a recently identified structure, the modulators of A-body biogenesis remain uncharacterized, with the seeding noncoding RNA being the only known regulatory factor. Here, we use an image-based high-throughput screening approach to identify candidate pathways regulating A-body biogenesis. Our data demonstrate that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling axis meditates A-body formation during stress exposure, with AKT activation repressing glycogen synthase kinase-3 (GSK3)-mediated degradation of c-Myc. This enhances c-Myc binding to regulatory elements of the seeding noncoding RNA, upregulating the transcripts that nucleate A-body formation. Identifying a link between PI3K/AKT signaling, c-Myc, and physiological amyloid aggregates extends the range of activity for these well-established regulators while providing insight into cellular components whose dysregulation could underly amyloidogenic disorders.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mythili Padavu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
5
|
Cohn GM, Daniel CJ, Eng JR, Sun XX, Pelz C, Chin K, Smith A, Lopez CD, Brody JR, Dai MS, Sears RC. MYC Serine 62 phosphorylation promotes its binding to DNA double strand breaks to facilitate repair and cell survival under genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644227. [PMID: 40166231 PMCID: PMC11957152 DOI: 10.1101/2025.03.19.644227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Genomic instability is a hallmark of cancer, driving oncogenic mutations that enhance tumor aggressiveness and drug resistance. MYC, a master transcription factor that is deregulated in nearly all human tumors, paradoxically induces replication stress and associated DNA damage while also increasing expression of DNA repair factors and mediating resistance to DNA-damaging therapies. Emerging evidence supports a non-transcriptional role for MYC in preserving genomic integrity at sites of active transcription and protecting stalled replication forks under stress. Understanding how MYC's genotoxic and genoprotective functions diverge may reveal new therapeutic strategies for MYC-driven cancers. Here, we identify a non-canonical role of MYC in DNA damage response (DDR) through its direct association with DNA breaks. We show that phosphorylation at serine 62 (pS62-MYC) is crucial for the efficient recruitment of MYC to damage sites, its interaction with repair factors BRCA1 and RAD51, and effective DNA repair to support cell survival under stress. Mass spectrometry analysis with MYC-BioID2 during replication stress reveals a shift in MYC's interactome, maintaining DDR associations while losing transcriptional regulators. These findings establish pS62-MYC as a key regulator of genomic stability and a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer R. Eng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Koei Chin
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Charles D. Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Mu-shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
6
|
Basu AA, Zhang C, Rouhimoghadam M, Vasudevan A, Reitsma JM, Zhang X. Harnessing the FBXW7 Somatic Mutant R465C for Targeted Protein Degradation. J Am Chem Soc 2025; 147:6108-6115. [PMID: 39913332 PMCID: PMC11973725 DOI: 10.1021/jacs.4c17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Targeted protein degradation (TPD) is a pharmacological strategy that eliminates specific proteins from cells by harnessing cellular proteolytic degradation machinery. In proteasome-dependent TPD, expanding the repertoire of E3 ligases compatible with this approach could enhance the applicability of this strategy across various biological contexts. In this study, we discovered that a somatic mutant of FBXW7, R465C, can be exploited by heterobifunctional compounds for targeted protein degradation. This work demonstrates the potential of utilizing mutant E3 ligases that occur exclusively in diseased cells for TPD applications.
Collapse
Affiliation(s)
- Ananya A. Basu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Justin M. Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, Illinois 60064, United States
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Liu Z, Ma K, Zhang P, Zhang S, Song X, Qin Y. F-box protein Fbx23 acts as a transcriptional coactivator to recognize and activate transcription factor Ace1. PLoS Genet 2025; 21:e1011539. [PMID: 39836692 PMCID: PMC11750091 DOI: 10.1371/journal.pgen.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitination field. Penicillium oxalicum contains many transcription factors, such as BrlA, CreA, XlnR, and Ace1, conserved in filamentous fungi that regulate the fungal development and transcription of (hemi)cellulase genes. Transcription factor Ace1 (also known as SltA) positively correlated with fungal growth and conidiation and negatively correlated with the expression of (hemi)cellulase genes. A ubiquitin ligase-substrate pair, SCFFbx23-Ace1, is identified in P. oxalicum. Most of PoFbx23 is present in free form within the nucleus. A small portion of PoFbx23 associates with Skp1 to form PoFbx23-Skp1 heterodimer or assembles with the three invariable core components (Skp1, Cul1, and Rbx1) of SCF to form the SCFFbx23 complex. Under glucose signal, PoFbx23 absence (Δfbx23) results in decreased transcription levels of the brlA gene which encodes the master regulator for asexual development and six spore pigmentation genes (abrB→abrA→aygB→arpA→arpB→albA) which encode the proteins in the dihydroxynaphthalene-melanin pathway, along with impaired conidiation. Under cellulose signal, transcription levels of (hemi)cellulase genes in the Δfbx23 mutant are significantly upregulated. When PoFbx23 is present, PoAce1 exists as a full-length version and several low-molecular-weight degraded versions. PoAce1 has polyubiquitin modification. Deleting the Pofbx23 gene does not affect Poace1 gene transcription but results in the remarkable accumulation of all versions of the PoAce1 protein. Accumulated PoAce1 protein is a dysfunctional form that no longer binds promoters of the target gene, including the cellulase genes cbh1 and eg1, the hemicellulase gene xyn11A, and the pigmentation-related gene abrB. PoFbx23 acts as a transcriptional coactivator, recognizing and activating PoAce1, allowing the latter to regulate the transcription of target genes with different effects (activating or repressing) under different signals.
Collapse
Affiliation(s)
- Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Kexuan Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Panpan Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Siqi Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Basu AA, Zhang C, Rouhimoghadam M, Vasudevan A, Reitsma JM, Zhang X. Harnessing the FBXW7 somatic mutant R465C for targeted protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626601. [PMID: 39677626 PMCID: PMC11643027 DOI: 10.1101/2024.12.03.626601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Targeted protein degradation (TPD) is a pharmacological strategy that eliminates specific proteins from cells by harnessing cellular proteolytic degradation machinery. In proteasome-dependent TPD, expanding the repertoire of E3 ligases compatible with this approach could enhance the applicability of this strategy across various biological contexts. In this study, we discovered that a somatic mutant of FBXW7, R465C, can be exploited by heterobifunctional compounds for targeted protein degradation. This work demonstrates the potential of utilizing mutant E3 ligases that occur exclusively in diseased cells for TPD applications.
Collapse
Affiliation(s)
- Ananya A. Basu
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| | - Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, IL 60064
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, IL 60064
| | - Justin M. Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, North Chicago, IL 60064
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Center for Human Immunobiology, Northwestern University, Chicago, IL 60611
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
9
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Niu MY, Liu YJ, Shi JJ, Chen RY, Zhang S, Li CY, Cao JF, Yang GJ, Chen J. The Emerging Role of Ubiquitin-Specific Protease 36 (USP36) in Cancer and Beyond. Biomolecules 2024; 14:572. [PMID: 38785979 PMCID: PMC11118191 DOI: 10.3390/biom14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Meng-Yao Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Shun Zhang
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (M.-Y.N.); (Y.-J.L.); (J.-J.S.); (R.-Y.C.); (C.-Y.L.); (J.-F.C.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Ningbo No.2 Hospital, Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China;
| |
Collapse
|
11
|
Zhao W, Ouyang C, Huang C, Zhang J, Xiao Q, Zhang F, Wang H, Lin F, Wang J, Wang Z, Jiang B, Li Q. ELP3 stabilizes c-Myc to promote tumorigenesis. J Mol Cell Biol 2024; 15:mjad059. [PMID: 37771073 PMCID: PMC11054291 DOI: 10.1093/jmcb/mjad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
ELP3, the catalytic subunit of the Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanistically, ELP3 competes with the E3-ligase FBXW7β for c-Myc binding, resulting in the inhibition of FBXW7β-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3 knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by the reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were found overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for treating c-Myc-driven carcinomas.
Collapse
Affiliation(s)
- Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Nair VM, Sabu AS, Hussain A, Kombarakkaran DP, Lakshmi RB, Manna TK. E3-ubiquitin ligase, FBXW7 regulates mitotic progression by targeting BubR1 for ubiquitin-mediated degradation. Cell Mol Life Sci 2023; 80:374. [PMID: 38008853 PMCID: PMC11072012 DOI: 10.1007/s00018-023-05019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/28/2023]
Abstract
Faithful chromosome segregation requires correct attachment of kinetochores with the spindle microtubules. Erroneously-attached kinetochores recruit proteins to activate Spindle assembly checkpoint (SAC), which senses the errors and signals cells to delay anaphase progression for error correction. Temporal control of the levels of SAC activating-proteins is critical for checkpoint activation and silencing, but its mechanism is not fully understood. Here, we show that E3 ubiquitin ligase, SCF-FBXW7 targets BubR1 for ubiquitin-mediated degradation and thereby controls SAC in human cells. Depletion of FBXW7 results in prolonged metaphase arrest with increased stabilization of BubR1 at kinetochores. Similar kinetochore stabilization is also observed for BubR1-interacting protein, CENP-E. FBXW7 induced ubiquitination of both BubR1 and the BubR1-interacting kinetochore-targeting domain of CENP-E, but CENP-E domain degradation is dependent on BubR1. Interestingly, Cdk1 inhibition disrupts FBXW7-mediated BubR1 targeting and further, phospho-resistant mutation of Cdk1-targeted phosphorylation site, Thr 620 impairs BubR1-FBXW7 interaction and FBXW7-mediated BubR1 ubiquitination, supporting its role as a phosphodegron for FBXW7. The results demonstrate SCF-FBXW7 as a key regulator of spindle assembly checkpoint that controls stability of BubR1 and its associated CENP-E at kinetochores. They also support that upstream Cdk1 specific BubR1 phosphorylation signals the ligase to activate the process.
Collapse
Affiliation(s)
- Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Amit Santhu Sabu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Ahmed Hussain
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
13
|
Wang W, Jiang K, Liu X, Li J, Zhou W, Wang C, Cui J, Liang T. FBXW7 and human tumors: mechanisms of drug resistance and potential therapeutic strategies. Front Pharmacol 2023; 14:1278056. [PMID: 38027013 PMCID: PMC10680170 DOI: 10.3389/fphar.2023.1278056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Drug therapy, including chemotherapy, targeted therapy, immunotherapy, and endocrine therapy, stands as the foremost therapeutic approach for contemporary human malignancies. However, increasing drug resistance during antineoplastic therapy has become a substantial barrier to favorable outcomes in cancer patients. To enhance the effectiveness of different cancer therapies, an in-depth understanding of the unique mechanisms underlying tumor drug resistance and the subsequent surmounting of antitumor drug resistance is required. Recently, F-box and WD Repeat Domain-containing-7 (FBXW7), a recognized tumor suppressor, has been found to be highly associated with tumor therapy resistance. This review provides a comprehensive summary of the underlying mechanisms through which FBXW7 facilitates the development of drug resistance in cancer. Additionally, this review elucidates the role of FBXW7 in therapeutic resistance of various types of human tumors. The strategies and challenges implicated in overcoming tumor therapy resistance by targeting FBXW7 are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Shang C, Lai J, Haque M, Chen W, Wang P, Lai R. Nuclear NPM-ALK Protects Myc from Proteasomal Degradation and Contributes to Its High Expression in Cancer Stem-Like Cells in ALK-Positive Anaplastic Large Cell Lymphoma. Int J Mol Sci 2023; 24:14337. [PMID: 37762644 PMCID: PMC10531997 DOI: 10.3390/ijms241814337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In ALK-positive anaplastic large cell lymphoma (ALK+ALCL), a small subset of cancer stem-like (or RR) cells characterized by high Myc expression have been identified. We hypothesize that NPM-ALK contributes to their high Myc expression. While transfection of NPM-ALK into HEK293 cells effectively increased Myc by inhibiting its proteosomal degradation (PD-Myc), this effect was dramatically attenuated when the full-length NPM1 (FL-NPM1) was downregulated using shRNA, highlighting the importance of the NPM-ALK:FL-ALK heterodimers in this context. Consistent with this concept, immunoprecipitation experiments showed that the heterodimers are abundant only in RR cells, in which the half-life of Myc is substantially longer than the bulk cells. Fbw7γ, a key player in PD-Myc, is sequestered by the heterodimers in RR cells, and this finding correlates with a Myc phosphorylation pattern indicative of ineffective PD-Myc. Using confocal microscopy and immunofluorescence staining, we found that the fusion signal between ALK and FL-NPM1, characteristic of the heterodimers, correlates with the Myc level in ALK+ALCL cells from cell lines and patient samples. To conclude, our findings have revealed a novel oncogenic function of NPM-ALK in the nucleus. Specifically, the NPM-ALK:FL-NPM1 heterodimers increase cancer stemness by blocking PD-Myc and promoting Myc accumulation in the cancer stem-like cell subset.
Collapse
Affiliation(s)
- Chuquan Shang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Justine Lai
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Peng Wang
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
15
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
16
|
de la Cova CC. The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development. Cells 2023; 12:2141. [PMID: 37681873 PMCID: PMC10486803 DOI: 10.3390/cells12172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
FBXW7 is a critical regulator of cell cycle, cell signaling, and development. A highly conserved F-box protein and component of the SKP1-Cullin-F-box (SCF) complex, FBXW7 functions as a recognition subunit within a Cullin-RING E3 ubiquitin ligase responsible for ubiquitinating substrate proteins and targeting them for proteasome-mediated degradation. In human cells, FBXW7 promotes degradation of a large number of substrate proteins, including many that impact disease, such as NOTCH1, Cyclin E, MYC, and BRAF. A central focus for investigation has been to understand the molecular mechanisms that allow the exquisite substrate specificity exhibited by FBXW7. Recent work has produced a clearer understanding of how FBXW7 physically interacts with both high-affinity and low-affinity substrates. We review new findings that provide insights into the consequences of "hotspot" missense mutations of FBXW7 that are found in human cancers. Finally, we discuss how the FBXW7-substrate interaction, and the kinases responsible for substrate phosphorylation, contribute to patterned protein degradation in C. elegans development.
Collapse
Affiliation(s)
- Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
17
|
Wei W, Qin B, Wen W, Zhang B, Luo H, Wang Y, Xu H, Xie X, Liu S, Jiang X, Wang M, Tang Q, Zhang J, Yang R, Fan Z, Lyu H, Lin J, Li K, Lee MH. FBXW7β loss-of-function enhances FASN-mediated lipogenesis and promotes colorectal cancer growth. Signal Transduct Target Ther 2023; 8:187. [PMID: 37202390 PMCID: PMC10195794 DOI: 10.1038/s41392-023-01405-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 05/20/2023] Open
Abstract
Continuous de novo fatty acid synthesis is required for the biosynthetic demands of tumor. FBXW7 is a highly mutated gene in CRC, but its biological functions in cancer are not fully characterized. Here, we report that FBXW7β, a FBXW7 isoform located in the cytoplasm and frequently mutated in CRC, is an E3 ligase of fatty acid synthase (FASN). Cancer-specific FBXW7β mutations that could not degrade FASN can lead to sustained lipogenesis in CRC. COP9 signalosome subunit 6 (CSN6), an oncogenic marker of CRC, increases lipogenesis via interacting with and stabilizing FASN. Mechanistic studies show that CSN6 associates with both FBXW7β and FASN, and antagonizes FBXW7β's activity by enhancing FBXW7β autoubiquitination and degradation, which in turn prevents FBXW7β-mediated FASN ubiquitination and degradation, thereby regulating lipogenesis positively. Both CSN6 and FASN are positively correlated in CRC, and CSN6-FASN axis, regulated by EGF, is responsible for poor prognosis of CRC. The EGF-CSN6-FASN axis promotes tumor growth and implies a treatment strategy of combination of orlistat and cetuximab. Patient-derived xenograft experiments prove the effectiveness of employing orlistat and cetuximab combination in suppressing tumor growth for CSN6/FASN-high CRC. Thus, CSN6-FASN axis reprograms lipogenesis to promote tumor growth and is a target for cancer intervening strategy in CRC.
Collapse
Affiliation(s)
- Wenxia Wei
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Baifu Qin
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Weijie Wen
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Boyu Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Haidan Luo
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Yuzhi Wang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Hui Xu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Xiaoshan Xie
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Sicheng Liu
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
- Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xin Jiang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Mengan Wang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Qin Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiayu Zhang
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Runxiang Yang
- Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Zongmin Fan
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Haiwen Lyu
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China
| | - Junzhong Lin
- Department of Colorectal Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Kai Li
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| | - Mong-Hong Lee
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
18
|
Ennis H, McDonald DM. A widely used pan-isoform-FBXW7 antibody used in cell cycle studies does not detect FBXW7. Cell Cycle 2023; 22:1380-1390. [PMID: 37183425 DOI: 10.1080/15384101.2023.2210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
FBXW7 is the substrate recognition component of the E3 ubiquitin ligase SCFFBW7 complex which controls the levels of CYCLINE, c-MYC and HIF1α proteins crucial for cell growth and differentiation. Mutations in FBXW7 are frequently associated with tumourigenesis. While examining FBXW7 regulation we were compelled to reevaluate a commonly used anti-FBXW7 antibody. Retinal microvascular endothelial cells (RMEC) were exposed to normoxia (21% oxygen) or hypoxia (1% oxygen) for 24 h or treated with MG132 and protein extracted for western blotting. Flag-tagged FBXW7-α, β or γ isoforms were transfected into HEK293A cells and processed using denaturing and native extraction protocols for western blotting or immunoprecipitation analysis. Two anti-FBXW7 antibodies were used, one raised to the unique FBXW7α N-terminus and the other to the C-terminus region common to all isoforms. Initial studies showed that the pan-isoform C-terminus antibody detected a single 64kDa band in RMEC rather than any of the predicted sizes for FBXW7. In contrast, expression of the isoform-specific constructs, detected with an anti-Flag antibody, confirmed the expected migratory distance of 110kDa, 68kDa and 65kDa for α, β and γ respectfully. Similarly, the N-terminus FBXW7α antibody also detected the 110kDa product. Notably, the C-terminus antibody did not recognize any of the isoforms but continued to detect a 64kDa band in all samples, including the non-transfected controls. Immunoprecipitation confirmed this lack of specificity and the inability to detect overexpressed or endogenous FBXW7α in HEK293A cells and RMEC. A commonly used C-terminus FBXW7 antibody does not detect FBXW7 under standard western blotting conditions.
Collapse
Affiliation(s)
- Hannah Ennis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Denise M McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
19
|
Pan Y, Liu J, Gao Y, Guo Y, Wang C, Liang Z, Wu M, Qian Y, Li Y, Shen J, Lu C, Ma S. FBXW7 loss of function promotes esophageal squamous cell carcinoma progression via elevating MAP4 and ERK phosphorylation. J Exp Clin Cancer Res 2023; 42:75. [PMID: 36991467 PMCID: PMC10054043 DOI: 10.1186/s13046-023-02630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/23/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that FBXW7 has a high frequency of mutations in esophageal squamous cell carcinoma (ESCC). However, the function of FBXW7, especially the mutations, is not clear. This study was designed to investigate the functional significance of FBXW7 loss of function and underlying mechanism in ESCC. METHODS Immunofluorescence was applied to clarify the localization and main isoform of FBXW7 in ESCC cells. Sanger sequencing were performed to explore mutations of FBXW7 in ESCC tissues. Proliferation, colony, invasion and migration assays were performed to examine the functional roles of FBXW7 in ESCC cells in vitro and in vivo. Real-time RT-PCR, immunoblotting, GST-pulldown, LC-MS/MS and co-immunoprecipitation assay were used to explore the molecular mechanism underlying the actions of FBXW7 functional inactivation in ESCC cells. Immunohistochemical staining were used to explore the expression of FBXW7 and MAP4 in ESCC tissues. RESULTS The main FBXW7 isoform in ESCC cells was the β transcript in the cytoplasm. Functional inactivation of FBXW7 led to activation of the MAPK signaling pathway and upregulation of the downstream MMP3 and VEGFA, which enhanced tumor proliferation cell invasion and migration. Among the five mutation forms screened, S327X (X means truncated mutation) had an effect similar to the FBXW7 deficiency and led to the inactivation of FBXW7 in ESCC cells. Three other point mutations, S382F, D400N and R425C, attenuated but did not eliminate FBXW7 function. The other truncating mutation, S598X, which was located outside of the WD40 domain, revealed a tiny attenuation of FBXW7 in ESCC cells. Notably, MAP4 was identified as a potential target of FBXW7. The threonine T521 of MAP4, which was phosphorylated by CHEK1, played a key role in the FBXW7-related degradation system. Immunohistochemical staining indicated that FBXW7 loss of function was associated with tumor stage and shorter survival of patients with ESCC. Univariate and multivariate Cox proportional hazards regression analyses showed that high FBXW7 and low MAP4 was an independent prognostic indicator and prospective longer survival. Moreover, a combination regimen that included MK-8353 to inhibit the phosphorylation of ERK and bevacizumab to inhibit VEGFA produced potent inhibitory effects on the growth of FBXW7 inactivation xenograft tumors in vivo. CONCLUSIONS This study provided evidence that FBXW7 loss of function promoted ESCC via MAP4 overexpression and ERK phosphorylation, and this novel FBXW7/MAP4/ERK axis may be an efficient target for ESCC treatment.
Collapse
Affiliation(s)
- Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, 215007, China
| | - Jing Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yingyin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Yuqing Guo
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, 215007, China
| | - Changxing Wang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Zhipan Liang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215008, China
| | - Meiying Wu
- Department of Tuberculosis, The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, 215007, China
| | - Yulan Qian
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yinyan Li
- Department of Anatomy, Bengbu Medical College, Bengbu, 233030, China
| | - Jingyi Shen
- Department of Anatomy, Bengbu Medical College, Bengbu, 233030, China
| | - Chenchen Lu
- Department of Anatomy, Bengbu Medical College, Bengbu, 233030, China.
| | - Sai Ma
- Gusu School, Nanjing Medical University, Suzhou, 215008, China.
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
20
|
Jiménez-Izquierdo R, Morrugares R, Suanes-Cobos L, Correa-Sáez A, Garrido-Rodríguez M, Cerero-Tejero L, Khan OM, de la Luna S, Sancho R, Calzado MA. FBXW7 tumor suppressor regulation by dualspecificity tyrosine-regulated kinase 2. Cell Death Dis 2023; 14:202. [PMID: 36934104 PMCID: PMC10024693 DOI: 10.1038/s41419-023-05724-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
FBXW7 is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a main tumor suppressor due to its ability to control proteasome-mediated degradation of several oncoproteins such as c-Jun, c-Myc, Cyclin E1, mTOR, and Notch1-IC. FBXW7 inactivation in human cancers results from a somatic mutation or downregulation of its protein levels. This work describes a novel regulatory mechanism for FBXW7 dependent on the serine/threonine protein kinase DYRK2. We show that DYRK2 interacts with and phosphorylates FBXW7 resulting in its proteasome-mediated degradation. DYRK2-dependent FBXW7 destabilization is independent of its ubiquitin ligase activity. The functional analysis demonstrates the existence of DYRK2-dependent regulatory mechanisms for key FBXW7 substrates. Finally, we provide evidence indicating that DYRK2-dependent regulation of FBXW7 protein accumulation contributes to cytotoxic effects in response to chemotherapy agents such as Doxorubicin or Paclitaxel in colorectal cancer cell lines and to BET inhibitors in T-cell acute lymphoblastic leukemia cell lines. Altogether, this work reveals a new regulatory axis, DYRK2/FBXW7, which provides an understanding of the role of these two proteins in tumor progression and DNA damage responses.
Collapse
Affiliation(s)
- Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lucía Suanes-Cobos
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Cerero-Tejero
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Omar M Khan
- Hamad Bin Khalifa University, College of Health and Life Sciences Qatar Foundation, Education City, Doha, Qatar
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Rocío Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, SE10 9RT, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
21
|
Eisenman RN. MYC through the lens of G&D. Genes Dev 2023; 37:16-17. [PMID: 37061959 PMCID: PMC10046432 DOI: 10.1101/gad.350467.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
22
|
O'Brien S, Kelso S, Steinhart Z, Orlicky S, Mis M, Kim Y, Lin S, Sicheri F, Angers S. SCF FBXW7 regulates G2-M progression through control of CCNL1 ubiquitination. EMBO Rep 2022; 23:e55044. [PMID: 36278408 PMCID: PMC9724663 DOI: 10.15252/embr.202255044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time. Cells harboring FBXW7 loss-of-function mutations are hypersensitive to treatment with a CDK11 inhibitor, highlighting a genetic vulnerability that could be leveraged for cancer treatment.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Donnelly Centre for Cellular and Biomolecular ResearchTorontoONCanada
| | - Susan Kelso
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoONCanada
| | - Zachary Steinhart
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
- Present address:
Gladstone InstituteUniversity of California San FranciscoSan FranciscoCAUSA
| | - Stephen Orlicky
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoONCanada
| | - Monika Mis
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
- Present address:
GenentechSouth San FranciscoCAUSA
| | - Yunhye Kim
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular ResearchTorontoONCanada
| | - Frank Sicheri
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Lunenfeld‐Tanenbaum Research InstituteSinai Health SystemTorontoONCanada
| | - Stephane Angers
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Donnelly Centre for Cellular and Biomolecular ResearchTorontoONCanada
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| |
Collapse
|
23
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
24
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
25
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|
26
|
FBXW7 inactivation induces cellular senescence via accumulation of p53. Cell Death Dis 2022; 13:788. [PMID: 36104351 PMCID: PMC9475035 DOI: 10.1038/s41419-022-05229-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
Abstract
F-box and WD repeat domain containing 7 (FBXW7) acts as a substrate receptor of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase and plays crucial roles in the regulation of several cellular processes, including cell growth, division, and differentiation, by targeting diverse key regulators for degradation. However, its role in regulating cellular senescence remains elusive. Here, we found that FBXW7 inactivation by siRNA-based knockdown or CRISPR/Cas9-based knockout induced significant cellular senescence in p53 wild-type cells, but not in p53 mutant or null cells, along with activation of both the p53/p21 and p16INK4a/Rb pathways. Simultaneous p53 inactivation abrogated senescence and cell growth arrest induced by FBXW7 deficiency as well as the alteration of both the p53/p21 and p16INK4a/Rb pathways. Moreover, Fbxw7 deletion accelerated replicative senescence of primary mouse embryonic fibroblasts in a p53-dependent manner. In addition, FBXW7 deletion induced the senescence-associated secretory phenotype to trigger secondary senescence. Importantly, in a radiation-induced senescence mouse model, simultaneous deletion of p53 rescued accelerated senescence and aging caused by Fbxw7 loss. Thus, our study uncovered a novel role for FBXW7 in the regulation of senescence by eliminating p53.
Collapse
|
27
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
28
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
29
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
30
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Stephenson SE, Costain G, Blok LE, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SE, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ESY, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Waisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, et alStephenson SE, Costain G, Blok LE, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SE, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ESY, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Waisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, Schenck A, Lockhart PJ, Christodoulou J, Tan TY, Christodoulou J, Tan TY. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet 2022; 109:601-617. [PMID: 35395208 DOI: 10.1016/j.ajhg.2022.03.002] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 11/01/2022] Open
Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia.
| |
Collapse
|
32
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Moree SE, Maneix L, Iakova P, Stossi F, Sahin E, Catic A. Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers (Basel) 2022; 14:806. [PMID: 35159073 PMCID: PMC8833929 DOI: 10.3390/cancers14030806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.
Collapse
Affiliation(s)
- Shannon E. Moree
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Polina Iakova
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Gulf Coast Consortia, Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
An HJ, Lee CJ, Lee GE, Choi Y, Jeung D, Chen W, Lee HS, Kang HC, Lee JY, Kim DJ, Choi JS, Cho ES, Choi JS, Cho YY. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med 2022; 54:35-46. [PMID: 35022544 PMCID: PMC8813941 DOI: 10.1038/s12276-021-00721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.
Collapse
Affiliation(s)
- Hyun-Jung An
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Cheol-Jung Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea
| | - Ga-Eun Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Youngwon Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dohyun Jeung
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Weidong Chen
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Hye Suk Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Han Chang Kang
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Joo Young Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dae Joon Kim
- grid.449717.80000 0004 5374 269XDepartment of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAleen, TX 78504 USA
| | - Jin-Sung Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea
| | - Eun Suh Cho
- grid.17635.360000000419368657College of Biological Science, University of Minnesota, 3-104 MCB, 420 Washington Ave SE, Minneapolis, MN 55455 USA
| | - Jong-Soon Choi
- grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do, 14662, Republic of Korea. .,BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do, 14662, Republic of Korea.
| |
Collapse
|
35
|
PHA-680626 Is an Effective Inhibitor of the Interaction between Aurora-A and N-Myc. Int J Mol Sci 2021; 22:ijms222313122. [PMID: 34884931 PMCID: PMC8658095 DOI: 10.3390/ijms222313122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.
Collapse
|
36
|
Lee CJ, Lee GE, An HJ, Cho ES, Chen W, Lee JY, Kang HC, Lee HS, Cho YY. F-box Protein βTrCP1 Is a Substrate of Extracellular Signal-regulated Kinase 2. J Cancer Prev 2021; 26:174-182. [PMID: 34703820 PMCID: PMC8511579 DOI: 10.15430/jcp.2021.26.3.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins, consisting of 69 members which are organized into the three subclasses FBXW, FBXL, and FBXO, are the substrate specific recognition subunits of the SKP1-Cullin 1-F-box protein E3 ligase complex. Although βTrCP 1 and 2, members of the FBXW subfamily, are known to regulate some protein stability, molecular mechanisms by which these proteins can recognize proper substrates are unknown. In this study, it was found that βTrCP1 showed strong interaction with members of mitogen-activated protein kinases. Although extracellular signal-regulated kinase (ERK) 3, p38β, and p38δ showed weak interactions, ERK2 specifically interacted with βTrCP1 as assessed by immunoprecipitation. In interaction domain determination experiments, we found that ERK2 interacted with two independent ERK docking sites located in the F-box domain and linker domain, but not the WD40 domain, of βTrCP1. Notably, mutations of βTrCP1 at the ERK docking sites abolished the interaction with ERK2. βTrCP1 underwent phosphorylation by EGF stimulation, while the presence of the mitogen-activated protein kinase kinases inhibitor U0126, genetic silencing by sh-ERK2, and mutation of the ERK docking site of βTrCP1 inhibited phosphorylation. This inhibition of βTrCP1 phosphorylation resulted in a shortened half-life and low protein levels. These results suggest that ERK2-mediated βTrCP1 phosphorylation may induce the destabilization of βTrCP1.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea.,Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Korea
| | - Ga-Eun Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hyun-Jung An
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Eun Suh Cho
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Weidong Chen
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Joo Young Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Han Chang Kang
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hye Suk Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Yong-Yeon Cho
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
37
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
38
|
Sun XX, Li Y, Sears RC, Dai MS. Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Front Oncol 2021; 11:679445. [PMID: 34178666 PMCID: PMC8226175 DOI: 10.3389/fonc.2021.679445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Deregulated MYC overexpression and activation contributes to tumor growth and progression. Given the short half-life and unstable nature of the MYC protein, it is not surprising that the oncoprotein is highly regulated via diverse posttranslational mechanisms. Among them, ubiquitination dynamically controls the levels and activity of MYC during normal cell growth and homeostasis, whereas the disturbance of the ubiquitination/deubiquitination balance enables unwanted MYC stabilization and activation. In addition, MYC is also regulated by SUMOylation which crosstalks with the ubiquitination pathway and controls MYC protein stability and activity. In this mini-review, we will summarize current updates regarding MYC ubiquitination and provide perspectives about these MYC regulators as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Yanping Li
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
39
|
Naso FD, Boi D, Ascanelli C, Pamfil G, Lindon C, Paiardini A, Guarguaglini G. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene 2021; 40:3917-3928. [PMID: 33981003 PMCID: PMC8195736 DOI: 10.1038/s41388-021-01766-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Georgiana Pamfil
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
40
|
Proteasomal degradation of the tumour suppressor FBW7 requires branched ubiquitylation by TRIP12. Nat Commun 2021; 12:2043. [PMID: 33824312 PMCID: PMC8024278 DOI: 10.1038/s41467-021-22319-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
The tumour suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), that targets several oncoproteins for proteasomal degradation. FBW7 is widely mutated and FBW7 protein levels are commonly downregulated in cancer. Here, using an shRNA library screen, we identify the HECT-domain E3 ubiquitin ligase TRIP12 as a negative regulator of FBW7 stability. We find that SCFFBW7-mediated ubiquitylation of FBW7 occurs preferentially on K404 and K412, but is not sufficient for its proteasomal degradation, and in addition requires TRIP12-mediated branched K11-linked ubiquitylation. TRIP12 inactivation causes FBW7 protein accumulation and increased proteasomal degradation of the SCFFBW7 substrate Myeloid Leukemia 1 (MCL1), and sensitizes cancer cells to anti-tubulin chemotherapy. Concomitant FBW7 inactivation rescues the effects of TRIP12 deficiency, confirming FBW7 as an essential mediator of TRIP12 function. This work reveals an unexpected complexity of FBW7 ubiquitylation, and highlights branched ubiquitylation as an important signalling mechanism regulating protein stability. The tumor suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF) and itself a target for ubiquitylation. Here, the authors show that TRIP12 mediates branched K11-linked ubiquitylation of FBW7, to regulate its stability and thus abundance of a subset of SCFFBW7 substrates.
Collapse
|
41
|
Kim YJ, Kim Y, Kumar A, Kim CW, Toth Z, Cho NH, Lee HR. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7. PLoS Pathog 2021; 17:e1009179. [PMID: 33471866 PMCID: PMC7816990 DOI: 10.1371/journal.ppat.1009179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi’s sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis. Primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma, is associated with Kaposi’s sarcoma-associated herpesvirus (KSHV). However, the underlying mechanisms that govern the aggressiveness of KSHV-associated PEL are poorly understood. Here, we demonstrate that KSHV LANA interacts with cellular ubiquitin E3 ligase FBW7, sequestering MCL-1 from FBW7, which reduces MCL-1 ubiquitination. As such, LANA potently stabilizes and increases MCL-1 protein, leading to inhibition of caspase-3-mediated apoptosis in PEL cells. Furthermore, MCL-1 inhibitors efficiently blocked PEL progression in mouse xenograft model. These results suggest that LANA acts as a proto-oncogene via deregulating tumor suppressor FBW7, which upregulates anti-apoptotic MCL-1 expression. This study suggests drugs that target MCL-1 may serve as an effective therapy against KSHV+ PEL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Apoptosis
- Cell Proliferation
- F-Box-WD Repeat-Containing Protein 7/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- Female
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/virology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeong Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
| | - Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Chan Woo Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Nam Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University college of Medicine, Seoul, South Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
42
|
Hu M, Zhang Y, Gu D, Chen X, Waldor MK, Zhou X. Nucleolar c-Myc recruitment by a Vibrio T3SS effector promotes host cell proliferation and bacterial virulence. EMBO J 2021; 40:e105699. [PMID: 33347626 PMCID: PMC7809790 DOI: 10.15252/embj.2020105699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.
Collapse
Affiliation(s)
- Maozhi Hu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Yibei Zhang
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Dan Gu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Xiang Chen
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
| | - Matthew K Waldor
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| |
Collapse
|
43
|
de la Cova CC, Townley R, Greenwald I. Negative feedback by conserved kinases patterns the degradation of Caenorhabditis elegans Raf in vulval fate patterning. Development 2020; 147:226094. [PMID: 33144396 DOI: 10.1242/dev.195941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
Activation of a canonical EGFR-Ras-Raf-ERK cascade initiates patterning of multipotent vulval precursor cells (VPCs) of Caenorhabditis elegans We have previously shown that this pathway includes a negative-feedback component in which MPK-1/ERK activity targets the upstream kinase LIN-45/Raf for degradation by the SEL-10/FBXW7 E3 ubiquitin ligase. This regulation requires a Cdc4 phosphodegron (CPD) in LIN-45 that is conserved in BRAF. Here, we identify and characterize the minimal degron that encompasses the CPD and is sufficient for SEL-10-mediated, MPK-1-dependent protein degradation. A targeted screen of conserved protein kinase-encoding genes yielded gsk-3 (an ortholog of human GSK3B) and cdk-2 (a CDK2-related kinase) as required for LIN-45 degron-mediated turnover. Genetic analysis revealed that LIN-45 degradation is blocked at the second larval stage due to cell cycle quiescence, and that relief of this block during the third larval stage relies on activation of CDKs. Additionally, activation of MPK-1 provides spatial pattern to LIN-45 degradation but does not bypass the requirement for gsk-3 and cdk-2 This analysis supports a model whereby MPK-1/ERK, GSK-3/GSK3 and CDK-2/CDK2, along with SEL-10/FBXW7, constitute a regulatory network that exerts spatial and temporal control of LIN-45/Raf degradation during VPC patterning.
Collapse
Affiliation(s)
- Claire C de la Cova
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Robert Townley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
44
|
Woischke C, Jung P, Jung A, Kumbrink J, Eisenlohr S, Auernhammer CJ, Vieth M, Kirchner T, Neumann J. Mixed large cell neuroendocrine carcinoma and squamous cell carcinoma of the colon: detailed molecular characterisation of two cases indicates a distinct colorectal cancer entity. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:75-85. [PMID: 33197299 PMCID: PMC7737761 DOI: 10.1002/cjp2.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
We present two rare cases of mixed large cell neuroendocrine carcinoma and squamous cell carcinoma of the colon. A literature search revealed only three published cases with similar histology but none of these reports provided profound molecular and mutational analyses. Our two cases exhibited a distinct, colon-like immunophenotype with strong nuclear CDX2 and β-catenin expression in more than 90% of the tumour cells of both components. We analysed the two carcinomas regarding microsatellite stability, RAS, BRAF and PD-L1 status. In addition, next-generation panel sequencing with Ion AmpliSeq™ Cancer Hotspot Panel v2 was performed. This approach revealed mutations in FBXW7, CTNNB1 and PIK3CA in the first case and FBXW7 and RB1 mutations in the second case. We looked for similar mutational patterns in three publicly available colorectal adenocarcinoma data sets, as well as in collections of colorectal mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) and colorectal neuroendocrine carcinomas. This approach indicated that the FBXW7 point mutation, without being accompanied by classical adenoma-carcinoma sequence mutations, such as APC, KRAS and TP53, likely occurs at a relatively high frequency in mixed neuroendocrine and squamous cell carcinoma and therefore may be characteristic for this rare tumour type. FBXW7 codifies the substrate recognition element of an ubiquitin ligase, and inactivating FBXW7 mutations lead to an exceptional accumulation of its target β-catenin which results in overactivation of the Wnt-signalling pathway. In line with previously described hypotheses of de-differentiation of colon cells by enhanced Wnt-signalling, our data indicate a crucial role for mutant FBXW7 in the unusual morphological switch that determines these rare neoplasms. Therefore, mixed large cell neuroendocrine and a squamous cell carcinoma can be considered as a distinct carcinoma entity in the colon, defined by morphology, immunophenotype and distinct molecular genetic alteration(s).
Collapse
Affiliation(s)
- Christine Woischke
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Jung
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Jung
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany
| | | | - Christoph Josef Auernhammer
- Medizinische Klinik und Poliklinik 4, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Thomas Kirchner
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Mishra M, Thacker G, Sharma A, Singh AK, Upadhyay V, Sanyal S, Verma SP, Tripathi AK, Bhatt MLB, Trivedi AK. FBW7 Inhibits Myeloid Differentiation in Acute Myeloid Leukemia via GSK3-Dependent Ubiquitination of PU.1. Mol Cancer Res 2020; 19:261-273. [PMID: 33188146 DOI: 10.1158/1541-7786.mcr-20-0268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β), an ubiquitously expressed serine/threonine kinase is reported to be overexpressed and hyperactivated in cancers including acute myeloid leukemia (AML) where it promotes self-renewal, growth, and survival of AML cells. Therefore, GSK3β inhibition results in AML cell growth inhibition and myeloid differentiation. Here we identified master transcription factor PU.1 of monocyte-macrophage differentiation pathway as potential GSK3β target. We demonstrate that GSK3β phosphorylates PU.1 at Ser41 and Ser140 leading to its recognition and subsequent ubiquitin-mediated degradation by E3 ubiquitin ligase FBW7. This GSK3-dependent degradation of PU.1 by FBW7 inhibited monocyte-macrophage differentiation. We further showed that a phospho-deficient PU.1 mutant (PU.1-S41, S140A) neither bound to FBW7 nor was degraded by it. Consequently, PU.1-S41, S140A retained its transactivation, DNA-binding ability and promoted monocyte-macrophage differentiation of U937 cells even without phorbol 12-myristate 13-acetate (PMA) treatment. We further showed that FBW7 overexpression inhibited both PMA as well as M-CSF-induced macrophage differentiation of myeloid cell lines and peripheral blood mononuclear cells (PBMC) from healthy volunteers, respectively. Contrarily, FBW7 depletion promoted differentiation of these cells even without any inducer suggesting for a robust role of GSK3β-FBW7 axis in negatively regulating myeloid differentiation. Furthermore, we also recapitulated these findings in PBMCs isolated from patients with leukemia where FBW7 overexpression markedly inhibited endogenous PU.1 protein levels. In addition, PBMCs also showed enhanced differentiation when treated with M-CSF and GSK3 inhibitor (SB216763) together compared with M-CSF treatment alone. IMPLICATIONS: Our data demonstrate a plausible mechanism behind PU.1 restoration and induction of myeloid differentiation upon GSK3β inhibition and further substantiates potential of GSK3β as a therapeutic target in AML.
Collapse
Affiliation(s)
- Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | | | - Anil Kumar Tripathi
- King George's Medical University, Lucknow, UP, India.,Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), UP, Lucknow, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
46
|
Mozuraitiene J, Gudleviciene Z, Vincerzevskiene I, Laurinaviciene A, Pamedys J. Expression levels of FBXW7 and MDM2 E3 ubiquitin ligases and their c-Myc and p53 substrates in patients with dysplastic nevi or melanoma. Oncol Lett 2020; 21:37. [PMID: 33262829 PMCID: PMC7693127 DOI: 10.3892/ol.2020.12298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are of interest as drug targets due to their involvement in the regulation of the functions and interactions of several proteins. Various E3 ligase complexes are considered oncogenes or tumor suppressors associated with the development of melanoma. These proteins regulate the functions of various signaling pathways and proteins, such as p53 and Notch. The aim of the present study was to determine the expression levels of F-box and WD repeat domain-containing 7 (FBXW7), c-Myc, MDM2 and p53 proteins in samples from patients with dysplastic nevi or melanoma, and to evaluate their association with clinicopathological parameters and prognosis of the disease. Paraffin blocks with postoperative material from 100 patients diagnosed with dysplastic moles or melanoma were used in the present study. Tissue microarrays and immunohistochemistry were used to examine FBXW7, c-Myc, MDM2 and p53 protein expression. The results revealed that there was significantly lower FBXW7 expression in advanced melanoma compared with dysplastic nevus, melanoma in situ and stage pT1 melanoma (P<0.001). Additionally, there was a statistically significant association between the expression levels of FBXW7 and the morphological type of the tumor (P<0.001). In addition, there was a strong positive association between FBXW7 expression and the changes in c-Myc expression (P<0.02), and a strong trend was observed between decreased FBXW7 expression and a higher risk of death in patients, with the major factor in patient mortality being the stages of melanoma. Additionally, p53 expression was associated with the depth of melanoma invasion and the morphological type of the tumor. In summary, FBXW7 expression exhibited the highest statistically significant prognostic value and associations with advanced melanoma. As the majority of FBXW7 substrates are oncoproteins, their degradation by FBXW7 may highlight these proteins as potential targets for the treatment of melanoma.
Collapse
Affiliation(s)
- Julija Mozuraitiene
- Outpatient Clinic, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Clinic of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | | | - Ieva Vincerzevskiene
- Laboratory of Clinical Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aida Laurinaviciene
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania.,National Center of Pathology Affiliated to Vilnius University Hospital SantarosKlinikos, LT-08406 Vilnius, Lithuania
| | - Justinas Pamedys
- National Center of Pathology Affiliated to Vilnius University Hospital SantarosKlinikos, LT-08406 Vilnius, Lithuania
| |
Collapse
|
47
|
Köchl R, Vanes L, Llorian Sopena M, Chakravarty P, Hartweger H, Fountain K, White A, Cowan J, Anderson G, Tybulewicz VLJ. Critical role of WNK1 in MYC-dependent early mouse thymocyte development. eLife 2020; 9:e56934. [PMID: 33051000 PMCID: PMC7591260 DOI: 10.7554/elife.56934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the β-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases, and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.
Collapse
Affiliation(s)
- Robert Köchl
- The Francis Crick InstituteLondonUnited Kingdom
- Kings College LondonLondonUnited Kingdom
| | | | | | | | | | | | - Andrea White
- University of BirminghamBirminghamUnited Kingdom
| | | | | | - Victor LJ Tybulewicz
- The Francis Crick InstituteLondonUnited Kingdom
- Imperial CollegeLondonUnited Kingdom
| |
Collapse
|
48
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
49
|
Sarfraz M, Afzal A, Khattak S, Saddozai UAK, Li HM, Zhang QQ, Madni A, Haleem KS, Duan SF, Wu DD, Ji SP, Ji XY. Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol 2020; 236:1658-1676. [PMID: 32841373 DOI: 10.1002/jcp.30011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023]
Abstract
The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Punjab, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Umair A K Saddozai
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Hui-Min Li
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,Department of Histology and Embryology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Bioinformatics Centre, Institute of Biomedical Informatics, Henan University, Kaifeng, Henan, China
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Asadullah Madni
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Kashif S Haleem
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Shao-Ping Ji
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation & Kaifeng Key Laboratory of Infectious Diseases and Bio-safety, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| |
Collapse
|
50
|
Myeloid FBW7 deficiency disrupts redox homeostasis and aggravates dietary-induced insulin resistance. Redox Biol 2020; 37:101688. [PMID: 32853822 PMCID: PMC7451763 DOI: 10.1016/j.redox.2020.101688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase FBW7 plays critical roles in multiple pathological and physiological processes. Here, we report that after high-fat diet (HFD) feeding for 16 weeks, myeloid-specific FBW7-deficient mice demonstrate increased redox stress, inflammatory responses and insulin resistance. Macrophages activation under FBW7 deficiency decreases substrate flux through the pentose phosphate pathway (PPP) to produce less equivalents (NADPH and GSH) and aggravate the generation of intracellular reactive oxygen species (ROS) in macrophages, thereby over-activating proinflammatory reaction. Mechanistically, we identify that pyruvate kinase muscle isozyme M2 (PKM2) is a new bona fide ubiquitin substrate of SCFFBW7. While challenged with HFD stress, pharmacological inhibition of PKM2 protects FBW7-deficient macrophages against production of ROS, proinflammatory reaction and insulin resistance. Intriguingly, we further find an inverse correlation between FBW7 level and relative higher H2O2 level and the severity of obesity-related diabetes. Overall, the results suggest that FBW7 can play a crucial role in modulating inflammatory response through maintaining the intracellular redox homeostasis during HFD insults. Myeloid FBW7 deficiency aggravates HFD-induced oxidative stress, inflammation and insulin resistance. PKM2 is a new bona fide ubiquitin substrate of SCFFBW7. FBW7 divert glycolysis to combat oxidative stress via PKM2 in macrophages. FBW7 expression inversely correlates with ROS level to govern obesity-related metabolic disorder.
Collapse
|