1
|
Cárdenas G, Ledentu V, Huix-Rotllant M, Olivucci M, Ferré N. Automatic Rhodopsin Modeling with Multiple Protonation Microstates. J Phys Chem A 2023; 127:9365-9380. [PMID: 37877699 DOI: 10.1021/acs.jpca.3c05413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Automatic Rhodopsin Modeling (ARM) is a simulation protocol providing QM/MM models of rhodopsins capable of reproducing experimental electronic absorption and emission trends. Currently, ARM is restricted to a single protonation microstate for each rhodopsin model. Herein, we incorporate an extension of the minimal electrostatic model (MEM) into the ARM protocol to account for all relevant protonation microstates at a given pH. The new ARM+MEM protocol determines the most important microstates contributing to the description of the absorption spectrum. As a test case, we have applied this methodology to simulate the pH-dependent absorption spectrum of a toy model, showing that the single-microstate picture breaks down at certain pH values. Subsequently, we applied ARM+MEM toAnabaenasensory rhodopsin, confirming an improved description of its absorption spectrum when the titration of several key residues is considered.
Collapse
Affiliation(s)
| | | | | | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
2
|
Introduction. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Index. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
4
|
|
5
|
Visions. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Visions of a Digital Future. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Science, Vision, Perspective. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
The Evolution of Eyes. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Computer Vision. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Vision of the Cosmos. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
13
|
Caruso G, Gurevich VV, Klaus C, Hamm H, Makino CL, DiBenedetto E. Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods. PLoS One 2019; 14:e0225948. [PMID: 31805112 PMCID: PMC6894879 DOI: 10.1371/journal.pone.0225948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
The single photon response (SPR) in vertebrate photoreceptors is inherently variable due to several stochastic events in the phototransduction cascade, the main one being the shutoff of photoactivated rhodopsin. Deactivation is driven by a random number of steps, each of random duration with final quenching occurring after a random delay. Nevertheless, variability of the SPR is relatively low, making the signal highly reliable. Several biophysical and mathematical mechanisms contributing to variability suppression have been examined by the authors. Here we investigate the contribution of local depletion of cGMP by PDE*, the non linear dependence of the photocurrent on cGMP, Ca2+ feedback by making use of a fully space resolved (FSR) mathematical model, applied to two species (mouse and salamander), by varying the cGMP diffusion rate severalfold and rod outer segment diameter by an order of magnitude, and by introducing new, more refined, and time dependent variability functionals. Globally well stirred (GWS) models, and to a lesser extent transversally well stirred models (TWS), underestimate the role of nonlinearities and local cGMP depletion in quenching the variability of the circulating current with respect to fully space resolved models (FSR). These distortions minimize the true extent to which SPR is stabilized by locality in cGMP depletion, nonlinear effects linking cGMP to current, and Ca2+ feedback arising from the physical separation of E* from the ion channels located on the outer shell, and the diffusion of these second messengers in the cytoplasm.
Collapse
Affiliation(s)
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, Unites States of America
| | - Clint L. Makino
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Pedraza-González L, De Vico L, del Carmen Marín M, Fanelli F, Olivucci M. a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement. J Chem Theory Comput 2019; 15:3134-3152. [PMID: 30916955 PMCID: PMC7141608 DOI: 10.1021/acs.jctc.9b00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Automatic Rhodopsin Modeling (ARM) protocol has recently been proposed as a tool for the fast and parallel generation of basic hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild type and mutant rhodopsins. However, in its present version, input preparation requires a few hours long user's manipulation of the template protein structure, which also impairs the reproducibility of the generated models. This limitation, which makes model building semiautomatic rather than fully automatic, comprises four tasks: definition of the retinal chromophore cavity, assignment of protonation states of the ionizable residues, neutralization of the protein with external counterions, and finally congruous generation of single or multiple mutations. In this work, we show that the automation of the original ARM protocol can be extended to a level suitable for performing the above tasks without user's manipulation and with an input preparation time of minutes. The new protocol, called a-ARM, delivers fully reproducible (i.e., user independent) rhodopsin QM/MM models as well as an improved model quality. More specifically, we show that the trend in vertical excitation energies observed for a set of 25 wild type and 14 mutant rhodopsins is predicted by the new protocol better than when using the original. Such an agreement is reflected by an estimated (relative to the probed set) trend deviation of 0.7 ± 0.5 kcal mol-1 (0.03 ± 0.02 eV) and mean absolute error of 1.0 kcal mol-1 (0.04 eV).
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, I-41125 Modena, Italy
| | - Massimo Olivucci
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
15
|
Bernardo-Garcia FJ, Syed M, Jékely G, Sprecher SG. Glass confers rhabdomeric photoreceptor identity in Drosophila, but not across all metazoans. EvoDevo 2019; 10:4. [PMID: 30873275 PMCID: PMC6399963 DOI: 10.1186/s13227-019-0117-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
Across metazoans, visual systems employ different types of photoreceptor neurons (PRs) to detect light. These include rhabdomeric PRs, which exist in distantly related phyla and possess an evolutionarily conserved phototransduction cascade. While the development of rhabdomeric PRs has been thoroughly studied in the fruit fly Drosophila melanogaster, we still know very little about how they form in other species. To investigate this question, we tested whether the transcription factor Glass, which is crucial for instructing rhabdomeric PR formation in Drosophila, may play a similar role in other metazoans. Glass homologues exist throughout the animal kingdom, indicating that this protein evolved prior to the metazoan radiation. Interestingly, our work indicates that glass is not expressed in rhabdomeric photoreceptors in the planarian Schmidtea mediterranea nor in the annelid Platynereis dumerilii. Combined with a comparative analysis of the Glass DNA-binding domain, our data suggest that the fate of rhabdomeric PRs is controlled by Glass-dependent and Glass-independent mechanisms in different animal clades.
Collapse
Affiliation(s)
- F Javier Bernardo-Garcia
- 1Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.,2Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Maryam Syed
- 1Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Gáspár Jékely
- 3Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Simon G Sprecher
- 1Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI, Swafford AJ, Oakley TH. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biol Evol 2018; 8:3640-3652. [PMID: 28172965 PMCID: PMC5521729 DOI: 10.1093/gbe/evw248] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional animal phyla, the more opsins we uncover, suggesting we still do not know the true extent of opsin diversity, nor the ancestry of opsin diversity in animals. To estimate the number of opsin paralogs present in both the last common ancestor of the Nephrozoa (bilaterians excluding Xenoacoelomorpha), and the ancestor of Cnidaria + Bilateria, we reconstructed a reconciled opsin phylogeny using sequences from 14 animal phyla, especially the traditionally poorly-sampled echinoderms and molluscs. Our analysis strongly supports a repertoire of at least nine opsin paralogs in the bilaterian ancestor and at least four opsin paralogs in the last common ancestor of Cnidaria + Bilateria. Thus, the kernels of extant opsin diversity arose much earlier in animal history than previously known. Further, opsins likely duplicated and were lost many times, with different lineages of animals maintaining different repertoires of opsin paralogs. This phylogenetic information can inform hypotheses about the functions of different opsin paralogs and can be used to understand how and when opsins were incorporated into complex traits like eyes and extraocular sensors.
Collapse
Affiliation(s)
- M Desmond Ramirez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| | - Autum N Pairett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Jeanne M Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - Andrew J Swafford
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| | - Todd H Oakley
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA
| |
Collapse
|
17
|
Schumann I, Hering L, Mayer G. Immunolocalization of Arthropsin in the Onychophoran Euperipatoides rowelli (Peripatopsidae). Front Neuroanat 2016; 10:80. [PMID: 27540356 PMCID: PMC4972820 DOI: 10.3389/fnana.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023] Open
Abstract
Opsins are light-sensitive proteins that play a key role in animal vision and are related to the ancient photoreceptive molecule rhodopsin found in unicellular organisms. In general, opsins involved in vision comprise two major groups: the rhabdomeric (r-opsins) and the ciliary opsins (c-opsins). The functionality of opsins, which is dependent on their protein structure, may have changed during evolution. In arthropods, typically r-opsins are responsible for vision, whereas in vertebrates c-opsins are components of visual photoreceptors. Recently, an enigmatic r-opsin-like protein called arthropsin has been identified in various bilaterian taxa, including arthropods, lophotrochozoans, and chordates, by performing transcriptomic and genomic analyses. Since the role of arthropsin and its distribution within the body are unknown, we immunolocalized this protein in a representative of Onychophora – Euperipatoides rowelli – an ecdysozoan taxon which is regarded as one of the closest relatives of Arthropoda. Our data show that arthropsin is expressed in the central nervous system of E. rowelli, including the brain and the ventral nerve cords, but not in the eyes. These findings are consistent with previous results based on reverse transcription PCR in a closely related onychophoran species and suggest that arthropsin is a non-visual protein. Based on its distribution in the central brain region and the mushroom bodies, we speculate that the onychophoran arthropsin might be either a photosensitive molecule playing a role in the circadian clock, or a non-photosensitive protein involved in olfactory pathways, or both.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Zoology, Institute of Biology, University of Kassel, KasselGermany; Molecular Evolution and Animal Systematics, University of Leipzig, LeipzigGermany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel Germany
| |
Collapse
|
18
|
Gurska D, Garm A. Cell proliferation in cubozoan jellyfish Tripedalia cystophora and Alatina moseri. PLoS One 2014; 9:e102628. [PMID: 25047715 PMCID: PMC4105575 DOI: 10.1371/journal.pone.0102628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/22/2014] [Indexed: 11/19/2022] Open
Abstract
Cubozoans (box jellyfish) undergo remarkable body reorganization throughout their life cycle when, first, they metamorphose from swimming larvae to sessile polyps, and second, through the metamorphosis from sessile polyps to free swimming medusae. In the latter they develop complex structures like the central nervous system (CNS) and visual organs. In the present study several aspects of cell proliferation at different stages of the life cycle of the box jellyfish Tripedalia cystophora and Alatina moseri have been examined through in vivo labeling of cells in the synthetic phase (S phase) of the cell cycle. Proliferation zones were found in metamorphosing polyps, as well as in juvenile medusae, where both the rhopalia and pedalia have enhanced rates of proliferation. The results also indicate a rather fast cell turnover in the rhopalia including the rhopalial nervous system (RNS). Moreover, T. cystophora showed diurnal pattern of cell proliferation in certain body parts of the medusa, with higher proliferation rates at nighttime. This is true for two areas in close connection with the CNS: the stalk base and the rhopalia.
Collapse
Affiliation(s)
- Daniela Gurska
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Garm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
19
|
Terrell D, Xie B, Workman M, Mahato S, Zelhof A, Gebelein B, Cook T. OTX2 and CRX rescue overlapping and photoreceptor-specific functions in the Drosophila eye. Dev Dyn 2012; 241:215-28. [PMID: 22113834 PMCID: PMC3444242 DOI: 10.1002/dvdy.22782] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Otd-related transcription factors are evolutionarily conserved to control anterior patterning and neurogenesis. In humans, two such factors, OTX2 and CRX, are expressed in all photoreceptors from early specification through adulthood and associate with several photoreceptor-specific retinopathies. It is not well understood how these factors function independently vs. redundantly, or how specific mutations lead to different disease outcomes. It is also unclear how OTX1 and OTX2 functionally overlap during other aspects of neurogenesis and ocular development. Drosophila encodes a single Otd factor that has multiple functions during eye development. Using the Drosophila eye as a model, we tested the ability of the human OTX1, OTX2, and CRX genes, as well as several disease-associated CRX alleles, to rescue the different functions of Otd. RESULTS Our results indicate the following: OTX2 and CRX display overlapping, yet distinct subfunctions of Otd during photoreceptor differentiation; CRX disease alleles can be functionally distinguished based on their rescue properties; and all three factors are able to rescue rhabdomeric photoreceptor morphogenesis. CONCLUSIONS Our findings have important implications for understanding how Otx proteins have subfunctionalized during evolution, and cement Drosophila as an effective tool to unravel the molecular bases of photoreceptor pathogenesis.
Collapse
Affiliation(s)
- David Terrell
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Physician Scientists Training Program, University of Cincinnati, Cincinnati OH
| | - Baotong Xie
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Michael Workman
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN
| | - Andrew Zelhof
- Department of Biology, Indiana University, Bloomington, IN
| | - Brian Gebelein
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| | - Tiffany Cook
- Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati OH
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati OH
| |
Collapse
|
20
|
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, Robinson PR. Shedding new light on opsin evolution. Proc Biol Sci 2011; 279:3-14. [PMID: 22012981 DOI: 10.1098/rspb.2011.1819] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function.
Collapse
Affiliation(s)
- Megan L Porter
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010; 7:29. [PMID: 21062451 PMCID: PMC2996375 DOI: 10.1186/1742-9994-7-29] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. RESULTS We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. CONCLUSIONS The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.
Collapse
Affiliation(s)
- Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Rudi Loesel
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Günter Purschke
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Andreas Schmidt-Rhaesa
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Thomas Stach
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Lars Vogt
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Carmen Döring
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Simone Faller
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Martin Fritsch
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Peter Grobe
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Carsten M Heuer
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Sabrina Kaul
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Ole S Møller
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Carsten HG Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Verena Rieger
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Birgen H Rothe
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Martin EJ Stegner
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Steffen Harzsch
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| |
Collapse
|
22
|
Santillo S, Orlando P, De Petrocellis L, Cristino L, Guglielmotti V, Musio C. Evolving visual pigments: hints from the opsin-based proteins in a phylogenetically old "eyeless" invertebrate. Biosystems 2006; 86:3-17. [PMID: 16843587 DOI: 10.1016/j.biosystems.2006.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.
Collapse
Affiliation(s)
- Silvia Santillo
- Istituto di Cibernetica Eduardo Caianiello (ICIB), Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei, 34 Comprensorio A Olivetti, Pozzuoli (Napoli), Italy
| | | | | | | | | | | |
Collapse
|
23
|
Tomonari S, Takagi A, Akamatsu S, Noji S, Ohuchi H. A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev Dyn 2005; 234:783-90. [PMID: 16217736 DOI: 10.1002/dvdy.20600] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vertebrate melanopsin is a photopigment in the eye, required for photoentrainment. Melanopsin is more closely related to opsin proteins found in invertebrates, than to the other photo-pigments. Although the invertebrate melanopsin-like protein is localized in rhabdomeric photoreceptors in the invertebrate eye, it has been shown to be expressed in a subset of retinal ganglion cells in the mouse and in horizontal cells in the frog, indicating its diversified expression pattern in vertebrates. Here we show that two types of melanopsin transcripts are expressed in the developing chicken retina. Melanopsin is firstly expressed by a small subset of ganglion cells, and then prominently expressed by horizontal cells and later by bipolar cells in the developing chicken retina. This suggests that a subset of ganglion, horizontal, and bipolar cells in the chicken retina may have rhabdomeric properties in their origins.
Collapse
Affiliation(s)
- Sayuri Tomonari
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|