1
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
2
|
Nguéa P A, Robertson J, Herrera MC, Chymkowitch P, Enserink JM. Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast. J Biol Chem 2019; 294:18784-18795. [PMID: 31676685 DOI: 10.1074/jbc.ra119.009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational modification by small ubiquitin-like modifier (Sumo) regulates many cellular processes, including the adaptive response to various types of stress, referred to as the Sumo stress response (SSR). However, it remains unclear whether the SSR involves a common set of core proteins regardless of the type of stress or whether each particular type of stress induces a stress-specific SSR that targets a unique, largely nonoverlapping set of Sumo substrates. In this study, we used MS and a Gene Ontology approach to identify differentially sumoylated proteins during heat stress, hyperosmotic stress, oxidative stress, nitrogen starvation, and DNA alkylation in Saccharomyces cerevisiae cells. Our results indicate that each stress triggers a specific SSR signature centered on proteins involved in transcription, translation, and chromatin regulation. Strikingly, whereas the various stress-specific SSRs were largely nonoverlapping, all types of stress tested here resulted in desumoylation of subunits of RNA polymerase III, which correlated with a decrease in tRNA synthesis. We conclude that desumoylation and subsequent inhibition of RNA polymerase III constitutes the core of all stress-specific SSRs in yeast.
Collapse
Affiliation(s)
- Aurélie Nguéa P
- Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Joseph Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway
| | - Maria Carmen Herrera
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0371 Oslo, Norway; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway.
| |
Collapse
|
3
|
Zhang M, Yang D, Gold B. Origin of mutations in genes associated with human glioblastoma multiform cancer: random polymerase errors versus deamination. Heliyon 2019; 5:e01265. [PMID: 30899826 PMCID: PMC6407082 DOI: 10.1016/j.heliyon.2019.e01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 11/26/2022] Open
Abstract
The etiology of glioblastoma multiforme (GBM), the most serious form of brain cancer, remains obscure, although it has been proposed that cancer risk is a function of random polymerase errors that occur during stem cell division and the resulting mutations in oncogenes and tumor suppressor genes. Analysis of the 8 genes (PTEN, TP53, EGFR, PIK3R1, PIK3CA, NF1, RB1, IDH1) that are mutated in at least 5% of GBM tumors indicates a non-random mutation pattern that reflects a significant role for hydrolytic deamination at CpG sites. The formation of activating mutations in some genes, e.g., IDH1, where a very limited set of mutations are oncogenic, statistically cannot involve random mutagenesis due to polymerase errors that occur during each stem cell replication. Comparison of the in vitro misincorporation tendencies of three replicative polymerases and the “random” mutation pattern in a subset of genes indicates non-polymerase based pathways are involved. Analysis of the mutation patterns shows that chemical deamination that occurs at a slow rate at each CpG is favored over random polymerase errors by a factor of more than 10 million. Therefore, if a truncating nonsense mutation in a tumor suppressor, or an activating missense mutation in an oncogene, can occur due to a C > T base substitution at a CpG sequence, it is highly favored over other mutation pathways.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmaceutical Sciences, University of Pittsburgh, 708 Salk Hall, 3501 Terrace Street, Pittsburgh PA 15261, USA
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, 708 Salk Hall, 3501 Terrace Street, Pittsburgh PA 15261, USA
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, 708 Salk Hall, 3501 Terrace Street, Pittsburgh PA 15261, USA
| |
Collapse
|
4
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
5
|
Wu Y, Fu X, Wang L. Identification of novel biomarkers for preeclampsia on the basis of differential expression network analysis. Exp Ther Med 2016; 12:201-207. [PMID: 27347039 PMCID: PMC4906647 DOI: 10.3892/etm.2016.3261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/11/2016] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia (PE) is a severe pregnancy complication, which is a leading cause of maternal and fetal mortality. The present study aimed to screen potential biomarkers for the diagnosis and prediction of PE and to investigate the underlying mechanisms of PE development based on the differential expression network (DEN). The microarray datasets E-GEOD-6573 and E-GEOD-48424 were downloaded from the European Bioinformatics Institute database. Differentially expressed genes (DEGs) between the PE and normal groups were screened by Significant Analysis of Microarrays with the cutoff value of a |log2 fold change| of >2, and a false discovery rate of <0.05. The DEN was constructed based on the differential and non-differential interactions observed. In addition, genes with higher connectivity degrees in the DEN were identified on the basis of centrality analysis, while disease genes were also extracted from the DEN. In order to understand the functional roles of genes in DEN, Gene Ontology (GO) and pathway enrichment analyses were performed. The present results indicated that a total of 225 genes were considered as DEGs in the PE group, while 466 nodes and 314 gene interactions were involved in the DEN. Among these 466 nodes, 4 nodes with higher degrees were identified, including ubiquitin C (UBC), small ubiquitin-like modifier 1 (SUMO1), SUMO2 and RAD21 homolog (S. pombe) (RAD21). Notably, UBC was also found to be a disease gene. UBC, RAD21, SUMO2 and SUMO1 were markedly enriched in the regulation of programmed cell death, as well as in the regulation of apoptosis, cell cycle and chromosomal part. In conclusion, based on these results, we suggest that UBC, RAD21, SUMO2 and SUMO1 may be reliable biomarkers for the prediction of the development and progression of PE.
Collapse
Affiliation(s)
- Yufang Wu
- Department of Gynecology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Xiuhua Fu
- Department of Obstetrics, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Lin Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shanxi 710032, P.R. China
| |
Collapse
|
6
|
Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 2014; 82:4154-68. [PMID: 25047847 DOI: 10.1128/iai.01984-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular Gram-negative bacterium that selectively infects mononuclear phagocytes. We recently reported that E. chaffeensis utilizes a type 1 secretion (T1S) system to export tandem repeat protein (TRP) effectors and demonstrated that these effectors interact with a functionally diverse array of host proteins. By way of these interactions, TRP effectors modulate host cell functions; however, the molecular basis of these interactions and their roles in ehrlichial pathobiology are not well defined. In this study, we describe the first bacterial protein posttranslational modification (PTM) by the small ubiquitin-like modifier (SUMO). The E. chaffeensis T1S effector TRP120 is conjugated to SUMO at a carboxy-terminal canonical consensus SUMO conjugation motif in vitro and in human cells. In human cells, TRP120 was selectively conjugated with SUMO2/3 isoforms. Disruption of TRP120 SUMOylation perturbed interactions with known host proteins, through predicted SUMO interaction motif-dependent and -independent mechanisms. E. chaffeensis infection did not result in dramatic changes in the global host SUMOylated protein profile, but a robust colocalization of predominately SUMO1 with ehrlichial inclusions was observed. Inhibiting the SUMO pathway with a small-molecule inhibitor had a significant impact on E. chaffeensis replication and recruitment of the TRP120-interacting protein polycomb group ring finger protein 5 (PCGF5) to the inclusion, indicating that the SUMO pathway is critical for intracellular survival. This study reveals the novel exploitation of the SUMO pathway by Ehrlichia, which facilitates effector-eukaryote interactions necessary to usurp the host and create a permissive intracellular niche.
Collapse
|
7
|
Improving bioorthogonal protein ubiquitylation by click reaction. Bioorg Med Chem 2013; 21:3430-5. [PMID: 23611767 DOI: 10.1016/j.bmc.2013.03.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 01/03/2023]
Abstract
Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.
Collapse
|
8
|
New insights into the role of the small ubiquitin-like modifier (SUMO) in plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:161-209. [PMID: 23273862 DOI: 10.1016/b978-0-12-405210-9.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a small (∼12kDa) protein that occurs in all eukaryotes and participates in the reversible posttranslational modification of target cellular proteins. The three-dimensional structure of SUMO and ubiquitin (Ub) are superimposable although there is very little similarity in their primary amino acid sequences. In all organisms, conjugation and deconjugation of Ub and SUMO proceed by the same reactions while using pathway-specific enzymes. SUMO conjugation in plants is a part of the controls governing important biological processes such as growth, development, flowering, environmental (abiotic) stress responses, and response to pathogen infection. Most of the evidence for this comes from genetic analyses. Recent efforts to dissect the function of sumoylation have focused on uncovering targets of SUMO conjugation by using either a yeast two-hybrid screen employing components of the SUMO cycle as bait or by using affinity purification of SUMO-conjugated proteins followed by identification of these proteins by mass spectrometry. This chapter reviews the current knowledge regarding sumoylation in plants, with special focus on the model plant Arabidopsis thaliana.
Collapse
|
9
|
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 2012; 8:672-84. [PMID: 22606048 PMCID: PMC3354625 DOI: 10.7150/ijbs.4283] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Among the human genome, p53 is one of the first tumor suppressor genes to be discovered. It has a wide range of functions covering cell cycle control, apoptosis, genome integrity maintenance, metabolism, fertility, cellular reprogramming and autophagy. Although different possible underlying mechanisms for p53 regulation have been proposed for decades, none of them is conclusive. While much literature focuses on the importance of individual post-translational modifications, further explorations indicate a new layer of p53 coordination through the interplay of the modifications, which builds up a complex 'network'. This review focuses on the necessity, characteristics and mechanisms of the crosstalk among post-translational modifications and its effects on the precise and selective behavior of p53.
Collapse
Affiliation(s)
- Bo Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
10
|
Lee MH, Mabb AM, Gill GB, Yeh ETH, Miyamoto S. NF-κB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 2012; 43:180-91. [PMID: 21777808 DOI: 10.1016/j.molcel.2011.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/24/2011] [Accepted: 06/27/2011] [Indexed: 11/27/2022]
Abstract
Activation of NF-κB, pivotal for immunity and oncogenesis, is tightly controlled by multiple feedback mechanisms. In response to DNA damage, SUMOylation of NEMO (NF-κB essential modulator) is critical for NF-κB activation; however, the SUMO proteases and feedback mechanisms involved remain unknown. Here we show that among the six known Sentrin/SUMO-specific proteases (SENPs), only SENP2 can efficiently associate with NEMO, deSUMOylate NEMO, and inhibit NF-κB activation induced by DNA damage. We further show that NF-κB induces SENP2 (and SENP1) transcription selectively in response to genotoxic stimuli, which involves ataxia telangiectasia mutated (ATM)-dependent histone methylation of SENP2 promoter κB regions and NF-κB recruitment. SENP2 null cells display biphasic NEMO SUMOylation and activation of IKK and NF-κB, and higher resistance to DNA damage-induced cell death. Our study establishes a self-attenuating feedback mechanism selective to DNA damage-induced signaling to limit NF-κB-dependent cell survival responses.
Collapse
Affiliation(s)
- Moon Hee Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
11
|
Role of peroxisome proliferator-activated receptor gamma and its ligands in the treatment of hematological malignancies. PPAR Res 2011; 2008:834612. [PMID: 18528522 PMCID: PMC2408681 DOI: 10.1155/2008/834612] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/21/2008] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a multifunctional transcription factor with important regulatory roles in inflammation, cellular growth, differentiation, and apoptosis. PPARgamma is expressed in a variety of immune cells as well as in numerous leukemias and lymphomas. Here, we review recent studies that provide new insights into the mechanisms by which PPARgamma ligands influence hematological malignant cell growth, differentiation, and survival. Understanding the diverse properties of PPARgamma ligands is crucial for the development of new therapeutic approaches for hematological malignancies.
Collapse
|
12
|
Smet-Nocca C, Wieruszeski JM, Léger H, Eilebrecht S, Benecke A. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. BMC BIOCHEMISTRY 2011; 12:4. [PMID: 21284855 PMCID: PMC3040724 DOI: 10.1186/1471-2091-12-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 02/01/2011] [Indexed: 12/01/2022]
Abstract
Background The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner. Results Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding. Conclusions SUMO-1 increases the enzymatic turnover of TDG by overcoming the product-inhibition of TDG on apurinic sites. The mechanism involves a competitive DNA binding activity of SUMO-1 towards the regulatory domain of TDG. This mechanism might be a general feature of SUMO-1 regulation of other DNA-bound factors such as transcription regulatory proteins.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire, Université de Lille1 - Université de Lille2 - CNRS USR3078, Parc de la Haute Borne, 50 avenue de Halley, 59658 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
13
|
Tang JB, Greenberg RA. Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks. Genes Cancer 2010; 1:787-96. [PMID: 21113239 PMCID: PMC2989631 DOI: 10.1177/1947601910382774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein modifications, including phosphorylation, ubiquitylation, and SUMOylation, have emerged as essential components of the response to DNA double-strand breaks (DSBs). Mutations within the genes encoding effectors of these components lead to genomic instability and in selected cases, human radiosensitivity and cancer susceptibility syndromes. In this review, we highlight recent advances in the study of DSB-associated signaling events by ubiquitylation and SUMOylation and discuss how coordination among protein modification systems integrates components of the DNA damage response into a network that regulates DNA repair and transcriptional processes on contiguous stretches of chromatin.
Collapse
Affiliation(s)
- Jiang-Bo Tang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Eilebrecht S, Smet-Nocca C, Wieruszeski JM, Benecke A. SUMO-1 possesses DNA binding activity. BMC Res Notes 2010; 3:146. [PMID: 20504299 PMCID: PMC2892505 DOI: 10.1186/1756-0500-3-146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conjugation of small ubiquitin-related modifiers (SUMOs) is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs). Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood. FINDINGS Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM. CONCLUSION This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France
- Institut de Recherche Interdisciplinaire - CNRS USR3078 - Université Lille I - Université Lille II, 50 Av de Halley, 59658 Villeneuve d'Ascq, France
| | - Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire - CNRS USR3078 - Université Lille I - Université Lille II, 50 Av de Halley, 59658 Villeneuve d'Ascq, France
| | - Jean-Michel Wieruszeski
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576 - Université de Lille1, Villeneuve d'Ascq, France
| | - Arndt Benecke
- Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France
- Institut de Recherche Interdisciplinaire - CNRS USR3078 - Université Lille I - Université Lille II, 50 Av de Halley, 59658 Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Smet-Nocca C, Wieruszeski JM, Chaar V, Leroy A, Benecke A. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding. Biochemistry 2010; 47:6519-30. [PMID: 18512959 DOI: 10.1021/bi7022283] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymine-DNA glycosylases (TDGs) initiate base excision repair by debasification of the erroneous thymine or uracil nucleotide in G.T and G.U mispairs which arise at high frequency through spontaneous or enzymatic deamination of methylcytosine and cytosine, respectively. Human TDG has furthermore been shown to have a functional role in transcription and epigenetic regulation through the interaction with transcription factors from the nuclear receptor superfamily, transcriptional coregulators, and a DNA methyltransferase. The TDG N-terminus encodes regulatory functions, as it assures both G.T versus G.U specificity and contains the sites for interaction and posttranslational modification by transcription-related activities. While the molecular function of the evolutionarily conserved central catalytic domain of TDG in base excision repair has been elucidated by determination of its three-dimensional structure, the mechanisms by which the N-terminus exerts its regulatory roles, as well as the function of TDG in transcription regulation, remain to be understood. We describe here the residual structure of the TDG N-terminus in both contexts of the isolated domain and the entire protein. These studies lead to the characterization of a small structural domain in the TDG N-terminal region preceding the catalytic core and coinciding with the region of functional regulation of TDG's activities. This regulatory domain exhibits a small degree of organization and is implicated in dynamic molecular interactions with the catalytic domain and nonselective interactions with double-stranded DNA, providing a molecular explanation for the evolutionarily acquired G.T mismatch processing activity of TDG.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire, USR CNRS 3078, Université de Lille 1, 1 rue du Professeur Calmette, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
Modification by SUMOs (small ubiquitin-related modifiers) is largely transient and considered to alter protein function through altered protein–protein interactions. These modifications are significant regulators of the response to DNA damage in eukaryotic model organisms and SUMOylation affects a large number of proteins in mammalian cells, including several proteins involved in the response to genomic lesions [Golebiowski, Matic, Tatham, Cole, Yin, Nakamura, Cox, Barton, Mann and Hay (2009) Sci. Signaling 2, ra24]. Furthermore, recent work [Morris, Boutell, Keppler, Densham, Weekes, Alamshah, Butler, Galanty, Pangon, Kiuchi, Ng and Solomon (2009) Nature 462, 886–890; Galanty, Belotserkovskaya, Coates, Polo, Miller and Jackson (2009) Nature 462, 935–939] has revealed the involvement of the SUMO cascade in the BRCA1 (breast-cancer susceptibility gene 1) pathway response after DNA damage. The present review examines roles described for the SUMO pathway in the way mammalian cells respond to genotoxic stress.
Collapse
|
17
|
Talamillo A, Sánchez J, Cantera R, Pérez C, Martín D, Caminero E, Barrio R. Smt3 is required for Drosophila melanogaster metamorphosis. Development 2008; 135:1659-68. [PMID: 18367553 DOI: 10.1242/dev.020685] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sumoylation, the covalent attachment of the small ubiquitin-related modifier SUMO to target proteins, regulates different cellular processes, although its role in the control of development remains unclear. We studied the role of sumoylation during Drosophila development by using RNAi to reduce smt3 mRNA levels in specific tissues. smt3 knockdown in the prothoracic gland, which controls key developmental processes through the synthesis and release of ecdysteroids, caused a 4-fold prolongation of larval life and completely blocked the transition from larval to pupal stages. The reduced ecdysteroid titer of smt3 knockdown compared with wild-type larvae explains this phenotype. In fact, after dietary administration of exogenous 20-hydroxyecdysone, knockdown larvae formed pupal cases. The phenotype is not due to massive cell death or degeneration of the prothoracic glands at the time when puparium formation should occur. Knockdown cells show alterations in expression levels and/or the subcellular localisation of enzymes and transcription factors involved in the regulation of ecdysteroid synthesis. In addition, they present reduced intracellular channels and a reduced content of lipid droplets and cholesterol, which could explain the deficit in steroidogenesis. In summary, our study indicates that Smt3 is required for the ecdysteroid synthesis pathway at the time of puparium formation.
Collapse
Affiliation(s)
- Ana Talamillo
- Functional Genomics Unit, CIC bioGUNE, Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The ubiquitin/26S proteasome pathway largely mediates selective proteolysis in the nucleus and cytosol. This pathway catalyzes covalent attachment of ubiquitin (UBQ) to substrate proteins in an E1-E2-E3 cascade. Ubiquitin E3 ligases interact with substrates to catalyze UBQ transfer from E2 to substrate. Within the E3 ligase superfamily, cullin RING ligases (CRLs) are significant in plants because they are linked to hormonal signaling, developmental programs, and environmental responses. Thus, knowledge of CRL regulation is required for a complete understanding of these processes. A major mechanism modulating CRL activity is modification of the cullin subunit by RUB (RELATED TO UBIQUITIN), a ubiquitin-like protein, and demodification by the COP9 signalosome (CSN). CULLIN-ASSOCIATED NEDD8-DISSOCIATED 1 (CAND1) interacts with CRLs, affecting both rubylation and derubylation. Described here are the pathways, regulation, and biological function of rubylation and derubylation, as well as future directions and outstanding questions.
Collapse
Affiliation(s)
- Sara K Hotton
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
19
|
Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 2007; 120:1178-88. [PMID: 17341580 DOI: 10.1242/jcs.03418] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo regulated fission and fusion events that are essential to maintain metabolic stability. We previously demonstrated that the mitochondrial fission GTPase DRP1 is a substrate for SUMOylation. To further understand how SUMOylation impacts mitochondrial function, we searched for a SUMO protease that may affect mitochondrial dynamics. We demonstrate that the cytosolic pool of SENP5 catalyzes the cleavage of SUMO1 from a number of mitochondrial substrates. Overexpression of SENP5 rescues SUMO1-induced mitochondrial fragmentation that is partly due to the downregulation of DRP1. By contrast, silencing of SENP5 results in a fragmented and altered morphology. DRP1 was stably mono-SUMOylated in these cells, suggesting that SUMOylation leads to increased DRP1 mediated fission. In addition, the reduction of SENP5 levels resulted in a significant increase in the production of free radicals. Reformation of the mitochondrial tubules by expressing the dominant interfering DRP1 or by RNA silencing of endogenous DRP1 protein rescued both the morphological aberrations and the increased production of ROS induced by downregulation of SENP5. These data demonstrate the importance of SENP5 as a new regulator of SUMO1 proteolysis from mitochondrial targets, impacting mitochondrial morphology and metabolism.
Collapse
Affiliation(s)
- Rodolfo Zunino
- University of Ottawa Heart Institute, Rm H445A, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
20
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
van Waardenburg RCAM, Duda DM, Lancaster CS, Schulman BA, Bjornsti MA. Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress. Mol Cell Biol 2006; 26:4958-69. [PMID: 16782883 PMCID: PMC1489148 DOI: 10.1128/mcb.00160-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P(123)L mutant was viable at 36 degrees C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-A structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress.
Collapse
Affiliation(s)
- Robert C A M van Waardenburg
- Dept. of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
22
|
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281:16117-27. [PMID: 16524884 DOI: 10.1074/jbc.m512757200] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SUMO proteins are ubiquitin-related modifiers implicated in the regulation of gene transcription, cell cycle, DNA repair, and protein localization. The molecular mechanisms by which the sumoylation of target proteins regulates diverse cellular functions remain poorly understood. Here we report isolation and characterization of SUMO1- and SUMO2-binding motifs. Using yeast two-hybrid system, bioinformatics, and NMR spectroscopy we define a common SUMO-interacting motif (SIM) and map its binding surfaces on SUMO1 and SUMO2. This motif forms a beta-strand that could bind in parallel or antiparallel orientation to the beta2-strand of SUMO due to the environment of the hydrophobic core. A negative charge imposed by a stretch of neighboring acidic amino acids and/or phosphorylated serine residues determines its specificity in binding to distinct SUMO paralogues and can modulate the spatial orientation of SUMO-SIM interactions.
Collapse
Affiliation(s)
- Christina-Maria Hecker
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|