1
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires vangl2. Dev Biol 2025; 524:55-68. [PMID: 40334836 DOI: 10.1016/j.ydbio.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires Vangl2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566412. [PMID: 37986956 PMCID: PMC10659374 DOI: 10.1101/2023.11.09.566412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Zhu M, Gu B, Thomas EC, Huang Y, Kim YK, Tao H, Yung TM, Chen X, Zhang K, Woolaver EK, Nevin MR, Huang X, Winklbauer R, Rossant J, Sun Y, Hopyan S. A fibronectin gradient remodels mixed-phase mesoderm. SCIENCE ADVANCES 2024; 10:eadl6366. [PMID: 39028807 PMCID: PMC11259159 DOI: 10.1126/sciadv.adl6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bin Gu
- Department of Obstetrics Gynecology and Reproductive Biology, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yunyun Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora M. Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Elizabeth K. Woolaver
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mikaela R. Nevin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rudolph Winklbauer
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yu Sun
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
4
|
Eibach S, Pang D. Junctional Neural Tube Defect (JNTD): A Rare and Relatively New Spinal Dysraphic Malformation. Adv Tech Stand Neurosurg 2023; 47:129-143. [PMID: 37640874 DOI: 10.1007/978-3-031-34981-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Junctional neurulation completes the sequential embryological processes of primary and secondary neurulation as the intermediary step linking the end of primary neurulation and the beginning of secondary neurulation. Its exact molecular process is a matter of ongoing scientific debate. Abnormality of junctional neurulation-junctional neural tube defect (JNTD)-was first described in 2017 based on a series of three patients who displayed a well-formed secondary neural tube, the conus, that is physically separated by a fair distance from its companion primary neural tube and functionally disconnected from rostral corticospinal control. Several other cases conforming to this bizarre neural tube arrangement have since appeared in the literature, reinforcing the validity of this entity. The clinical, neuroimaging, and electrophysiological features of JNTD, as well as the hypothesis of its embryogenetic mechanism, will be described in this chapter.
Collapse
Affiliation(s)
- Sebastian Eibach
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Paediatric Neurosurgery, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Dachling Pang
- Great Ormond Street Hospital for Children, NHS Trust, London, UK
- Department of Paediatric Neurosurgery, University of California, Davis, USA
| |
Collapse
|
5
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
6
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
7
|
Goto T, Keller R. Preparation of three-notochord explants for imaging analysis of the cell movements of convergent extension during early Xenopus morphogenesis. Dev Growth Differ 2021; 63:429-438. [PMID: 34464453 DOI: 10.1111/dgd.12748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023]
Abstract
We describe a method of generating three-notochord explants to analyze the cell movements of convergent extension (CE) during Xenopus laevis gastrulation and neurulation. This method uses standard microsurgical techniques under a fluorescence stereomicroscope to combine notochordal sectors of gastrulae, side by side (lateral surfaces apposed) into a single explant. Three-notochord explants cultured on bovine serum albumin (BSA)-coated glass converged mediolaterally and extended in the anterior-posterior direction. The individual notochordal cells showed the mediolaterally oriented, bipolar tractional motility and the resulting mediolaterally oriented cell intercalation characteristic of CE, thereby reproducing both the in vivo tissue and the cell movements in an explant. Image analysis of three-notochord explants reveals the effects of overexpressions or knockdowns of genes, of manipulation of the extracellular matrix, and of exposure to chemical reagents on morphogenesis during gastrulation and neurulation, compared with control explants. Moreover, since three-notochord explants provide two zones of cell intercalation between notochords, individual cell behaviors between notochords of different characteristics and experimental treatments can be observed at the same time.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Furry is required for cell movements during gastrulation and functionally interacts with NDR1. Sci Rep 2021; 11:6607. [PMID: 33758327 PMCID: PMC7987989 DOI: 10.1038/s41598-021-86153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022] Open
Abstract
Gastrulation is a key event in animal embryogenesis during which germ layer precursors are rearranged and the embryonic axes are established. Cell polarization is essential during gastrulation, driving asymmetric cell division, cell movements, and cell shape changes. The furry (fry) gene encodes an evolutionarily conserved protein with a wide variety of cellular functions, including cell polarization and morphogenesis in invertebrates. However, little is known about its function in vertebrate development. Here, we show that in Xenopus, Fry plays a role in morphogenetic processes during gastrulation, in addition to its previously described function in the regulation of dorsal mesoderm gene expression. Using morpholino knock-down, we demonstrate a distinct role for Fry in blastopore closure and dorsal axis elongation. Loss of Fry function drastically affects the movement and morphological polarization of cells during gastrulation and disrupts dorsal mesoderm convergent extension, responsible for head-to-tail elongation. Finally, we evaluate a functional interaction between Fry and NDR1 kinase, providing evidence of an evolutionarily conserved complex required for morphogenesis.
Collapse
|
9
|
Guo D, Ru J, Mao F, Ouyang H, Ju R, Wu K, Liu Y, Liu C. Ontogenesis of the tear drainage system requires Prickle1-driven polarized basement membrane deposition. Development 2020; 147:dev.191726. [PMID: 33144400 DOI: 10.1242/dev.191726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
In terrestrial animals, the lacrimal drainage apparatus evolved to serve as conduits for tear flow; however, little is known about the ontogenesis of this system. Here, we define the anatomy of the fully formed tear duct in mice, characterize crucial morphogenetic events for the development of tear duct components and identify the site for primordial tear duct (PTD) initiation. We report that the PTD originates from the orbital lacrimal lamina, a junction formed by the epithelia of the maxillary and lateral nasal processes. We demonstrate that Prickle1, a key component of planar cell polarity signaling, is expressed in progenitors of the PTD and throughout tear duct morphogenesis. Disruption of Prickle1 stalls tear duct elongation; in particular, the loss of basement membrane deposition and aberrant cytoplasmic accumulation of laminin are salient. Altered cell adhesion, cytoskeletal transport systems, vesicular transport systems and cell axis orientation in Prickle1 mutants support the role of Prickle1 in planar cell polarity. Taken together, our results highlight a crucial role of Prickle1-mediated polarized basement membrane secretion and deposition in PTD elongation.
Collapse
Affiliation(s)
- Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiali Ru
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
10
|
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. Genes (Basel) 2020; 11:genes11111363. [PMID: 33218193 PMCID: PMC7699193 DOI: 10.3390/genes11111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Gastrulation drives the establishment of three germ layers and embryonic axes during frog embryonic development. Mesodermal cell fate specification and morphogenetic movements are vital factors coordinating gastrulation, which are regulated by numerous signaling pathways, such as the Wnt (Wingless/Integrated), Notch, and FGF (Fibroblast growth factor) pathways. However, the coordination of the Notch and FGF signaling pathways during gastrulation remains unclear. We identified a novel helix–loop–helix DNA binding domain gene (Hes5.9), which was regulated by the FGF and Notch signaling pathways during gastrulation. Furthermore, gain- and loss-of-function of Hes5.9 led to defective cell migration and disturbed the expression patterns of mesodermal and endodermal marker genes, thus interfering with gastrulation. Collectively, these results suggest that Hes5.9 plays a crucial role in cell fate decisions and cell migration during gastrulation, which is modulated by the FGF and Notch signaling pathways.
Collapse
|
11
|
Guo SS, Au TYK, Wynn S, Aszodi A, Chan D, Fässler R, Cheah KSE. β1 Integrin regulates convergent extension in mouse notogenesis, ensures notochord integrity and the morphogenesis of vertebrae and intervertebral discs. Development 2020; 147:dev192724. [PMID: 33051257 DOI: 10.1242/dev.192724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The notochord drives longitudinal growth of the body axis by convergent extension, a highly conserved developmental process that depends on non-canonical Wnt/planar cell polarity (PCP) signaling. However, the role of cell-matrix interactions mediated by integrins in the development of the notochord is unclear. We developed transgenic Cre mice, in which the β1 integrin gene (Itgb1) is ablated at E8.0 in the notochord only or in the notochord and tail bud. These Itgb1 conditional mutants display misaligned, malformed vertebral bodies, hemi-vertebrae and truncated tails. From early somite stages, the notochord was interrupted and displaced in these mutants. Convergent extension of the notochord was impaired with defective cell movement. Treatment of E7.25 wild-type embryos with anti-β1 integrin blocking antibodies, to target node pit cells, disrupted asymmetric localization of VANGL2. Our study implicates pivotal roles of β1 integrin for the establishment of PCP and convergent extension of the developing notochord, its structural integrity and positioning, thereby ensuring development of the nucleus pulposus and the proper alignment of vertebral bodies and intervertebral discs. Failure of this control may contribute to human congenital spine malformations.
Collapse
Affiliation(s)
- Shiny Shengzhen Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Tiffany Y K Au
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sarah Wynn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, Fraunhoferstraβe 20, 82152 Planegg-Martinsried, Germany
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Kathryn S E Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
12
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Technau U. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians. Mech Dev 2020; 163:103628. [PMID: 32603823 DOI: 10.1016/j.mod.2020.103628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Among the basally branching metazoans, cnidarians display well-defined gastrulation processes leading to a diploblastic body plan, consisting of an endodermal and an ectodermal cell layer. As the outgroup to all Bilateria, cnidarians are an interesting group to investigate ancestral developmental mechanisms. Interestingly, all known gastrulation mechanisms known in Bilateria are already found in different species of Cnidaria. Here I review the morphogenetic processes found in different Cnidaria and focus on the investigation of the cellular and molecular mechanisms in the sea anemone Nematostella vectensis, which has been a major model organism among cnidarians for evolutionary developmental biology. Many of the genes involved in germ layer specification and morphogenetic processes in Bilateria are also found active during gastrulation of Nematostella and other cnidarians, suggesting an ancestral role of this process. The molecular analyses indicate a tight link between gastrulation and axis patterning processes by Wnt and FGF signaling. Interestingly, the endodermal layer displays many features of the mesodermal layer in Bilateria, while the pharyngeal ectoderm has an endodermal expression profile. Comparative analyses as well as experimental studies using embryonic aggregates suggest that minor differences in the gene regulatory networks allow the embryo to transition relatively easily from one mode of gastrulation to another.
Collapse
Affiliation(s)
- Ulrich Technau
- University of Vienna, Dept. of Neurosciences and Developmental Biology, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
14
|
Eibach S, Pang D. Junctional Neural Tube Defect. J Korean Neurosurg Soc 2020; 63:327-337. [PMID: 32336064 PMCID: PMC7218194 DOI: 10.3340/jkns.2020.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Junctional neurulation represents the most recent adjunct to the well-known sequential embryological processes of primary and secondary neurulation. While its exact molecular processes, occurring at the end of primary and the beginning of secondary neurulation, are still being actively investigated, its pathological counterpart -junctional neural tube defect (JNTD)- had been described in 2017 based on three patients whose well-formed secondary neural tube, the conus, is widely separated from its corresponding primary neural tube and functionally disconnected from corticospinal control from above. Several other cases conforming to this bizarre neural tube arrangement have since appeared in the literature, reinforcing the validity of this entity. The cardinal clinical, neuroimaging, and electrophysiological features of JNTD, and the hypothesis of its embryogenetic mechanism, form part of this review.
Collapse
Affiliation(s)
- Sebastian Eibach
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia.,Department of Paediatric Neurosurgery, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Dachling Pang
- Department of Paediatric Neurosurgery, Great Ormond Street Hospital for Children, NHS Trust, London, UK.,Department of Paediatric Neurosurgery, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Zhu M, Zhang K, Tao H, Hopyan S, Sun Y. Magnetic Micromanipulation for In Vivo Measurement of Stiffness Heterogeneity and Anisotropy in the Mouse Mandibular Arch. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7914074. [PMID: 32666052 PMCID: PMC7327709 DOI: 10.34133/2020/7914074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
The mechanical properties of tissues are pivotal for morphogenesis and disease progression. Recent approaches have enabled measurements of the spatial distributions of viscoelastic properties among embryonic and pathological model systems and facilitated the generation of important hypotheses such as durotaxis and tissue-scale phase transition. There likely are many unexpected aspects of embryo biomechanics we have yet to discover which will change our views of mechanisms that govern development and disease. One area in the blind spot of even the most recent approaches to measuring tissue stiffness is the potentially anisotropic nature of that parameter. Here, we report a magnetic micromanipulation device that generates a uniform magnetic field gradient within a large workspace and permits measurement of the variation of tissue stiffness along three orthogonal axes. By applying the device to the organ-stage mouse embryo, we identify spatially heterogenous and directionally anisotropic stiffness within the mandibular arch. Those properties correspond to the domain of expression and the angular distribution of fibronectin and have potential implications for mechanisms that orient collective cell movements and shape tissues during development. Assessment of anisotropic properties extends the repertoire of current methods and will enable the generation and testing of hypotheses.
Collapse
Affiliation(s)
- Min Zhu
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Kaiwen Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Molecular Genetics, University of Toronto, Canada M5S 1A8
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Canada M5G 1X8
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Canada M5S 3G8
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada M5S 3G9
- Department of Electrical and Computer Engineering, University of Toronto, Canada M5S 3G4
| |
Collapse
|
16
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
17
|
Prince DJ, Jessen JR. Dorsal convergence of gastrula cells requires Vangl2 and an adhesion protein-dependent change in protrusive activity. Development 2019; 146:dev.182188. [PMID: 31719041 DOI: 10.1242/dev.182188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 01/23/2023]
Abstract
Lateral zebrafish hypoblast cells initiate dorsal convergence near mid-gastrulation and exhibit non-polarized morphologies, limited cell-cell contact and indirect migration trajectories. By late gastrulation, mesodermal cells become packed as they engage in planar cell polarity (PCP)-dependent movement. Here, we aimed to understand this transition in cell behavior by examining the relationship between protrusion dynamics and establishment of PCP and directed migration. We found that wild-type cells undergo a reduction in bleb protrusions near late gastrulation accompanied by a VANGL planar cell polarity protein 2 (Vangl2)-regulated increase in filopodia number and polarization. Manipulation of blebs is sufficient to interfere with PCP and directed migration. We show that Vangl2, fibronectin and cadherin 2 function to suppress blebbing. Vangl2 maintains ezrin b (Ezrb) protein levels and higher Ezrb activation rescues defective mediolateral cell alignment and migration paths in vangl2 mutant embryos. Transplantation experiments show that loss of vangl2 disrupts protrusion formation cell-autonomously while fibronectin acts non-autonomously. We propose that dorsal convergence requires the coordinated action of Vangl2, Ezrb and cell-adhesion proteins to inhibit blebs and promote polarized actin-rich protrusive activity and PCP.
Collapse
Affiliation(s)
- Dianna J Prince
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
18
|
Mongera A, Michaut A, Guillot C, Xiong F, Pourquié O. Mechanics of Anteroposterior Axis Formation in Vertebrates. Annu Rev Cell Dev Biol 2019; 35:259-283. [PMID: 31412208 PMCID: PMC7394480 DOI: 10.1146/annurev-cellbio-100818-125436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials-such as cells and extracellular matrix-and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis.
Collapse
Affiliation(s)
- Alessandro Mongera
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Charlène Guillot
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Jessen TN, Jessen JR. VANGL2 protein stability is regulated by integrin αv and the extracellular matrix. Exp Cell Res 2018; 374:128-139. [PMID: 30472097 DOI: 10.1016/j.yexcr.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
Vang-like 2 (VANGL2) is a four-pass transmembrane protein required for a variety of polarized cell behaviors underlying embryonic development. Recent data show human VANGL2 interacts with integrin αv to control cell adhesion to extracellular matrix proteins. The goal of this study was to further define the functional relationship between integrin αv and VANGL2. We demonstrate integrin αv regulates VANGL2 protein levels both in vitro and in the zebrafish embryo. While integrin αv knockdown reduces VANGL2 expression at membrane compartments, it does not affect VANGL2 transcription. Knockdown of integrin β5, but not β1 or β3, also decreases VANGL2 protein levels. Inhibition of protein translation using cycloheximide demonstrates that integrin αv knockdown cells have increased VANGL2 degradation while interference with either proteasome or lysosome function restores VANGL2. We further show integrin activation and stimulation of cell-matrix adhesion using MnCl2 fails to influence VANGL2. However, MnCl2 treatment stabilizes VANGL2 protein expression levels in the presence of cycloheximide. In the converse experiment, blockage of integrin-mediated cell-matrix adhesion using a cyclic RGD peptide causes a reduction in VANGL2 protein levels. Together, our findings support a model where integrin αv and cellular interactions with the extracellular matrix are required to maintain VANGL2 protein levels and thus function at the plasma membrane.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
20
|
Love AM, Prince DJ, Jessen JR. Vangl2-dependent regulation of membrane protrusions and directed migration requires a fibronectin extracellular matrix. Development 2018; 145:dev.165472. [PMID: 30327324 DOI: 10.1242/dev.165472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/08/2018] [Indexed: 01/30/2023]
Abstract
During zebrafish gastrulation the planar cell polarity (PCP) protein Vang-like 2 (Vangl2) regulates the polarization of cells that are engaged in directed migration. However, it is unclear whether Vangl2 influences membrane-protrusive activities in migrating gastrula cells and whether these processes require the fibronectin extracellular matrix. Here, we report that Vangl2 modulates the formation and polarization of actin-rich filopodia-like and large lamellipodia-like protrusions in ectodermal cells. By contrast, disrupted Glypican4/PCP signaling affects protrusion polarity but not protrusion number or directed migration. Analysis of fluorescent fusion protein expression suggests that there is widespread Vangl2 symmetry in migrating cells, but there is enrichment at membrane domains that are developing large protrusions compared with non-protrusive domains. We show that the fibronectin extracellular matrix is essential for cell-surface Vangl2 expression, membrane-protrusive activity and directed migration. Manipulation of fibronectin protein levels rescues protrusion and directed migration phenotypes in vangl2 mutant embryos, but it is not sufficient to restore either PCP, or convergence and extension movements. Together, our findings identify distinct roles for Vangl2 and Glypican4/PCP signaling during membrane protrusion formation and demonstrate that cell-matrix interactions underlie Vangl2-dependent regulation of protrusive activities in migrating gastrula cells.
Collapse
Affiliation(s)
- Anna M Love
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Dianna J Prince
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
21
|
Butler MT, Wallingford JB. Spatial and temporal analysis of PCP protein dynamics during neural tube closure. eLife 2018; 7:36456. [PMID: 30080139 PMCID: PMC6115189 DOI: 10.7554/elife.36456] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022] Open
Abstract
Planar cell polarity (PCP) controls convergent extension and axis elongation in all vertebrates. Although asymmetric localization of PCP proteins is central to their function, we understand little about PCP protein localization during convergent extension. Here, we use quantitative live imaging to simultaneously monitor cell intercalation behaviors and PCP protein dynamics in the Xenopus laevis neural plate epithelium. We observed asymmetric enrichment of PCP proteins, but more interestingly, we observed tight correlation of PCP protein enrichment with actomyosin-driven contractile behavior of cell-cell junctions. Moreover, we found that the turnover rates of junctional PCP proteins also correlated with the contractile behavior of individual junctions. All these dynamic relationships were disrupted when PCP signaling was manipulated. Together, these results provide a dynamic and quantitative view of PCP protein localization during convergent extension and suggest a complex and intimate link between the dynamic localization of core PCP proteins, actomyosin assembly, and polarized junction shrinking during cell intercalation in the closing vertebrate neural tube.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
22
|
Goto T, Ito Y, Michiue T. Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. Dev Growth Differ 2018; 60:226-238. [PMID: 29700804 DOI: 10.1111/dgd.12432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023]
Abstract
Several chemokine molecules control cell movements during early morphogenesis. However, it is unclear whether chemokine molecules affect cell fate. Here, we identified and characterized the CXC-type chemokine ligand in Xenopus laevis, Xenopus CXCLh (XCXCLh), during early embryogenesis. XCXCLh is expressed in the dorsal vegetal region at the gastrula stage. Both overexpression and knockdown of XCXCLh in the dorsal region inhibited gastrulation. XCXCLh contributed to the attraction of mesendodermal cells and accelerated the reassembly of scratched culture cells. Also, XCXCLh contributed to early endodermal induction. Overexpression of VegTmRNA or high concentrations of calcium ions induced XCXCLh expression. XCXCLh may play roles in both cell movements and differentiation during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
23
|
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018; 554:523-527. [PMID: 29443958 PMCID: PMC6013044 DOI: 10.1038/nature25742] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration (CCM) is essential for morphogenesis, tissue remodelling, and cancer invasion1,2. In vivo, groups of cells move in an orchestrated way through tissues. This movement requires forces and involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in CCM is comparatively well understood1,2, how tissue mechanics influence CCM in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion3. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiated an epithelial-to-mesenchymal transition (EMT) in neural crest cells and triggered their collective migration. To detect changes in their mechanical environment, neural crest use integrin/vinculin/talin-mediated mechanosensing. By performing mechanical and molecular manipulations, we showed that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrated that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results unveil a novel role for mesodermal convergent extension as a mechanical coordinator of morphogenesis, and thus reveal a new link between two apparently unconnected processes, gastrulation and neural crest migration, via changes in tissue mechanics. Overall, we provide the first demonstration that changes in substrate stiffness can trigger CCM by promoting EMT in vivo. More broadly, our results raise the exciting idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis4.
Collapse
|
24
|
Goodyear RJ, Lu X, Deans MR, Richardson GP. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 2017; 144:3978-3989. [PMID: 28935705 PMCID: PMC5702074 DOI: 10.1242/dev.151696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22098, USA
| | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
25
|
Jessen TN, Jessen JR. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. Exp Cell Res 2017; 361:265-276. [PMID: 29097183 DOI: 10.1016/j.yexcr.2017.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA.
| |
Collapse
|
26
|
Eibach S, Moes G, Hou YJ, Zovickian J, Pang D. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 2017; 33:1633-1647. [PMID: 27796548 DOI: 10.1007/s00381-016-3288-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. METHODS AND RESULTS We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. CONCLUSION The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.
Collapse
Affiliation(s)
- Sebastian Eibach
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Paediatric Neurosurgery, Altona Children's Hospital, Hamburg, Germany
| | - Greg Moes
- Neuropathology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Adjunct Faculty of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yong Jin Hou
- Intraoperative Neurophysiology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - John Zovickian
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - Dachling Pang
- Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA.
- Paediatric Neurosurgery, University of California, Davis, CA, USA.
- Great Ormond Street Hospital for Children, NHS Trust, London, UK.
- Department of Paediatric Neurosurgery, Kaiser Permanente Medical Centre, Third Floor, Suite 39, 3600 Broadway, Oakland, CA, 94611, USA.
| |
Collapse
|
27
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Shindo A. Models of convergent extension during morphogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28906063 PMCID: PMC5763355 DOI: 10.1002/wdev.293] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/23/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under:
Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| |
Collapse
|
29
|
Miles LB, Mizoguchi T, Kikuchi Y, Verkade H. A role for planar cell polarity during early endoderm morphogenesis. Biol Open 2017; 6:531-539. [PMID: 28377456 PMCID: PMC5450312 DOI: 10.1242/bio.021899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The zebrafish endoderm begins to develop at gastrulation stages as a monolayer of cells. The behaviour of the endoderm during gastrulation stages is well understood. However, knowledge of the morphogenic movements of the endoderm during somitogenesis stages, as it forms a mesenchymal rod, is lacking. Here we characterise endodermal development during somitogenesis stages, and describe the morphogenic movements as the endoderm transitions from a monolayer of cells into a mesenchymal endodermal rod. We demonstrate that, unlike the overlying mesoderm, endodermal cells are not polarised during their migration to the midline at early somitogenesis stages. Specifically, we describe the stage at which endodermal cells begin to leave the monolayer, a process we have termed 'midline aggregation'. The planar cell polarity (PCP) signalling pathway is known to regulate mesodermal and ectodermal cell convergence towards the dorsal midline. However, a role for PCP signalling in endoderm migration to the midline during somitogenesis stages has not been established. In this report, we investigate the role for PCP signalling in multiple phases of endoderm development during somitogenesis stages. Our data exclude involvement of PCP signalling in endodermal cells as they leave the monolayer.
Collapse
Affiliation(s)
- Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical sciences, Chiba University, Chuo-ku 260-8675, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Abstract
Planar cell polarity (PCP) signaling orients developmental events in vertebrates and invertebrates, including convergent extension (CE). In this issue of Development Cell, Shah and Tanner et al. (2017) report that ROBO/SAX-3 signaling acts in parallel with PCP signaling to drive the CE required for ventral nerve cord assembly in C. elegans.
Collapse
Affiliation(s)
- Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Corda G, Sala G, Lattanzio R, Iezzi M, Sallese M, Fragassi G, Lamolinara A, Mirza H, Barcaroli D, Ermler S, Silva E, Yasaei H, Newbold RF, Vagnarelli P, Mottolese M, Natali PG, Perracchio L, Quist J, Grigoriadis A, Marra P, Tutt AN, Piantelli M, Iacobelli S, De Laurenzi V, Sala A. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol 2016; 241:350-361. [PMID: 27859262 PMCID: PMC5248601 DOI: 10.1002/path.4841] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
Frizzled receptors mediate Wnt ligand signalling, which is crucially involved in regulating tissue development and differentiation, and is often deregulated in cancer. In this study, we found that the gene encoding the Wnt receptor frizzled 6 (FZD6) is frequently amplified in breast cancer, with an increased incidence in the triple‐negative breast cancer (TNBC) subtype. Ablation of FZD6 expression in mammary cancer cell lines: (1) inhibited motility and invasion; (2) induced a more symmetrical shape of organoid three‐dimensional cultures; and (3) inhibited bone and liver metastasis in vivo. Mechanistically, FZD6 signalling is required for the assembly of the fibronectin matrix, interfering with the organization of the actin cytoskeleton. Ectopic delivery of fibronectin in FZD6‐depleted, triple‐negative MDA‐MB‐231 cells rearranged the actin cytoskeleton and restored epidermal growth factor‐mediated invasion. In patients with localized, lymph node‐negative (early) breast cancer, positivity of tumour cells for FZD6 protein identified patients with reduced distant relapse‐free survival. Multivariate analysis indicated an independent prognostic significance of FZD6 expression in TNBC tumours, predicting distant, but not local, relapse. We conclude that the FZD6–fibronectin actin axis identified in our study could be exploited for drug development in highly metastatic forms of breast cancer, such as TNBC. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gabriele Corda
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Gianluca Sala
- MediaPharma srl, Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Manuela Iezzi
- Dipartimento di Medicina e Scienze dell'Invecchiamento, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Michele Sallese
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy.,Fondazione Mario Negri Sud, S. Maria Imbaro, Italy
| | - Giorgia Fragassi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy.,Fondazione Mario Negri Sud, S. Maria Imbaro, Italy
| | - Alessia Lamolinara
- Dipartimento di Medicina e Scienze dell'Invecchiamento, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Hasan Mirza
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Daniela Barcaroli
- Dipartimento di Scienze Psicologiche, della Salute e del Territorio, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Sibylle Ermler
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Hemad Yasaei
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Robert F Newbold
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Paola Vagnarelli
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | | | | | | | - Jelmar Quist
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Pierfrancesco Marra
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew N Tutt
- Breast Cancer Now Unit, Research Oncology, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Breast Cancer Now, The Institute of Cancer Research, London, UK
| | - Mauro Piantelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Stefano Iacobelli
- MediaPharma srl, Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Vincenzo De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| | - Arturo Sala
- College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Dipartimento di Scienze Psicologiche, della Salute e del Territorio, CESI-MeT, University G. D'Annunzio, Chieti, Italy
| |
Collapse
|
32
|
Huang H, Kornberg TB. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. eLife 2016; 5. [PMID: 27591355 PMCID: PMC5030081 DOI: 10.7554/elife.18979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
33
|
Pfister K, Shook DR, Chang C, Keller R, Skoglund P. Molecular model for force production and transmission during vertebrate gastrulation. Development 2016; 143:715-27. [PMID: 26884399 DOI: 10.1242/dev.128090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vertebrate embryos undergo dramatic shape changes at gastrulation that require locally produced and anisotropically applied forces, yet how these forces are produced and transmitted across tissues remains unclear. We show that depletion of myosin regulatory light chain (RLC) levels in the embryo blocks force generation at gastrulation through two distinct mechanisms: destabilizing the myosin II (MII) hexameric complex and inhibiting MII contractility. Molecular dissection of these two mechanisms demonstrates that normal convergence force generation requires MII contractility and we identify a set of molecular phenotypes correlated with both this failure of convergence force generation in explants and of blastopore closure in whole embryos. These include reduced rates of actin movement, alterations in C-cadherin dynamics and a reduction in the number of polarized lamellipodia on intercalating cells. By examining the spatial relationship between C-cadherin and actomyosin we also find evidence for formation of transcellular linear arrays incorporating these proteins that could transmit mediolaterally oriented tensional forces. These data combine to suggest a multistep model to explain how cell intercalation can occur against a force gradient to generate axial extension forces. First, polarized lamellipodia extend mediolaterally and make new C-cadherin-based contacts with neighboring mesodermal cell bodies. Second, lamellipodial flow of actin coalesces into a tension-bearing, MII-contractility-dependent node-and-cable actin network in the cell body cortex. And third, this actomyosin network contracts to generate mediolateral convergence forces in the context of these transcellular arrays.
Collapse
Affiliation(s)
- Katherine Pfister
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - David R Shook
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Chenbei Chang
- Department of Cell Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Paul Skoglund
- Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
34
|
Veeman MT, McDonald JA. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona. F1000Res 2016; 5. [PMID: 27303647 PMCID: PMC4892338 DOI: 10.12688/f1000research.8011.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/16/2022] Open
Abstract
Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the
Drosophila ovarian border cells and the
Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC) and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.
Collapse
Affiliation(s)
- Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506, USA
| |
Collapse
|
35
|
Panousopoulou E, Green JBA. Invagination of Ectodermal Placodes Is Driven by Cell Intercalation-Mediated Contraction of the Suprabasal Tissue Canopy. PLoS Biol 2016; 14:e1002405. [PMID: 26960155 PMCID: PMC4784948 DOI: 10.1371/journal.pbio.1002405] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 01/08/2023] Open
Abstract
Ectodermal organs such as teeth, hair follicles, and mammary glands begin their development as placodes. These are local epithelial thickenings that invaginate into mesenchymal space. There is currently little mechanistic understanding of the cellular processes driving the early morphogenesis of these organs and of why they lead to invagination rather than simple tissue thickening. Here, we show that placode invagination depends on horizontal contraction of superficial layers of cells that form a shrinking and thickening canopy over underlying epithelial cells. This contraction occurs by cell intercalation and is mechanically coupled to the basal layer by peripheral basal cells that extend apically and centripetally while remaining attached to the basal lamina. This process is topologically analogous to well-studied apical constriction mechanisms, but very different from them both in scale and molecular mechanism. Mechanical cell–cell coupling is propagated through the tissue via E-cadherin junctions, which in turn depend on tissue-wide tension. We further present evidence that this mechanism is conserved among different ectodermal organs and is, therefore, a novel and fundamental morphogenetic motif widespread in embryonic development. A study of teeth, hair follicles, and mammary ducts reveals that the superficial layer of the initial tissue thickening, or placode, contracts by a novel form of cell intercalation. This exerts a bending force to pinch the underlying layer into a fold. Teeth, hair follicles, and skin ducts (including mammary and sweat glands) are initially formed in the embryo as slight thickenings of a flat epithelium that are called placodes. These then invaginate to form dimples or pits that make the characteristic structures found in the adult. While some invagination mechanisms are well-studied and it is recognized that invagination is one of the basic motifs needed to construct the body, the physical events that lead placodes to invaginate are unclear. Here, we analyzed the events required to form tooth placodes and identified a novel mechanism: we showed that the superficial layer of the placode contracts to pucker the underlying epithelium, ultimately forcing it deep into the underlying mesenchyme. We demonstrated that the superficial tissue generates contractile forces and that the mechanical tension deforms nuclei in this tissue. This allowed us to map the tension not only in developing teeth, but also in hair follicles and mammary glands, revealing similar patterns of nuclear distortion in different tissues and suggesting the existence of a shared mechanism of invagination. We also labelled individual cells and tracked them in real time, showing that the tissue contracts via cell intercalation, with some cells remaining anchored to the basal layer of the epithelium while trying to migrate toward the placode centre. Overall, our results describe the dynamic rearrangements that take place during tooth placode formation and suggest that similar processes occur in other organs that are formed by invagination of stratified placodes.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development & Stem Cell Biology, King’s College London, London, United Kingdom
| | - Jeremy B. A. Green
- Department of Craniofacial Development & Stem Cell Biology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Abstract
In development, cells organize into biological tissues through cell growth, migration, and differentiation. Globally, this process is dictated by a genetically encoded program in which secreted morphogens and cell-cell interactions prompt the adoption of unique cell fates. Yet, at its lowest level, development is achieved through the modification of cell-cell adhesion and actomyosin-based contractility, which set the level of tension within cells and dictate how they pack together into tissues. The regulation of tension within individual cells and across large groups of cells is a major driving force of tissue organization and the basis of all cell shape change and cell movement in development.
Collapse
Affiliation(s)
- Evan Heller
- Howard Hughes Medical Institute, Robin Neustein Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Neustein Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
37
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
38
|
Andre P, Song H, Kim W, Kispert A, Yang Y. Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 2015; 142:1516-27. [PMID: 25813538 DOI: 10.1242/dev.119065] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/04/2015] [Indexed: 01/01/2023]
Abstract
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movements and epithelial-mesenchymal transition (EMT) are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and Wnts regulate many aspects of gastrulation including CE and EMT. However, the Wnt ligands that regulate A-P axis elongation in mammalian development remain unknown. Wnt11 and Wnt5a regulate axis elongation in lower vertebrates, but only Wnt5a, not Wnt11, regulates mammalian PCP signaling and A-P axis elongation in development. Here, by generating Wnt5a; Wnt11 compound mutants, we show that Wnt11 and Wnt5a play redundant roles during mouse A-P axis elongation. Both genes regulate trunk notochord extension through PCP-controlled CE of notochord cells, establishing a role for Wnt11 in mammalian PCP. We show that Wnt5a and Wnt11 are required for proper patterning of the neural tube and somites by regulating notochord formation, and provide evidence that both genes are required for the generation and migration of axial and paraxial mesodermal precursor cells by regulating EMT. Axial and paraxial mesodermal precursors ectopically accumulate in the PS at late gastrula stages in Wnt5a(-/-); Wnt11(-/-) embryos and these cells ectopically express epithelial cell adhesion molecules. Our data suggest that Wnt5a and Wnt11 regulate EMT by inducing p38 (Mapk14) phosphorylation. Our findings provide new insights into the role of Wnt5a and Wnt11 in mouse early development and also in cancer metastasis, during which EMT plays a crucial role.
Collapse
Affiliation(s)
- Philipp Andre
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Hai Song
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Wantae Kim
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover D-30625, Germany
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20814, USA Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
39
|
McMillen P, Holley SA. The tissue mechanics of vertebrate body elongation and segmentation. Curr Opin Genet Dev 2015; 32:106-11. [PMID: 25796079 DOI: 10.1016/j.gde.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
Abstract
England's King Richard III, whose skeleton was recently discovered lying ignobly beneath a parking lot, suffered from a lateral curvature of his spinal column called scoliosis. We now know that his scoliosis was not caused by 'imbalanced bodily humors', rather vertebral defects arise from defects in embryonic elongation and segmentation. This review highlights recent advances in our understanding of post-gastrulation biomechanics of the posteriorly advancing tailbud and somite morphogenesis. These processes are beginning to be deciphered from the level of gene networks to a cross-scale physical model incorporating cellular mechanics, the extracellular matrix, and tissue fluidity.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
40
|
Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 2014; 34:13208-21. [PMID: 25253865 DOI: 10.1523/jneurosci.1850-14.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In higher vertebrates, the primordium of the nervous system, the neural tube, is shaped along the rostrocaudal axis through two consecutive, radically different processes referred to as primary and secondary neurulation. Failures in neurulation lead to severe anomalies of the nervous system, called neural tube defects (NTDs), which are among the most common congenital malformations in humans. Mechanisms causing NTDs in humans remain ill-defined. Of particular interest, the thoracolumbar region, which encompasses many NTD cases in the spine, corresponds to the junction between primary and secondary neurulations. Elucidating which developmental processes operate during neurulation in this region is therefore pivotal to unraveling the etiology of NTDs. Here, using the chick embryo as a model, we show that, at the junction, the neural tube is elaborated by a unique developmental program involving concerted movements of elevation and folding combined with local cell ingression and accretion. This process ensures the topological continuity between the primary and secondary neural tubes while supplying all neural progenitors of both the junctional and secondary neural tubes. Because it is distinct from the other neurulation events, we term this phenomenon junctional neurulation. Moreover, the planar-cell-polarity member, Prickle-1, is recruited specifically during junctional neurulation and its misexpression within a limited time period suffices to cause anomalies that phenocopy lower spine NTDs in human. Our study thus provides a molecular and cellular basis for understanding the causality of NTD prevalence in humans and ascribes to Prickle-1 a critical role in lower spinal cord formation.
Collapse
|
41
|
Abstract
Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.
Collapse
|
42
|
Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis. Development 2014; 141:4569-79. [PMID: 25359726 DOI: 10.1242/dev.116103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells.
Collapse
Affiliation(s)
- Nicolas Buisson
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Cathy Sirour
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7009, Observatoire Océanographique, Villefranche-sur-mer 06230, France
| | - Nicole Moreau
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ronan Le Bouffant
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Aline Goullancourt
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Thierry Darribère
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| | - Valérie Bello
- Sorbonne Universités, UPMC Univ. Paris 06, UMR CNRS 7622, Laboratoire de Biologie du Développement, 75252 Paris, Cedex 05, France
| |
Collapse
|
43
|
Matsugaki A, Aramoto G, Ninomiya T, Sawada H, Hata S, Nakano T. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials 2014; 37:134-43. [PMID: 25453944 DOI: 10.1016/j.biomaterials.2014.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gento Aramoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takafumi Ninomiya
- Canon Machinery Inc., 85, Minami Yamada-cho, Kusatsu, Shiga 525-8511, Japan
| | - Hiroshi Sawada
- Canon Machinery Inc., 85, Minami Yamada-cho, Kusatsu, Shiga 525-8511, Japan
| | - Satoshi Hata
- Department of Electrical and Materials Science, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Imuta Y, Koyama H, Shi D, Eiraku M, Fujimori T, Sasaki H. Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos. Mech Dev 2014; 132:44-58. [DOI: 10.1016/j.mod.2014.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 11/29/2022]
|
45
|
Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation. Dev Biol 2013; 383:39-51. [DOI: 10.1016/j.ydbio.2013.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/25/2013] [Accepted: 08/31/2013] [Indexed: 11/22/2022]
|
46
|
Panousopoulou E, Tyson RA, Bretschneider T, Green JBA. The distribution of Dishevelled in convergently extending mesoderm. Dev Biol 2013; 382:496-503. [PMID: 23876427 PMCID: PMC3793869 DOI: 10.1016/j.ydbio.2013.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord-somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, Floor 27 Guy's Tower, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | | | | | | |
Collapse
|
47
|
Dray N, Lawton A, Nandi A, Jülich D, Emonet T, Holley SA. Cell-fibronectin interactions propel vertebrate trunk elongation via tissue mechanics. Curr Biol 2013; 23:1335-41. [PMID: 23810535 DOI: 10.1016/j.cub.2013.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/27/2022]
Abstract
During embryonic development and tissue homeostasis, cells produce and remodel the extracellular matrix (ECM). The ECM maintains tissue integrity and can serve as a substrate for cell migration. Integrin α5 (Itgα5) and αV (ItgαV) are the α subunits of the integrins most responsible for both cell adhesion to the ECM protein fibronectin (FN) and FN matrix fibrillogenesis. We perform a systems-level analysis of cell motion in the zebrafish tail bud during trunk elongation in the presence and absence of normal cell-FN interactions. Itgα5 and ItgαV have well-described roles in cell migration in vitro. However, we find that concomitant loss of itgα5 and itgαV leads to a trunk elongation defect without substantive alteration of cell migration. Tissue-specific transgenic rescue experiments suggest that the FN matrix on the surface of the paraxial mesoderm is required for body elongation via its role in defining tissue mechanics and intertissue adhesion.
Collapse
Affiliation(s)
- Nicolas Dray
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhao J, Chen P, Gregersen H. Morpho-mechanical intestinal remodeling in type 2 diabetic GK rats--is it related to advanced glycation end product formation? J Biomech 2013; 46:1128-1134. [PMID: 23403079 DOI: 10.1016/j] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/07/2013] [Accepted: 01/13/2013] [Indexed: 02/06/2023]
Abstract
Little is known about the mechanisms for the biomechanical remodeling in diabetes. The histomorphology, passive biomechanical properties and expression of advanced glycation end product (N epsilon-(carboxymethyl) lysine, AGE) and its receptor (RAGE) were studied in jejunal segments from 8 GK diabetic rats (GK group) and 10 age-matched normal rats (Normal group). The mechanical test was done by using a ramp distension of fluid into the jejunal segments in vitro. Circumferential stress and strain were computed from the length, diameter and pressure data and from the zero-stress state geometry. AGE and RAGE were detected by immunohistochemistry staining. Linear regression analysis was done to study association between the glucose level and AGE/RAGE expression with the histomorphometric and biomechanical parameters. The blood glucose level, the jejunal weight per length, wall thickness, wall area and layer thickness significantly increased in the GK group compared with the Normal group (P<0.05, P<0.01 and P<0.001). The opening angle and absolute values of residual strain decreased whereas the circumferential stiffness of the jejunal wall increased in the GK group (P<0.05 and P<0.01). Furthermore, stronger AGE expression in the villi and crypt and RAGE expression in the villi were found in the GK group (P<0.05 and P<0.01). Most histomorphometric and biomechanical changes were associated with blood glucose level and AGE/RAGE expression. In conclusion, histomorphometric and biomechanical remodeling occurred in type 2 diabetic GK rats. The increasing blood glucose level and the increased AGE/RAGE expression were associated with the remodeling, indicating a causal relationship.
Collapse
Affiliation(s)
- Jingbo Zhao
- Mech-Sense, Department of Gastroenterology and Surgery, Aalborg University Hospital, Soendre Skovvej 15, DK 9000 Aalborg, Denmark.
| | | | | |
Collapse
|
49
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
50
|
|