1
|
Hua Y, Zhang J, Yang MY, Zhang FY, Ren JY, Lyu XH, Ding Y, Suo F, Shao GC, Li J, Dong MQ, Ye K, Du LL. A meiotic driver hijacks an epigenetic reader to disrupt mitosis in noncarrier offspring. Proc Natl Acad Sci U S A 2024; 121:e2408347121. [PMID: 39485795 PMCID: PMC11551393 DOI: 10.1073/pnas.2408347121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
Killer meiotic drivers (KMDs) are selfish genetic elements that distort Mendelian inheritance by selectively killing meiotic products lacking the KMD element, thereby promoting their own propagation. Although KMDs have been found in diverse eukaryotes, only a limited number of them have been characterized at the molecular level, and their killing mechanisms remain largely unknown. In this study, we identify that a gene previously deemed essential for cell survival in the fission yeast Schizosaccharomyces pombe is a single-gene KMD. This gene, tdk1, kills nearly all tdk1Δ progeny in a tdk1+ × tdk1Δ cross. By analyzing polymorphisms of tdk1 among natural strains, we identify a resistant haplotype, HT3. This haplotype lacks killing ability yet confers resistance to killing by the wild-type tdk1. Proximity labeling experiments reveal an interaction between Tdk1, the protein product of tdk1, and the epigenetic reader Bdf1. Interestingly, the nonkilling Tdk1-HT3 variant does not interact with Bdf1. Cryoelectron microscopy further elucidated the binding interface between Tdk1 and Bdf1, pinpointing mutations within Tdk1-HT3 that disrupt this interface. During sexual reproduction, Tdk1 forms stable Bdf1-binding nuclear foci in all spores after meiosis. These foci persist in germinated tdk1Δ progeny and impede chromosome segregation during mitosis by generating aberrant chromosomal adhesions. This study identifies a KMD that masquerades as an essential gene and reveals the molecular mechanism by which this KMD hijacks cellular machinery to execute killing. Additionally, we unveil that losing the hijacking ability is an evolutionary path for this single-gene KMD to evolve into a nonkilling resistant haplotype.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Fan-Yi Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing102206, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing102206, China
| | - Jun Li
- National Institute of Biological Sciences, Beijing102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
2
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
3
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Hilsabeck TAU, Liu-Bryan R, Guo T, Wilson KA, Bose N, Raftery D, Beck JN, Lang S, Jin K, Nelson CS, Oron T, Stoller M, Promislow D, Brem RB, Terkeltaub R, Kapahi P. A fly GWAS for purine metabolites identifies human FAM214 homolog medusa, which acts in a conserved manner to enhance hyperuricemia-driven pathologies by modulating purine metabolism and the inflammatory response. GeroScience 2022; 44:2195-2211. [PMID: 35381951 PMCID: PMC9616999 DOI: 10.1007/s11357-022-00557-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/25/2022] [Indexed: 01/14/2023] Open
Abstract
Elevated serum urate (hyperuricemia) promotes crystalline monosodium urate tissue deposits and gout, with associated inflammation and increased mortality. To identify modifiers of uric acid pathologies, we performed a fly Genome-Wide Association Study (GWAS) on purine metabolites using the Drosophila Genetic Reference Panel strains. We tested the candidate genes using the Drosophila melanogaster model of hyperuricemia and uric acid crystallization ("concretion formation") in the kidney-like Malpighian tubule. Medusa (mda) activity increased urate levels and inflammatory response programming. Conversely, whole-body mda knockdown decreased purine synthesis precursor phosphoribosyl pyrophosphate, uric acid, and guanosine levels; limited formation of aggregated uric acid concretions; and was sufficient to rescue lifespan reduction in the fly hyperuricemia and gout model. Levels of mda homolog FAM214A were elevated in inflammatory M1- and reduced in anti-inflammatory M2-differentiated mouse bone marrow macrophages, and influenced intracellular uric acid levels in human HepG2 transformed hepatocytes. In conclusion, mda/FAM214A acts in a conserved manner to regulate purine metabolism, promotes disease driven by hyperuricemia and associated tissue inflammation, and provides a potential novel target for uric acid-driven pathologies.
Collapse
Affiliation(s)
- Tyler A U Hilsabeck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Tracy Guo
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Kenneth A Wilson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Neelanjan Bose
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer N Beck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Christopher S Nelson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Tal Oron
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Marshall Stoller
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Rachel B Brem
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Pankaj Kapahi
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA.
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Hyppa RW, Cho JD, Nambiar M, Smith GR. Redirecting meiotic DNA break hotspot determinant proteins alters localized spatial control of DNA break formation and repair. Nucleic Acids Res 2022; 50:899-914. [PMID: 34967417 PMCID: PMC8789058 DOI: 10.1093/nar/gkab1253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
During meiosis, DNA double-strand breaks (DSBs) are formed at high frequency at special chromosomal sites, called DSB hotspots, to generate crossovers that aid proper chromosome segregation. Multiple chromosomal features affect hotspot formation. In the fission yeast S. pombe the linear element proteins Rec25, Rec27 and Mug20 are hotspot determinants - they bind hotspots with high specificity and are necessary for nearly all DSBs at hotspots. To assess whether they are also sufficient for hotspot determination, we localized each linear element protein to a novel chromosomal site (ade6 with lacO substitutions) by fusion to the Escherichia coli LacI repressor. The Mug20-LacI plus lacO combination, but not the two separate lac elements, produced a strong ade6 DSB hotspot, comparable to strong endogenous DSB hotspots. This hotspot had unexpectedly low ade6 recombinant frequency and negligible DSB hotspot competition, although like endogenous hotspots it manifested DSB interference. We infer that linear element proteins must be properly placed by endogenous functions to impose hotspot competition and proper partner choice for DSB repair. Our results support and expand our previously proposed DSB hotspot-clustering model for local control of meiotic recombination.
Collapse
Affiliation(s)
- Randy W Hyppa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua D Cho
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Sweta K, Sharma N. Functional interaction between ELL transcription elongation factor and Epe1 reveals the role of Epe1 in the regulation of transcription outside heterochromatin. Mol Microbiol 2021; 116:80-96. [PMID: 33533152 DOI: 10.1111/mmi.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Eleven-nineteen lysine-rich leukemia (ELL) is a eukaryotic RNA polymerase II transcription elongation factor. In Schizosaccharomyces pombe, it is important for survival under genotoxic stress conditions. However, the molecular basis underlying this function of ELL in S. pombe is yet to be deciphered. Here, we carried out a genetic screen to identify multicopy suppressor(s) that could restore normal growth of ell1 deletion mutant in the presence of DNA damaging agent. Sequence analysis of the identified suppressors revealed the anti-silencing protein, Epe1, as one of the suppressors of ell1 deletion associated genotoxic stress sensitivity. Our results further demonstrate that the overexpression of Epe1 could suppress all other phenotypes associated with the absence of Ell1. Moreover, transcriptional defect of ell1Δ strain could also be alleviated by the overexpression of Epe1. Epe1 also showed a physical interaction with Ell1. Interestingly, we also observed that the region of Epe1 encompassing 403-948 amino acids was indispensable for all the above functions. Furthermore, our results show that the overexpression of Epe1 causes increased H3K9 acetylation and RNA polymerase II recruitment. Taken together, our results show a functional interaction between Epe1 and Ell1, and this function is independent of the well-known JmjC and N-terminal transcriptional activation domains of Epe1 in S. pombe.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| |
Collapse
|
7
|
Functioning mechanisms of Shugoshin-1 in centromeric cohesion during mitosis. Essays Biochem 2021; 64:289-297. [PMID: 32451529 DOI: 10.1042/ebc20190077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Proper regulation of centromeric cohesion is required for faithful chromosome segregation that prevents chromosomal instability. Extensive studies have identified and established the conserved protein Shugoshin (Sgo1/2) as an essential protector for centromeric cohesion. In this review, we summarize the current understanding of how Shugoshin-1 (Sgo1) protects centromeric cohesion at the molecular level. Targeting of Sgo1 to inner centromeres is required for its proper function of cohesion protection. We therefore discuss about the molecular mechanisms that install Sgo1 onto inner centromeres. At metaphase-to-anaphase transition, Sgo1 at inner centromeres needs to be disabled for the subsequent sister-chromatid segregation. A few recent studies suggest interesting models to explain how it is achieved. These models are discussed as well.
Collapse
|
8
|
Zhang B, Teraguchi E, Imada K, Tahara YO, Nakamura S, Miyata M, Kagiwada S, Nakamura T. The Fission Yeast RNA-Binding Protein Meu5 Is Involved in Outer Forespore Membrane Breakdown during Spore Formation. J Fungi (Basel) 2020; 6:jof6040284. [PMID: 33202882 PMCID: PMC7712723 DOI: 10.3390/jof6040284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
In Schizosaccharomyces pombe, the spore wall confers strong resistance against external stress. During meiosis II, the double-layered intracellular forespore membrane (FSM) forms de novo and encapsulates the nucleus. Eventually, the inner FSM layer becomes the plasma membrane of the spore, while the outer layer breaks down. However, the molecular mechanism and biological significance of this membrane breakdown remain unknown. Here, by genetic investigation of an S. pombe mutant (E22) with normal prespore formation but abnormal spores, we showed that Meu5, an RNA-binding protein known to bind to and stabilize more than 80 transcripts, is involved in this process. We confirmed that the E22 mutant does not produce Meu5 protein, while overexpression of meu5+ in E22 restores the sporulation defect. Furthermore, electron microscopy revealed that the outer membrane of the FSM persisted in meu5∆ spores. Investigation of the target genes of meu5+ showed that a mutant of cyc1+ encoding cytochrome c also showed a severe defect in outer FSM breakdown. Lastly, we determined that outer FSM breakdown occurs coincident with or after formation of the outermost Isp3 layer of the spore wall. Collectively, our data provide novel insights into the molecular mechanism of spore formation.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
| | - Erika Teraguchi
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
| | - Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
- Department of Chemistry and Biochemistry, National Institute of Technology, Suzuka College, Suzuka 510-0294, Japan
| | - Yuhei O. Tahara
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shuko Nakamura
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan; (S.N.); (S.K.)
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan; (S.N.); (S.K.)
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan; (B.Z.); (E.T.); (K.I.); (Y.O.T.); (M.M.)
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
- Correspondence:
| |
Collapse
|
9
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Masuda K, Renard-Guillet C, Shirahige K, Sutani T. Bioinformatical dissection of fission yeast DNA replication origins. Open Biol 2020; 10:200052. [PMID: 32692956 PMCID: PMC7574548 DOI: 10.1098/rsob.200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Replication origins in eukaryotes form a base for assembly of the pre-replication complex (pre-RC), thereby serving as an initiation site of DNA replication. Characteristics of replication origin vary among species. In fission yeast Schizosaccharomyces pombe, DNA of high AT content is a distinct feature of replication origins; however, it remains to be understood what the general molecular architecture of fission yeast origin is. Here, we performed ChIP-seq mapping of Orc4 and Mcm2, two representative components of the pre-RC, and described the characteristics of their binding sites. The analysis revealed that fission yeast efficient origins are associated with two similar but independent features: a ≥15 bp-long motif with stretches of As and an AT-rich region of a few hundred bp. The A-rich motif was correlated with chromosomal binding of Orc, a DNA-binding component in the pre-RC, whereas the AT-rich region was associated with efficient binding of the DNA replicative helicase Mcm. These two features, in combination with the third feature, a transcription-poor region of approximately 1 kb, enabled to distinguish efficient replication origins from the rest of chromosome arms with high accuracy. This study, hence, provides a model that describes how multiple functional elements specify DNA replication origins in fission yeast genome.
Collapse
Affiliation(s)
- Koji Masuda
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Claire Renard-Guillet
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Sutani
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
11
|
Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, Nydegger U. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun 2019; 2:100017. [PMID: 32743505 PMCID: PMC7388403 DOI: 10.1016/j.jtauto.2019.100017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Complement is usually seen to largely originate from the liver to accomplish its tasks systemically - its return to the production site has long been underestimated. Recent progress in genomics, therapeutic effects on complement, standardised possibilities in medical laboratory tests and involvement of complosome brings the complement system with its three major functions of opsonization, cytolysis and phagocytosis back to liver biology and pathology. The LOINC™ system features 20 entries for the C3 component of complement to anticipate the application of artificial intelligence data banks algorythms of which are fed with patient-specific data connected to standard lab assays for liver function. These advancements now lead to increased vigilance by clinicians. This reassessment article will further elucidate the distribution of synthesis sites to the three germ layer-derived cell systems and the role complement now known to play in embryogenesis, senescence, allotransplantation and autoimmune disease. This establishes the liver as part of the gastro-intestinal system in connection with nosological entities never thought of, such as the microbiota-liver-brain axis. In neurological disease etiology infectious and autoimmune hepatitis play an important role in the context of causative viz reactive complement activation. The mosaic of autoimmunity, i.e. multiple combinations of the many factors producing varying clinical pictures, leads to the manifold facets of liver autoimmunity.
Collapse
Affiliation(s)
- Thomas Lung
- Labormedizinisches Zentrum Dr. Risch, Lagerstrasse 30, CH-9470, Buchs, Switzerland
| | - Benjamin Sakem
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| | - Reinhard Würzner
- Medical University Innsbruck, Division of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Schöpfstrasse 41, A-6020, Innsbruck, Austria
| | - Giuseppe Colucci
- Clinica Luganese Moncucco, Lugano, Via Moncucco, CH-6900, Lugano, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Andreas Cerny
- Epatocentro Ticino, Via Soldino 5, CH-6900, Lugano, Switzerland
| | - Urs Nydegger
- Labormedizinisches Zentrum Dr. Risch, Waldeggstrasse 37, CH-3097, Liebefeld bei Bern, Switzerland
| |
Collapse
|
12
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|
13
|
Li D, Roca M, Yuecel R, Lorenz A. Immediate visualization of recombination events and chromosome segregation defects in fission yeast meiosis. Chromosoma 2019; 128:385-396. [PMID: 30739171 PMCID: PMC6823302 DOI: 10.1007/s00412-019-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Schizosaccharomyces pombe, also known as fission yeast, is an established model for studying chromosome biological processes. Over the years, research employing fission yeast has made important contributions to our knowledge about chromosome segregation during meiosis, as well as meiotic recombination and its regulation. Quantification of meiotic recombination frequency is not a straightforward undertaking, either requiring viable progeny for a genetic plating assay, or relying on laborious Southern blot analysis of recombination intermediates. Neither of these methods lends itself to high-throughput screens to identify novel meiotic factors. Here, we establish visual assays novel to Sz. pombe for characterizing chromosome segregation and meiotic recombination phenotypes. Genes expressing red, yellow, and/or cyan fluorophores from spore-autonomous promoters have been integrated into the fission yeast genomes, either close to the centromere of chromosome 1 to monitor chromosome segregation, or on the arm of chromosome 3 to form a genetic interval at which recombination frequency can be determined. The visual recombination assay allows straightforward and immediate assessment of the genetic outcome of a single meiosis by epi-fluorescence microscopy without requiring tetrad dissection. We also demonstrate that the recombination frequency analysis can be automatized by utilizing imaging flow cytometry to enable high-throughput screens. These assays have several advantages over traditional methods for analyzing meiotic phenotypes.
Collapse
Affiliation(s)
- Dmitriy Li
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Marianne Roca
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, 06230, Villefranche-sur-Mer, France
| | - Raif Yuecel
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Iain Fraser Cytometry Centre (IFCC), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
14
|
CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genet 2019; 15:e1007876. [PMID: 30640914 PMCID: PMC6331086 DOI: 10.1371/journal.pgen.1007876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
CDKs (cyclin-dependent kinases) associate with different cyclins to form different CDK-complexes that are fundamental for an ordered cell cycle progression, and the coordination of this progression with different aspects of the cellular physiology. During meiosis programmed DNA double-strand breaks (DSBs) initiate recombination that in addition to generating genetic variability are essential for the reductional chromosome segregation during the first meiotic division, and therefore for genome stability and viability of the gametes. However, how meiotic progression and DSB formation are coordinated, and the role CDKs have in the process, is not well understood. We have used single and double cyclin deletion mutants, and chemical inhibition of global CDK activity using the cdc2-asM17 allele, to address the requirement of CDK activity for DSB formation and recombination in fission yeast. We report that several cyclins (Cig1, Cig2, and the meiosis-specific Crs1) control DSB formation and recombination, with a major contribution of Crs1. Moreover, complementation analysis indicates specificity at least for this cyclin, suggesting that different CDK complexes might act in different pathways to promote recombination. Down-regulation of CDK activity impinges on the formation of linear elements (LinEs, protein complexes required for break formation at most DSB hotspot sites). This defect correlates with a reduction in the capability of one structural component (Rec25) to bind chromatin, suggesting a molecular mechanism by which CDK controls break formation. However, reduction in DSB formation in cyclin deletion mutants does not always correspondingly correlate with a proportional reduction in meiotic recombination (crossovers), suggesting that specific CDK complexes might also control downstream events balancing repair pathways. Therefore, our work points to CDK regulation of DSB formation as a key conserved feature in the initiation of meiotic recombination, in addition to provide a view of possible roles CDK might have in other steps of the recombination process. Meiotic division is a cell division process where a single round of DNA replication is followed by two sequential chromosome segregations, the first reductional (homologous chromosomes separate) and the second equational (sister chromatids segregate). As a consequence diploid organisms halve ploidy, producing haploid gametes that after fertilization generate a new diploid organism with a complete chromosome complement. At early stages of meiosis physical exchange between homologous chromosomes ensures the accurate following reductional segregation. Physical exchange is provided by recombination that initiates with highly-controlled self-inflicted DNA damage (DSBs, double strand breaks). We have found that the conserved CDK (cyclin-dependent kinase) activity controls DSB formation in fission yeast. Available data were uncertain about the conservation of CDK in the process, and thus our work points to a broad evolutionary conservation of this regulation. Regulation is exerted at least by controlling chromatin-binding of one structural component of linear elements, a protein complex related to the synaptonemal complex and required for high levels of DSBs. Correspondingly, depletion of CDK activity impairs formation of these structures. In addition, CDK might control homeostatic mechanisms, critical to maintain efficient levels of recombination across the genome and, therefore, high rates of genetic exchange between parental chromosomes.
Collapse
|
15
|
Kim J, Kim DU, Hoe KL. Gene Deletion by Synthesis in Yeast. Methods Mol Biol 2018; 1472:169-85. [PMID: 27671940 DOI: 10.1007/978-1-4939-6343-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species.
Collapse
Affiliation(s)
- Jinsil Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Dong-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Kwang-Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, 125 Gwahak-ro, Daejeon, 34141, South Korea.
| |
Collapse
|
16
|
Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen. Genetics 2017; 208:589-603. [PMID: 29259000 PMCID: PMC5788524 DOI: 10.1534/genetics.117.300527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis.
Collapse
|
17
|
Sweta K, Dabas P, Jain K, Sharma N. The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2017; 163:1641-1653. [PMID: 29043956 DOI: 10.1099/mic.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1+ exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Kamal Jain
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| |
Collapse
|
18
|
Dabas P, Sweta K, Ekka M, Sharma N. Structure function characterization of the ELL Associated Factor (EAF) from Schizosaccharomyces pombe. Gene 2017; 641:117-128. [PMID: 29032152 DOI: 10.1016/j.gene.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023]
Abstract
EAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs. The physiological role of SpEAF is not well understood. In this study, we show that S. pombe EAF is important in regulating growth of S. pombe cells during normal growth conditions. Moreover, SpEAF is also essential for survival under conditions of DNA damage, while its deletion does not affect growth under environmental stress conditions. Our in vivo structure-function studies further demonstrate that while both the amino and carboxyl terminal domains of SpEAF possess the potential to activate transcription, only the amino terminal domain of SpEAF is involved in interaction with the S. pombe ELL protein. The carboxyl-terminus of SpEAF is required for rescue of the growth defect under normal and DNA damaging conditions that is associated with the absence of SpEAF. Using bioinformatics and circular dichroism spectroscopy, we show that the carboxyl-terminus of SpEAF has a disordered conformation. Furthermore, addition of trifluoroethanol triggered its transition from a disordered to α-helical conformation. Taken together, the results presented here identify novel structural and functional features of SpEAF protein, providing insights into how EAF proteins may enforce transcriptional control of gene expression.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Mary Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Opp. Sukhdev Vihar Bus Depot, New Delhi, Delhi 110025, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
19
|
Chen JS, Beckley JR, Ren L, Feoktistova A, Jensen MA, Rhind N, Gould KL. Discovery of genes involved in mitosis, cell division, cell wall integrity and chromosome segregation through construction of Schizosaccharomyces pombe deletion strains. Yeast 2016; 33:507-17. [PMID: 27168121 DOI: 10.1002/yea.3172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022] Open
Abstract
The fission yeast model system Schizosaccharomyces pombe is used to study fundamental biological processes. To continue to fill gaps in the Sz. pombe gene deletion collection, we constructed a set of 90 haploid gene deletion strains covering many previously uncharacterized genes. To begin to understand the function of these genes, we exposed this collection of strains to a battery of stress conditions. Using this information in combination with microscopy, proteomics and mini-chromosome loss assays, we identified genes involved in cell wall integrity, cytokinesis, chromosome segregation and DNA metabolism. This subset of non-essential gene deletions will add to the toolkits available for the study of biological processes in Sz. pombe. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Jensen
- Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation. PLoS Genet 2016; 12:e1006102. [PMID: 27304859 PMCID: PMC4909299 DOI: 10.1371/journal.pgen.1006102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. Meiosis produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions after only a single round of DNA replication. To identify novel regulators of meiosis, we screened a library of fission yeast deletion mutants and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analysis of live dbl2Δ cells by fluorescence microscopy showed that chromosomes frequently failed to segregate during the first meiotic division. Further cytological and biochemical analyses revealed that this segregation defect is due to persistent intermediates of DNA double-strand break repair, also called DNA joint molecules. Our results indicate that Dbl2 is required for formation of Fbh1 DNA helicase foci at the sites of DNA double-strand break repair in order to process DNA joint molecules and allow segregation of chromosomes during meiotic divisions. Our bioinformatics searches revealed that Dbl2 is highly conserved in fungi, animals and plants, suggesting that Dbl2 plays a similar role in other organisms–the formation of viable sex cells and healthy progeny.
Collapse
|
21
|
Murakami-Tonami Y, Ohtsuka H, Aiba H, Murakami H. Regulation of wee1(+) expression during meiosis in fission yeast. Cell Cycle 2015; 13:2853-8. [PMID: 25486473 PMCID: PMC4612672 DOI: 10.4161/15384101.2014.946807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25+ as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1+ is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1+ in vivo and in vitro and inhibited expression of wee1+, whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1+ and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1+ but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1+ expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1+ expression is primarily owing to Mei4p-mediated transcriptional interference.
Collapse
Affiliation(s)
- Yuko Murakami-Tonami
- a Aichi Cancer Center Research Institute ; Division of Molecular Oncology ; Nagoya , Japan
| | | | | | | |
Collapse
|
22
|
Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 2015. [PMID: 26204128 PMCID: PMC4525155 DOI: 10.1038/ncomms8815] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome condensation is a hallmark of mitosis in eukaryotes and is a prerequisite for faithful segregation of genetic material to daughter cells. Here we show that condensin, which is essential for assembling condensed chromosomes, helps to preclude the detrimental effects of gene transcription on mitotic condensation. ChIP-seq profiling reveals that the fission yeast condensin preferentially binds to active protein-coding genes in a transcription-dependent manner during mitosis. Pharmacological and genetic attenuation of transcription largely rescue bulk chromosome segregation defects observed in condensin mutants. We also demonstrate that condensin is associated with and reduces unwound DNA segments generated by transcription, providing a direct link between an in vitro activity of condensin and its in vivo function. The human condensin isoform condensin I also binds to unwound DNA regions at the transcription start sites of active genes, implying that our findings uncover a fundamental feature of condensin complexes. Chromosome condensation is a prerequisite for faithful segregation of chromosomes to daughter cells. Here, the authors show that the condensin complex binds to protein-coding genes in a transcription-dependent manner during condensation, and reduces unwound DNA segments generated by transcription.
Collapse
|
23
|
Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 2015; 48:187-214. [PMID: 25421598 DOI: 10.1146/annurev-genet-120213-092304] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system.
Collapse
Affiliation(s)
- Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | | | |
Collapse
|
24
|
Systematic targeted gene deletion using the gene-synthesis method in fission yeast. J Microbiol Methods 2014; 106:72-77. [DOI: 10.1016/j.mimet.2014.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
|
25
|
Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 2014; 7:a016634. [PMID: 25324213 DOI: 10.1101/cshperspect.a016634] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence.
Collapse
Affiliation(s)
- Isabel Lam
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
26
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
27
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S, Chan ACH, Newnham L, Li Z, Gray S, Herbert AD, Arumugam P, Hochwagen A, Hunter N, Hoffmann E. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 2013; 9:e1004071. [PMID: 24385939 PMCID: PMC3873251 DOI: 10.1371/journal.pgen.1004071] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.
Collapse
Affiliation(s)
- Alice Copsey
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Philip W. Jordan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hannah G. Blitzblau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonya Newcombe
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Andrew Chi-ho Chan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Louise Newnham
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Zhaobo Li
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Stephen Gray
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Alex D. Herbert
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Prakash Arumugam
- Department of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andreas Hochwagen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Department of Biology, New York University, New York, New York, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
29
|
Lin CPC, Kim C, Smith SO, Neiman AM. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae. PLoS Genet 2013; 9:e1003700. [PMID: 23966878 PMCID: PMC3744438 DOI: 10.1371/journal.pgen.1003700] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/01/2022] Open
Abstract
The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation. The cell wall of fungi is a complex extracellular matrix and an important target for antifungal drugs. Assembly of the wall during spore formation in baker's yeast is a useful model for fungal wall development. The outermost layers of the spore wall are composed of a polymer of dityrosine connected to an underlying polysaccharide layer. The assembly pathway of this dityrosine polymer is not known. Using a genetic approach we reveal a network of genes that function redundantly to control dityrosine layer synthesis. Solid state NMR analysis of spore walls from wild-type and mutant cells reveals a novel constituent of the spore wall that may link the dityrosine to the underlying polysaccharides and a role for lipid droplets in the incorporation of this new component into the spore wall.
Collapse
Affiliation(s)
- Coney Pei-Chen Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Carey Kim
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Steven O. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks. DNA Repair (Amst) 2013; 12:433-43. [PMID: 23628481 DOI: 10.1016/j.dnarep.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022]
Abstract
DNA double-strand breaks (DSBs) are a major threat to genome integrity. Proteins involved in DNA damage checkpoint signaling and DSB repair often relocalize and concentrate at DSBs. Here, we used an ORFeome library of the fission yeast Schizosaccharomyces pombe to systematically identify proteins targeted to DSBs. We found 51 proteins that, when expressed from a strong exogenous promoter on the ORFeome plasmids, were able to form a distinct nuclear focus at an HO endonuclease-induced DSB. The majority of these proteins have known connections to DNA damage response, but few have been visualized at a specific DSB before. Among the screen hits, 37 can be detected at DSBs when expressed from native promoters. We classified them according to the focus emergence timing of the endogenously tagged proteins. Eight of these 37 proteins are yet unnamed. We named these eight proteins DNA-break-localizing proteins (Dbls) and performed preliminary functional analysis on two of them, Dbl1 (SPCC2H8.05c) and Dbl2 (SPCC553.01c). We found that Dbl1 and Dbl2 contribute to the normal DSB targeting of checkpoint protein Rad26 (homolog of human ATRIP) and DNA repair helicase Fml1 (homolog of human FANCM), respectively. As the first proteome-wide inventory of DSB-localizing proteins, our screen result will be a useful resource for understanding the mechanisms of eukaryotic DSB response.
Collapse
|
31
|
Kovacikova I, Polakova S, Benko Z, Cipak L, Zhang L, Rumpf C, Miadokova E, Gregan J. A knockout screen for protein kinases required for the proper meiotic segregation of chromosomes in the fission yeast Schizosaccharomyces pombe. Cell Cycle 2013; 12:618-24. [PMID: 23370392 PMCID: PMC3594262 DOI: 10.4161/cc.23513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.
Collapse
Affiliation(s)
- Ines Kovacikova
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Miyoshi T, Ito M, Kugou K, Yamada S, Furuichi M, Oda A, Yamada T, Hirota K, Masai H, Ohta K. A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Mol Cell 2012; 47:722-33. [PMID: 22841486 DOI: 10.1016/j.molcel.2012.06.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 04/20/2012] [Accepted: 06/12/2012] [Indexed: 01/05/2023]
Abstract
Higher-order chromosome structure is assumed to control various DNA-templated reactions in eukaryotes. Meiotic chromosomes implement developed structures called "axes" and "loops"; both are suggested to tether each other, activating Spo11 to catalyze meiotic DNA double-strand breaks (DSBs) at recombination hotspots. We found that the Schizosaccharomyces pombe Spo11 homolog Rec12 and its partners form two distinct subcomplexes, DSBC (Rec6-Rec12-Rec14) and SFT (Rec7-Rec15-Rec24). Mde2, whose expression is strictly regulated by the replication checkpoint, interacts with Rec15 to stabilize the SFT subcomplex and further binds Rec14 in DSBC. Rec10 provides a docking platform for SFT binding to axes and can partially interact with DSB sites located in loops depending upon Mde2, which is indicative of the formation of multiprotein-based tethered axis-loop complex. These data lead us to propose a mechanism by which Mde2 functions as a recombination initiation mediator to tether axes and loops, in liaison with the meiotic replication checkpoint.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cipak L, Hyppa RW, Smith GR, Gregan J. ATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature. Cell Cycle 2012; 11:1626-33. [PMID: 22487684 PMCID: PMC3341230 DOI: 10.4161/cc.20052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Rimon N, Schuldiner M. Getting the whole picture: combining throughput with content in microscopy. J Cell Sci 2012; 124:3743-51. [PMID: 22124141 DOI: 10.1242/jcs.087486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The increasing availability and performance of automated scientific equipment in the past decades have brought about a revolution in the biological sciences. The ease with which data can now be generated has led to a new culture of high-throughput science, in which new types of biological questions can be asked and tackled in a systematic and unbiased manner. High-throughput microscopy, also often referred to as high-content screening (HCS), allows acquisition of systematic data at the single-cell level. Moreover, it allows the visualization of an enormous array of cellular features and provides tools to quantify a large number of parameters for each cell. These features make HCS a powerful method to create data that is rich and biologically meaningful without compromising systematic capabilities. In this Commentary, we will discuss recent work, which has used HCS, to demonstrate the diversity of applications and technological solutions that are evolving in this field. Such advances are placing HCS methodologies at the frontier of high-throughput science and enable scientists to combine throughput with content to address a variety of cell biological questions.
Collapse
Affiliation(s)
- Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | |
Collapse
|
35
|
Estreicher A, Lorenz A, Loidl J. Mug20, a novel protein associated with linear elements in fission yeast meiosis. Curr Genet 2012; 58:119-27. [PMID: 22362333 PMCID: PMC3310140 DOI: 10.1007/s00294-012-0369-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 11/27/2022]
Abstract
In the fission yeast, Schizosaccharomyces pombe, homologous chromosomes efficiently pair and recombine during meiotic prophase without forming a canonical synaptonemal complex (SC). Instead, it features simpler filamentous structures, the so-called linear elements (LinEs), which bear some resemblance to the axial/lateral element subunits of the SC. LinEs are required for wild-type recombination frequency. Here, we recognized Mug20, the product of a meiotically upregulated gene, as a LinE-associated protein. GFP-tagged Mug20 and anti-Mug20 antibody co-localized completely with Rec10, one of the major constituents of LinEs. In the absence of Mug20, LinEs failed to elongate beyond their initial state of nuclear dots. Foci of recombination protein Rad51 and genetic recombination were reduced. Since meiotic DNA double-strand breaks (DSBs), which initiate recombination, are induced at sites of preformed LinEs, we suggest that reduced recombination is a consequence of incomplete LinE extension. Therefore, we propose that Mug20 is required to extend LinEs from their sites of origin and thereby to increase DSB proficient regions on chromosomes.
Collapse
Affiliation(s)
- Anna Estreicher
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| | - Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Josef Loidl
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| |
Collapse
|
36
|
Rentas S, Saberianfar R, Grewal C, Kanippayoor R, Mishra M, McCollum D, Karagiannis J. The SET domain protein, Set3p, promotes the reliable execution of cytokinesis in Schizosaccharomyces pombe. PLoS One 2012; 7:e31224. [PMID: 22347452 PMCID: PMC3275627 DOI: 10.1371/journal.pone.0031224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Stefan Rentas
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Charnpal Grewal
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Mithilesh Mishra
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
| | - Dannel McCollum
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Bitton DA, Grallert A, Scutt PJ, Yates T, Li Y, Bradford JR, Hey Y, Pepper SD, Hagan IM, Miller CJ. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe. Mol Syst Biol 2011; 7:559. [PMID: 22186733 PMCID: PMC3738847 DOI: 10.1038/msb.2011.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
Strand-specific RNA sequencing of S. pombe reveals a highly structured programme of ncRNA expression at over 600 loci. Functional investigations show that this extensive ncRNA landscape controls the complex programme of sexual differentiation in S. pombe. The model eukaryote S. pombe features substantial numbers of ncRNAs many of which are antisense regulatory transcripts (ARTs), ncRNAs expressed on the opposing strand to coding sequences. Individual ARTs are generated during the mitotic cycle, or at discrete stages of sexual differentiation to downregulate the levels of proteins that drive and coordinate sexual differentiation. Antisense transcription occurring from events such as bidirectional transcription is not simply artefactual ‘chatter', it performs a critical role in regulating gene expression.
Regulation of the RNA profile is a principal control driving sexual differentiation in the fission yeast Schizosaccharomyces pombe. Before transcription, RNAi-mediated formation of heterochromatin is used to suppress expression, while post-transcription, regulation is achieved via the active stabilisation or destruction of transcripts, and through at least two distinct types of splicing control (Mata et al, 2002; Shimoseki and Shimoda, 2001; Averbeck et al, 2005; Mata and Bähler, 2006; Xue-Franzen et al, 2006; Moldon et al, 2008; Djupedal et al, 2009; Amorim et al, 2010; Grewal, 2010; Cremona et al, 2011). Around 94% of the S. pombe genome is transcribed (Wilhelm et al, 2008). While many of these transcripts encode proteins (Wood et al, 2002; Bitton et al, 2011), the majority have no known function. We used a strand-specific protocol to sequence total RNA extracts taken from vegetatively growing cells, and at different points during a time course of sexual differentiation. The resulting data redefined existing gene coordinates and identified additional transcribed loci. The frequency of reads at each of these was used to monitor transcript abundance. Transcript levels at 6599 loci changed in at least one sample (G-statistic; False Discovery Rate <5%). 4231 (72.3%), of which 4011 map to protein-coding genes, while 809 loci were antisense to a known gene. Comparisons between haploid and diploid strains identified changes in transcript levels at over 1000 loci. At 354 loci, greater antisense abundance was observed relative to sense, in at least one sample (putative antisense regulatory transcripts—ARTs). Since antisense mechanisms are known to modulate sense transcript expression through a variety of inhibitory mechanisms (Faghihi and Wahlestedt, 2009), we postulated that the waves of antisense expression activated at different stages during meiosis might be regulating protein expression. To ask whether transcription factors that drive sense-transcript levels influenced ART production, we performed RNA-seq of a pat1.114 diploid meiosis in the absence of the transcription factors Atf21 and Atf31 (responsible for late meiotic transcription; Mata et al, 2002). Transcript levels at 185 ncRNA loci showed significant changes in the knockout backgrounds. Although meiotic progression is largely unaffected by removal of Atf21 and Atf31, viability of the resulting spores was significantly diminished, indicating that Atf21- and Atf31-mediated events are critical to efficient sexual differentiation. If changes to relative antisense/sense transcript levels during a particular phase of sexual differentiation were to regulate protein expression, then the continued presence of the antisense at points in the differentiation programme where it would normally be absent should abolish protein function during this phase. We tested this hypothesis at four loci representing the three means of antisense production: convergent gene expression, improper termination and nascent transcription from an independent locus. Induction of the natural antisense transcripts that opposed spo4+, spo6+ and dis1+ (Figures 3 and 7) in trans from a heterologous locus phenocopied a loss of function of the target protein. ART overexpression decreased Dis1 protein levels. Antisense transcription opposing spk1+ originated from improper termination of the sense ups1+ transcript on the opposite strand (Figure 3B, left locus). Expression of either the natural full-length ups1+ transcript or a truncated version, restricted to the portion of ups1+ overlapping spk1+ (Figure 3, orange transcripts) in trans from a heterologous locus phenocopied the spk1.Δ differentiation deficiency. Convergent transcription from a neighbouring gene on the opposing strand is, therefore, an effective mechanism to generate RNAi-mediated (below) silencing in fission yeast. Further analysis of the data revealed, for many loci, substantial changes in UTR length over the course of meiosis, suggesting that UTR dynamics may have an active role in regulating gene expression by controlling the transcriptional overlap between convergent adjacent gene pairs. The RNAi machinery (Grewal, 2010) was required for antisense suppression at each of the dis1, spk1, spo4 and spo6 loci, as antisense to each locus had no impact in ago1.Δ, dcr1.Δ and rdp1.Δ backgrounds. We conclude that RNAi control has a key role in maintaining the fidelity of sexual differentiation in fission yeast. The histone H3 methyl transferase Clr4 was required for antisense control from a heterologous locus. Thus, a significant portion of the impact of ncRNA upon sexual differentiation arises from antisense gene silencing. Importantly, in contrast to the extensively characterised ability of the RNAi machinery to operate in cis at a target locus in S. pombe (Grewal, 2010), each case of gene silencing generated here could be achieved in trans by expression of the antisense transcript from a single heterologous locus elsewhere in the genome. Integration of an antibiotic marker gene immediately downstream of the dis1+ locus instigated antisense control in an orientation-dependent manner. PCR-based gene tagging approaches are widely used to fuse the coding sequences of epitope or protein tags to a gene of interest. Not only do these tagging approaches disrupt normal 3′UTR controls, but the insertion of a heterologous marker gene immediately downstream of an ORF can clearly have a significant impact upon transcriptional control of the resulting fusion protein. Thus, PCR tagging approaches can no longer be viewed as benign manipulations of a locus that only result in the production of a tagged protein product. Repression of Dis1 function by gene deletion or antisense control revealed a key role this conserved microtubule regulator in driving the horsetail nuclear migrations that promote recombination during meiotic prophase. Non-coding transcripts have often been viewed as simple ‘chatter', maintained solely because evolutionary pressures have not been strong enough to force their elimination from the system. Our data show that phenomena such as improper termination and bidirectional transcription are not simply interesting artifacts arising from the complexities of transcription or genome history, but have a critical role in regulating gene expression in the current genome. Given the widespread use of RNAi, it is reasonable to anticipate that future analyses will establish ARTs to have equal importance in other organisms, including vertebrates. These data highlight the need to modify our concept of a gene from that of a spatially distinct locus. This view is becoming increasingly untenable. Not only are the 5′ and 3′ ends of many genes indistinct, but that this lack of a hard and fast boundary is actively used by cells to control the transcription of adjacent and overlapping loci, and thus to regulate critical events in the life of a cell. Strand-specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3′ termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent ‘horsetail' stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply ‘genome chatter', this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe.
Collapse
Affiliation(s)
- Danny A Bitton
- CRUK Applied Computational Biology and Bioinformatics Group, Cancer Research UK, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rumpf C, Cipak L, Dudas A, Benko Z, Pozgajova M, Riedel CG, Ammerer G, Mechtler K, Gregan J. Casein kinase 1 is required for efficient removal of Rec8 during meiosis I. Cell Cycle 2011; 9:2657-62. [PMID: 20581463 DOI: 10.4161/cc.9.13.12146] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Segregation of chromosomes during meiosis depends on separase cleavage of Rec8, the meiosis-specific alpha-kleisin subunit of cohesin. We mapped Rec8 phosphorylation sites by mass spectrometry and show that Rec8 phosphorylation is required for proper chromosome disjunction during meiosis. We further show that the fission yeast casein kinase 1 (CK1) delta/epsilon isoforms Hhp1 and Hhp2 are required for full levels of Rec8 phosphorylation and for efficient removal of Rec8 at the onset of anaphase I. Our data are consistent with the model that Hhp1/Hhp2-dependent phosphorylation of Rec8 is required for separase-mediated cleavage of Rec8 during meiosis I.
Collapse
Affiliation(s)
- Cornelia Rumpf
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Snaith HA, Thompson J, Yates JR, Sawin KE. Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. J Cell Sci 2011; 124:2187-99. [PMID: 21652630 PMCID: PMC3113670 DOI: 10.1242/jcs.084038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although endocytosis and exocytosis have been extensively studied in budding yeast, there have been relatively few investigations of these complex processes in the fission yeast Schizosaccharomyces pombe. Here we identify and characterize fission yeast Mug33, a novel Tea1-interacting protein, and show that Mug33 is involved in exocytosis. Mug33 is a Sur7/PalI-family transmembrane protein that localizes to the plasma membrane at the cell tips and to cytoplasmic tubulovesicular elements (TVEs). A subset of Mug33 TVEs make long-range movements along actin cables, co-translocating with subunits of the exocyst complex. TVE movement depends on the type V myosin Myo52. Although mug33Δ mutants are viable, with only a mild cell-polarity phenotype, mug33Δ myo52Δ double mutants are synthetically lethal. Combining mug33 Δ with deletion of the formin For3 (for3Δ) leads to synthetic temperature-sensitive growth and strongly reduced levels of exocytosis. Interestingly, mutants in non-essential genes involved in exocyst function behave in a manner similar to mug33Δ when combined with myo52Δ and for3Δ. By contrast, combining mug33Δ with mutants in non-essential exocyst genes has only minor effects on growth. We propose that Mug33 contributes to exocyst function and that actin cable-dependent vesicle transport and exocyst function have complementary roles in promoting efficient exocytosis in fission yeast.
Collapse
Affiliation(s)
- Hilary A Snaith
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH93JR, UK
| | | | | | | |
Collapse
|
40
|
Bonfils S, Rozalén AE, Smith GR, Moreno S, Martín-Castellanos C. Functional interactions of Rec24, the fission yeast ortholog of mouse Mei4, with the meiotic recombination-initiation complex. J Cell Sci 2011; 124:1328-38. [PMID: 21429938 PMCID: PMC3065387 DOI: 10.1242/jcs.079194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2010] [Indexed: 11/20/2022] Open
Abstract
A physical connection between each pair of homologous chromosomes is crucial for reductional chromosome segregation during the first meiotic division and therefore for successful meiosis. Connection is provided by recombination (crossing over) initiated by programmed DNA double-strand breaks (DSBs). Although the topoisomerase-like protein Spo11 makes DSBs and is evolutionarily conserved, how Spo11 (Rec12 in fission yeast) is regulated to form DSBs at the proper time and place is poorly understood. Several additional (accessory) proteins for DSB formation have been inferred in different species from yeast to mice. Here, we show that Rec24 is a bona fide accessory protein in Schizosaccharomyces pombe. Rec24 is required genome-wide for crossing-over and is recruited to meiotic chromosomes during prophase in a Rec12-independent manner forming foci on linear elements (LinEs), structurally related to the synaptonemal complex of other eukaryotes. Stabilization of Rec24 on LinEs depends on another accessory protein, Rec7, with which Rec24 forms complexes in vivo. We propose that Rec24 marks LinE-associated recombination sites, that stabilization of its binding by Rec7 facilitates the loading or activation of Rec12, and that only stabilized complexes containing Rec24 and Rec7 promote DSB formation. Based on the recent report of Rec24 and Rec7 conservation, interaction between Rec24 and Rec7 might be widely conserved in DSB formation.
Collapse
Affiliation(s)
- Sandrine Bonfils
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Cristina Martín-Castellanos
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
41
|
Kakui Y, Sato M, Tanaka K, Yamamoto M. A novel fission yeast mei4 mutant that allows efficient synchronization of telomere dispersal and the first meiotic division. Yeast 2011; 28:467-79. [PMID: 21449049 DOI: 10.1002/yea.1851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/22/2011] [Indexed: 11/11/2022] Open
Abstract
The progression of meiosis is controlled by a number of gene-expression systems in the fission yeast Schizosaccharomyces pombe. A forkhead-type transcription factor Mei4 activates a number of genes essential for progression from the middle to late stages of meiosis, which include meiosis I, meiosis II and sporulation. The mei4-deletion mutant (mei4Δ) arrests after meiotic prophase and does not enter meiosis I. To further analyse the Mei4 function, we isolated novel temperature-sensitive mei4 alleles. The two alleles isolated in the initial screen turned out to contain a substitution at N136 in the forkhead DNA-binding domain. Among site-directed mutants that carried a point mutation at this position, the mei4-N136A mutant showed the most severe temperature sensitivity. The mei4-N136A mutant arrested before meiosis I at the restrictive temperature, as did the mei4Δ mutant. In fission yeast, the telomeres are clustered at the spindle pole body (SPB) in meiotic prophase and disperse from it at the onset of meiosis I. The mei4Δ mutant was found to arrest with its telomeres clustered at the SPB, demonstrating a role for Mei4 in telomere dispersion. The mei4-N136A mutant also arrested with clustered telomeres at the restrictive temperature, and the clustering was synchronously resolved after a temperature down-shift, indicating that mei4-N136A is a reversible allele. Hence, the mei4-N136A mutant will be a unique tool to synchronize the meiotic cell cycle from meiosis I onwards and may facilitate analyses of cellular activities occurring during meiosis I.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
42
|
Dudas A, Ahmad S, Gregan J. Sgo1 is required for co-segregation of sister chromatids during achiasmate meiosis I. Cell Cycle 2011; 10:951-5. [PMID: 21330786 DOI: 10.4161/cc.10.6.15032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.
Collapse
Affiliation(s)
- Andrej Dudas
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | | | | |
Collapse
|
43
|
Mallela S, Latypov V, Kohli J. Rec10- and Rec12-independent recombination in meiosis of Schizosaccharomyces pombe. Yeast 2011; 28:405-21. [PMID: 21387406 DOI: 10.1002/yea.1847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/03/2011] [Indexed: 11/11/2022] Open
Abstract
The Rec10 protein, a component of the linear elements forming along sister chromatids in meiotic prophase of Schizosaccharomyces pombe, plays an important role in the activation of Rec12 for double-strand break formation, and thus the initiation of recombination between homologous chromosomes. Recombination between homologous chromosomes was moderately reduced in homozygous crosses of the C-terminal truncation mutant rec10-155 and strongly in the full deletion allele rec10-175. Both alleles were also tested in two assays for intrachromosomal recombination (PS1 and VL1) and showed only slight reductions, while deletion of rec12 led to a 13-fold reduction. The even stronger reductions in rec10 rec12 double deletion crosses indicate partially redundant functions of Rec10 and Rec12 in the initiation of intrachromosomal recombination. A low level of double-strand breaks has been detected in rec10-175 meiosis at the mbs1 hotspot of recombination, and spore viability in the double mutant was also lower than in the single-deletion mutants. Low levels of apparent crossover and conversion between homologous chromosomes in the absence of Rec12 have been quantified using a newly developed assay. The results also indicate that the functions of Rec10 differ in several respects from those of its distant homologue Red1 in Saccharomyces cerevisiae, including interactions with Hop1 and Mek1 for promotion of recombination between homologues at the expense of sister chromatid recombination.
Collapse
Affiliation(s)
- Shamroop Mallela
- Institute of Cell Biology, University of Berne, Baltzer-Strasse 4, Berne, Switzerland
| | | | | |
Collapse
|
44
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
45
|
Spirek M, Benko Z, Carnecka M, Rumpf C, Cipak L, Batova M, Marova I, Nam M, Kim DU, Park HO, Hayles J, Hoe KL, Nurse P, Gregan J. S. pombe genome deletion project: an update. Cell Cycle 2010; 9:2399-402. [PMID: 20519959 DOI: 10.4161/cc.9.12.11914] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a model organism used widely to study various aspects of eukaryotic biology. A collection of heterozygous diploid strains containing individual deletions in nearly all S. pombe genes has been created using a PCR based strategy. However, deletion of some genes has not been possible using this methodology. Here we use an efficient knockout strategy based on plasmids that contain large regions homologous to the target gene to delete an additional 29 genes. The collection of deletion mutants now covers 99% of the fission yeast open reading frames.
Collapse
Affiliation(s)
- Mario Spirek
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2010; 28:617-623. [PMID: 20473289 PMCID: PMC3962850 DOI: 10.1038/nbt.1628] [Citation(s) in RCA: 560] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/30/2010] [Indexed: 01/28/2023]
Abstract
We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome providing a tool for studying eukaryotic biology. Comprehensive gene dispensability comparisons with budding yeast--the only other eukaryote for which a comprehensive knockout library exists--revealed that 83% of single-copy orthologs in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than nonessential genes to be present in a single copy, to be broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth.
Collapse
Affiliation(s)
- Dong-Uk Kim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Valerie Wood
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Han-Oh Park
- Bioneer Corporation, Daedeok, Daejeon, Korea
| | - Misun Won
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hyang-Sook Yoo
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Trevor Duhig
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Miyoung Nam
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Georgia Palmer
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Sangjo Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Linda Jeffery
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
| | - Seung-Tae Baek
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hyemi Lee
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Young Sam Shim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Minho Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science & Technology (KAIST), Yuseong, Daejeon, Korea
| | - Lila Kim
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Kyung-Sun Heo
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Eun Joo Noh
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Ah-Reum Lee
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Young-Joo Jang
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Kyung-Sook Chung
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Shin-Jung Choi
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Jo-Young Park
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Youngwoo Park
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | - Hwan Mook Kim
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| | - Song-Kyu Park
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| | | | | | - Hyong Bai Kim
- Department of Bioinformatics & Biotechnology, Korea University, Jochiwon, Chungnam, Korea
| | - Hyun-Sam Kang
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Moon Park
- Department of Microbiology, Chungnam National University, Yuseong, Daejeon, Korea
| | - Kyunghoon Kim
- Division of Life Sciences, Kangwon National University, Chuncheon, Kangwon-do, Korea
| | - Kiwon Song
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Kyung Bin Song
- Department of Food and Nutrition, Chungnam National University, Yuseong, Daejeon, Korea
| | - Paul Nurse
- Cancer Research UK, The London Research Institute, 44, Lincoln's Inn Fields, LondonWC2A 3PX, UK
- The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | - Kwang-Lae Hoe
- Integrative Omics Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
- Bioevaluation Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do, Korea
| |
Collapse
|
47
|
Rumpf C, Cipak L, Novatchkova M, Li Z, Polakova S, Dudas A, Kovacikova I, Miadokova E, Ammerer G, Gregan J. High-throughput knockout screen in Schizosaccharomyces pombe identifies a novel gene required for efficient homolog disjunction during meiosis I. Cell Cycle 2010; 9:1802-8. [PMID: 20404563 DOI: 10.4161/cc.9.9.11526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiosis is the process which produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions. Whereas homologs segregate during meiosis I, sister chromatids segregate during meiosis II. To identify novel proteins required for proper segregation of chromosomes during meiosis, we applied a high-throughput knockout technique to delete 87 S. pombe genes whose expression is upregulated during meiosis and analyzed the mutant phenotypes. Using this approach, we identified a new protein, Dil1, which is required to prevent meiosis I homolog non-disjunction. We show that Dil1 acts in the dynein pathway to promote oscillatory nuclear movement during meiosis.
Collapse
Affiliation(s)
- Cornelia Rumpf
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Steiner S, Kohli J, Ludin K. Functional interactions among members of the meiotic initiation complex in fission yeast. Curr Genet 2010; 56:237-49. [PMID: 20364342 DOI: 10.1007/s00294-010-0296-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
DNA double-strand breaks (DSBs) initiate meiotic recombination in Schizosaccharomyces pombe and in other organisms. The Rec12 protein catalyzes the formation of these DSBs in concert with a multitude of accessory proteins the role of which in this process remains to be discovered. In an all-to-all yeast two-hybrid matrix analysis, we discovered new interactions among putative members of the meiotic recombination initiation complex. We found that Rec7, an axial-element associated protein with homologies to Saccharomyces cerevisiae Rec114, is interacting with Rec24. Rec7 and Rec24 also co-immunoprecipitate in S. pombe during meiosis. An amino acid change in a conserved, C-terminal phenylalanine in Rec7, F325A interrupts the interaction with Rec24. Moreover, rec7F325A shows a recombination deficiency comparable to rec7Delta. Another interaction was detected between Rec12 and Rec14, the orthologs of which in S. cerevisiae Spo11 and Ski8 interact accordingly. Amino acid changes Rec12Q308A and Rec12R309A disrupt the interaction with Rec14, like the according amino acid changes Spo11Q376A and Spo11RE377AA loose the interaction with Ski8. Both amino acid changes in Rec12 reveal a recombination deficient rec12 (-) phenotype. We propose that both Rec7-Rec24 and Rec12-Rec14 form subcomplexes of the meiotic recombination initiation complex.
Collapse
Affiliation(s)
- Silvia Steiner
- Institute of Cell Biology, University of Bern, Switzerland
| | | | | |
Collapse
|
49
|
Latypov V, Rothenberg M, Lorenz A, Octobre G, Csutak O, Lehmann E, Loidl J, Kohli J. Roles of Hop1 and Mek1 in meiotic chromosome pairing and recombination partner choice in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:1570-81. [PMID: 20123974 PMCID: PMC2838064 DOI: 10.1128/mcb.00919-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/26/2009] [Accepted: 01/19/2010] [Indexed: 11/20/2022] Open
Abstract
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.
Collapse
Affiliation(s)
- Vitaly Latypov
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Maja Rothenberg
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alexander Lorenz
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Guillaume Octobre
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Ortansa Csutak
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Lehmann
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Josef Loidl
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Jürg Kohli
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
50
|
Cipak L, Spirek M, Novatchkova M, Chen Z, Rumpf C, Lugmayr W, Mechtler K, Ammerer G, Csaszar E, Gregan J. An improved strategy for tandem affinity purification-tagging of Schizosaccharomyces pombe genes. Proteomics 2010; 9:4825-8. [PMID: 19750511 DOI: 10.1002/pmic.200800948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem affinity purification (TAP) is a method that allows rapid purification of native protein complexes. We developed an improved technique to fuse the fission yeast genes with a TAP tag. Our technique is based on tagging constructs that contain regions homologous to the target gene cloned into vectors carrying a TAP tag. We used this technique to design strategies for TAP-tagging of predicted Schizosaccharomyces pombe genes (http://mendel.imp.ac.at/Pombe_tagging/). To validate the approach, we purified the proteins, which associated with two evolutionarily conserved proteins Swi5 and Sfr1 as well as three protein kinases Ksg1, Orb6 and Sid1.
Collapse
Affiliation(s)
- Lubos Cipak
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|