1
|
Koyama T, Saeed U, Rewitz K, Halberg KV. The Integrative Physiology of Hormone Signaling: Insights from Insect Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39887191 DOI: 10.1152/physiol.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Hormones orchestrate virtually all physiological processes in animals and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology. These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas, hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism, and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Usama Saeed
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Gu L, Guo M, Wang P, Zhao J, Wu Z, Wang Z, Zhang S, Yang X, Ma R, Wang L, Ye X, Huang J, Chen XX, Wang Z. Symbiotic bracovirus of a parasite modulate host ecdysis process. Cell Mol Life Sci 2025; 82:183. [PMID: 40293514 PMCID: PMC12037451 DOI: 10.1007/s00018-025-05717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Parasitoids modulate host development for the survival of their offspring, but the mechanisms underlying this phenomenon remain largely unknown. Here, we found that the endoparasitoid Cotesia vestalis disrupted the larval-larval ecdysis in its host Plutella xylostella by the 20-hydroxyecdysone (20E) synthesis pathway. After parasitization by C. vestalis, the 20E peak of host larvae disappeared before the onset of ecdysis and the expression of ecdysone synthesis genes was significantly downregulated. We further found that a Cotesia vestalis bracovirus (CvBV) gene CvBV_28 - 5 was transiently high-level expressed prior to the host's 20E peak, enabling the precise suppression of this critical developmental signal. Consistently, the knockdown of CvBV_28 - 5 affected the expression of 20E response transcription factors in the cuticle and several ecdysis-related genes. Furthermore, we found that CvBV_28 - 5 bound directly to the Raf, a MAP3K member of the MAPK pathwaythat functions as a critical regulator of ecdysone synthesis genes in hosts. Collectively, our results provide the first evidence that parasitoids modulate host ecdysis by affecting MAPK-20E signaling during a defined developmental window and provide novel insights into the mechanism of parasitoid regulation of host development.
Collapse
Affiliation(s)
- Licheng Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Mujuan Guo
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Pengzhan Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jianchao Zhao
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zihan Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Sijie Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xin Yang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Ruofei Ma
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Lizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China.
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China.
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, and Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- The Rural Development Academy, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zhang J, Liu S, Li Y, Xu G, Deng H, King-Jones K, Li S. Nutrient status alters developmental fates via a switch in mitochondrial homeodynamics. Nat Commun 2025; 16:1258. [PMID: 39893174 PMCID: PMC11787341 DOI: 10.1038/s41467-025-56528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Steroid hormones are powerful endocrine regulators, but little is known about how environmental conditions modulate steroidogenesis to reprogram developmental fates. Here, we use the Drosophila prothoracic gland (PG) to investigate how a nutrient restriction checkpoint (NRC) ensures or blocks developmental progression and sexual maturation via regulating steroidogenesis. Extensive transcriptome analysis of the PG reveals that pre-NRC starvation significantly downregulates mitochondria-associated genes. Pre-NRC starvation reduces prothoracicotropic neuropeptide hormone signaling, insulin signaling, and TORC1 activity in PG cells, which prevent mitochondrial fragmentation and import of Disembodied, a key steroidogenic enzyme. Ultimately, pre-NRC starvation causes severe mitophagy and proteasome dysfunction, blocking steroidogenesis and metamorphosis. By contrast, post-NRC starvation does not impair mitochondrial homeostasis in PG cells but reduces sit expression and induces moderate autophagy to promote steroidogenesis, leading to precocious metamorphosis. This study constitutes a paradigm for exploring how steroid hormone levels are controlled in response to environmental stress during developmental checkpoints.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
4
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Liu W, Yan M, King-Jones K. Soul is a master control gene governing the development of the Drosophila prothoracic gland. Proc Natl Acad Sci U S A 2024; 121:e2405469121. [PMID: 39312662 PMCID: PMC11459192 DOI: 10.1073/pnas.2405469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
The prothoracic gland (PG) is a major insect endocrine organ. It is the principal source of insect steroid hormones, and critical for key developmental events such as the molts, the establishment of critical weight (CW), pupation, and sexual maturation. However, little is known about the developmental processes that regulate PG morphology. In this study, we identified soul, which encodes a PG-specific basic helix-loop-helix (bHLH) transcription factor. We demonstrate that Tap, also a bHLH protein, dimerizes with Soul. Both are expressed in the developing PG. Interfering with either soul or tap function caused strikingly similar phenotypes, resulting in small and fragmented PGs, the abolishment of steroid hormone-producing gene expression, larval arrest, and a failure to undergo metamorphosis. Furthermore, both soul and tap showed expression peaks just prior to the CW checkpoint. Disrupting soul- or tap-function before, but not after, the CW checkpoint caused larval arrest, and perturbed highly similar gene cohorts, which were enriched for regulators and components of the steroid hormone biosynthesis pathway. Intriguingly, a chitin-based cuticle gene, Cpr49Ah, and a POU domain transcription factor gene, pdm3, are direct target genes of the Soul/Tap complex, and disruption of either phenocopied key aspects of soul/tap loss-of-function phenotypes. Taken together, our findings demonstrate that the Soul/Tap heterodimer resides at the top of a complex gene hierarchy that drives PG development, CW establishment, and steroid hormone production.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Minyi Yan
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
6
|
Ostalé CM, Pulido D, Vega-Cuesta P, López-Varea A, de Celis JF. Developmental analysis of Spalt function in the Drosophila prothoracic gland. Development 2024; 151:dev202751. [PMID: 39087588 PMCID: PMC11385645 DOI: 10.1242/dev.202751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Diego Pulido
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patricia Vega-Cuesta
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
7
|
Turingan MJ, Li T, Wright J, Sharma A, Ding K, Khan S, Lee B, Grewal SS. Hypoxia delays steroid-induced developmental maturation in Drosophila by suppressing EGF signaling. PLoS Genet 2024; 20:e1011232. [PMID: 38669270 PMCID: PMC11098494 DOI: 10.1371/journal.pgen.1011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.
Collapse
Affiliation(s)
- Michael J. Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Tan Li
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Jenna Wright
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Sharma
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Kate Ding
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Shahoon Khan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Dark C, Ali N, Golenkina S, Dhyani V, Blazev R, Parker BL, Murphy KT, Lynch GS, Senapati T, Millard SS, Judge SM, Judge AR, Giri L, Russell SM, Cheng LY. Mitochondrial fusion and altered beta-oxidation drive muscle wasting in a Drosophila cachexia model. EMBO Rep 2024; 25:1835-1858. [PMID: 38429578 PMCID: PMC11014992 DOI: 10.1038/s44319-024-00102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nashia Ali
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sofya Golenkina
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Vaibhav Dhyani
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Melbourne, VIC, Australia
| | - Ronnie Blazev
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Benjamin L Parker
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kate T Murphy
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tarosi Senapati
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, QLD, 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Sarah M Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Florida, FL, 32603, USA
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Florida, FL, 32603, USA
| | - Lopamudra Giri
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sarah M Russell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Melbourne, VIC, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
9
|
Bakopoulos D, Golenkina S, Dark C, Christie EL, Sánchez-Sánchez BJ, Stramer BM, Cheng LY. Convergent insulin and TGF-β signalling drives cancer cachexia by promoting aberrant fat body ECM accumulation in a Drosophila tumour model. EMBO Rep 2023; 24:e57695. [PMID: 38014610 DOI: 10.15252/embr.202357695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-β signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-β signalling to regulate ECM accumulation in the fat body. TGF-β signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-β signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.
Collapse
Affiliation(s)
- Daniel Bakopoulos
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Brian M Stramer
- Kings College London, Randall Centre for Cell & Molecular Biophysics, London, UK
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
10
|
Tyson JJ, Monshizadeh A, Shvartsman SY, Shingleton AW. A dynamical model of growth and maturation in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2313224120. [PMID: 38015844 PMCID: PMC10710029 DOI: 10.1073/pnas.2313224120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
The decision to stop growing and mature into an adult is a critical point in development that determines adult body size, impacting multiple aspects of an adult's biology. In many animals, growth cessation is a consequence of hormone release that appears to be tied to the attainment of a particular body size or condition. Nevertheless, the size-sensing mechanism animals use to initiate hormone synthesis is poorly understood. Here, we develop a simple mathematical model of growth cessation in Drosophila melanogaster, which is ostensibly triggered by the attainment of a critical weight (CW) early in the last instar. Attainment of CW is correlated with the synthesis of the steroid hormone ecdysone, which causes a larva to stop growing, pupate, and metamorphose into the adult form. Our model suggests that, contrary to expectation, the size-sensing mechanism that initiates metamorphosis occurs before the larva reaches CW; that is, the critical-weight phenomenon is a downstream consequence of an earlier size-dependent developmental decision, not a decision point itself. Further, this size-sensing mechanism does not require a direct assessment of body size but emerges from the interactions between body size, ecdysone, and nutritional signaling. Because many aspects of our model are evolutionarily conserved among all animals, the model may provide a general framework for understanding how animals commit to maturing from their juvenile to adult form.
Collapse
Affiliation(s)
- John J. Tyson
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - Amirali Monshizadeh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York City, NY10010
| | | |
Collapse
|
11
|
Chafino S, Salvia R, Cruz J, Martín D, Franch-Marro X. TGFß/activin-dependent activation of Torso controls the timing of the metamorphic transition in the red flour beetle Tribolium castaneum. PLoS Genet 2023; 19:e1010897. [PMID: 38011268 PMCID: PMC10703416 DOI: 10.1371/journal.pgen.1010897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/07/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding the mechanisms governing body size attainment during animal development is of paramount importance in biology. In insects, a crucial phase in determining body size occurs at the larva-pupa transition, marking the end of the larval growth period. Central to this process is the attainment of the threshold size (TS), a critical developmental checkpoint that must be reached before the larva can undergo metamorphosis. However, the intricate molecular mechanisms by which the TS orchestrates this transition remain poor understood. In this study, we investigate the role of the interaction between the Torso and TGFß/activin signaling pathways in regulating metamorphic timing in the red flour beetle, Tribolium castaneum. Our results show that Torso signaling is required specifically during the last larval instar and that its activation is mediated not only by the prothoracicotropic hormone (Tc-Ptth) but also by Trunk (Tc-Trk), another ligand of the Tc-Torso receptor. Interestingly, we show that while Tc-Torso activation by Tc-Ptth determines the onset of metamorphosis, Tc-Trk promotes growth during the last larval stage. In addition, we found that the expression of Tc-torso correlates with the attainment of the TS and the decay of juvenile hormone (JH) levels, at the onset of the last larval instar. Notably, our data reveal that activation of TGFß/activin signaling pathway at the TS is responsible for repressing the JH synthesis and inducing Tc-torso expression, initiating metamorphosis. Altogether, these findings shed light on the pivotal involvement of the Ptth/Trunk/Torso and TGFß/activin signaling pathways as critical regulatory components orchestrating the TS-driven metamorphic initiation, offering valuable insights into the mechanisms underlying body size determination in insects.
Collapse
Affiliation(s)
- Sílvia Chafino
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Roser Salvia
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - David Martín
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Colombo M, Grauso L, Lanzotti V, Incerti G, Adamo A, Storlazzi A, Gigliotti S, Mazzoleni S. Self-DNA Inhibition in Drosophila melanogaster Development: Metabolomic Evidence of the Molecular Determinants. BIOLOGY 2023; 12:1378. [PMID: 37997977 PMCID: PMC10669329 DOI: 10.3390/biology12111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
We investigated the effects of dietary delivered self-DNA in the model insect Drosophila melanogaster. Self-DNA administration resulted in low but significant lethality in Drosophila larvae and considerably extended the fly developmental time. This was characterized by the abnormal persistence of the larvae in the L2 and L3 stages, which largely accounted for the average 72 h delay observed in pupariation, as compared to controls. In addition, self-DNA exposure affected adult reproduction by markedly reducing both female fecundity and fertility, further demonstrating its impact on Drosophila developmental processes. The effects on the metabolites of D. melanogaster larvae after exposure to self-DNA were studied by NMR, LC-MS, and molecular networking. The results showed that self-DNA feeding reduces the amounts of all metabolites, particularly amino acids and N-acyl amino acids, which are known to act as lipid signal mediators. An increasing amount of phloroglucinol was found after self-DNA exposure and correlated to developmental delay and egg-laying suppression. Pidolate, a known intermediate in the γ-glutamyl cycle, also increased after exposure to self-DNA and correlated to the block of insect oogenesis.
Collapse
Affiliation(s)
- Michele Colombo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences (DI4A), University of Udine, 33100 Udine, Italy;
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Aurora Storlazzi
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Silvia Gigliotti
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| |
Collapse
|
13
|
Deng Z, Zhang X, Wolinska J, Blair D, Hu W, Yin M. Climate has contributed to population diversification of Daphnia galeata across Eurasia. Mol Ecol 2023; 32:5110-5124. [PMID: 37548328 DOI: 10.1111/mec.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Climate is a fundamental abiotic factor that plays a key role in driving the evolution, distribution and population diversification of species. However, there have been few investigations of genomic signatures of adaptation to local climatic conditions in cladocerans. Here, we have provided the first high-quality chromosome-level genome assembly (~143 Mb, scaffold N50 12.6 Mb) of the waterflea, Daphnia galeata, and investigated genomic variation in 22 populations from Central Europe and Eastern China. Our ecological-niche models suggested that the historic distribution of D. galeata in Eurasia was significantly affected by Quaternary climate fluctuations. We detected pronounced genomic and morphometric divergences between European and Chinese D. galeata populations. Such divergences could be partly explained by genomic signatures of thermal adaptation to distinct climate regimes: a set of candidate single-nucleotide polymorphisms (SNPs) potentially associated with climate were detected. These SNPs were in genes significantly enriched in the Gene ontology terms "determination of adult lifespan" and "translation repressor activity", and especially, mthl5 and SOD1 involved in the IIS pathway, and EIF4EBP2 involved in the target of the rapamycin signalling pathway. Our study indicates that certain alleles might be associated with particular temperature regimes, playing a functional role in shaping the population structure of D. galeata at a large geographical scale. These results highlight the potential role of molecular variation in the response to climate variation, in the context of global climate change.
Collapse
Affiliation(s)
- Zhixiong Deng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Shimell M, O'Connor MB. Endoreplication in the Drosophila melanogaster prothoracic gland is dispensable for the critical weight checkpoint. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000741. [PMID: 36908310 PMCID: PMC9996309 DOI: 10.17912/micropub.biology.000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/14/2023]
Abstract
Critical weight (CW) attainment is a key life event in the development of holometabolous insects including Drosophila melanogaster. It indicates that sufficient growth has occurred to initiate the juvenile-to-adult transition. The prothoracic gland (PG), the major insect larval endocrine organ, is a polyploid tissue that plays a key role in the determination of CW via release of the steroid hormone ecdysone. Here we show that when the cells of the PG fail to make the mitotic-to-endocycle switch, but instead remain mitotic, the result is more but smaller cells. Nevertheless, they reach the same CW and produce healthy adults after only a moderate developmental delay. We propose that the CW checkpoint can be reached by either an endocycling or mitotic PG and may simply reflect the attainment of sufficient ecdysone biosynthetic capacity to initiate metamorphosis.
Collapse
Affiliation(s)
- MaryJane Shimell
- Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael B O'Connor
- Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
15
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Li C, Zhang J, Du H, Yang L, Wang Y, Lu Y, Li B, Chen K. Lowfat functions downstream of Myo20 to regulate wing and leg morphogenesis in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103829. [PMID: 36028072 DOI: 10.1016/j.ibmb.2022.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Myosin Myo20 plays vital roles in the morphogenesis of wings and legs among insects, but the function and signalling of Myo20 remain unclear. We show that Myo20 regulates wing cell division, ecdysteroid and amino acid metabolism, and gene expression in Tribolium castaneum. By RNA-seq, we identified 582 differentially expressed genes (DEGs) between control and ds-Myo20 larvae of T. castaneum. Of these DEGs, silencing Myo20 significantly decreased the mRNA and protein levels of lowfat. During development, lowfat has the highest expression in early pupae and the lowest level in 1-day embryos. Tissue-specific analysis indicated that lowfat was abundantly expressed in the head, fat body and epidermis of late-stage larvae and in wings and legs of 1, 2 and 5-day pupae. Likewise, knockdown of lowfat affected wing and leg morphogenesis, ecdysteroid and amino acid metabolism, and gene expression in T. castaneum. Silencing Myo20 or lowfat activated CYP18A1 to degrade ecdysteroids, stimulated amino acids catabolism to increase the transcription of 4E-BP but reduce S6K and cycE expression. These results suggest that Lowfat works downstream of Myo20 to employ target of rapamycin (TOR) signalling for wing and leg morphogenesis in insects.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
17
|
Cobham AE, Neumann B, Mirth CK. Maintaining robust size across environmental conditions through plastic brain growth dynamics. Open Biol 2022; 12:220037. [PMID: 36102061 PMCID: PMC9471992 DOI: 10.1098/rsob.220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organ growth is tightly regulated across environmental conditions to generate an appropriate final size. While the size of some organs is free to vary, others need to maintain constant size to function properly. This poses a unique problem: how is robust final size achieved when environmental conditions alter key processes that regulate organ size throughout the body, such as growth rate and growth duration? While we know that brain growth is ‘spared’ from the effects of the environment from humans to fruit flies, we do not understand how this process alters growth dynamics across brain compartments. Here, we explore how this robustness in brain size is achieved by examining differences in growth patterns between the larval body, the brain and a brain compartment—the mushroom bodies—in Drosophila melanogaster across both thermal and nutritional conditions. We identify key differences in patterns of growth between the whole brain and mushroom bodies that are likely to underlie robustness of final organ shape. Further, we show that these differences produce distinct brain shapes across environments.
Collapse
Affiliation(s)
- Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Nutrition influences nervous system development by regulating neural stem cell homeostasis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Nogueira Alves A, Oliveira MM, Koyama T, Shingleton A, Mirth CK. Ecdysone coordinates plastic growth with robust pattern in the developing wing. eLife 2022; 11:72666. [PMID: 35261337 PMCID: PMC8947767 DOI: 10.7554/elife.72666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Animals develop in unpredictable, variable environments. In response to environmental change, some aspects of development adjust to generate plastic phenotypes. Other aspects of development, however, are buffered against environmental change to produce robust phenotypes. How organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we demonstrate that the steroid hormone ecdysone coordinates both plasticity of organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Using fed and starved larvae that lack prothoracic glands, which synthesize ecdysone, we show that nutrition regulates growth both via ecdysone and via an ecdysone-independent mechanism, while nutrition regulates patterning only via ecdysone. We then demonstrate that growth shows a graded response to ecdysone concentration, while patterning shows a threshold response. Collectively, these data support a model where nutritionally regulated ecdysone fluctuations confer plasticity by regulating disc growth in response to basal ecdysone levels and confer robustness by initiating patterning only once ecdysone peaks exceed a threshold concentration. This could represent a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.
Collapse
Affiliation(s)
| | | | | | - Alexander Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Texada MJ, Lassen M, Pedersen LH, Koyama T, Malita A, Rewitz K. Insulin signaling couples growth and early maturation to cholesterol intake in Drosophila. Curr Biol 2022; 32:1548-1562.e6. [PMID: 35245460 DOI: 10.1016/j.cub.2022.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Nutrition is one of the most important influences on growth and the timing of maturational transitions including mammalian puberty and insect metamorphosis. Childhood obesity is associated with precocious puberty, but the assessment mechanism that links body fat to early maturation is unknown. During development, the intake of nutrients promotes signaling through insulin-like systems that govern the growth of cells and tissues and also regulates the timely production of the steroid hormones that initiate the juvenile-adult transition. We show here that the dietary lipid cholesterol, which is required as a component of cell membranes and as a substrate for steroid biosynthesis, also governs body growth and maturation in Drosophila via promoting the expression and release of insulin-like peptides. This nutritional input acts via the nutrient sensor TOR, which is regulated by the Niemann-Pick-type-C 1 (Npc1) cholesterol transporter, in the glia of the blood-brain barrier and cells of the adipose tissue to remotely drive systemic insulin signaling and body growth. Furthermore, increasing intracellular cholesterol levels in the steroid-producing prothoracic gland strongly promotes endoreduplication, leading to an accelerated attainment of a nutritional checkpoint that normally ensures that animals do not initiate maturation prematurely. These findings, therefore, show that a Npc1-TOR signaling system couples the sensing of the lipid cholesterol with cellular and systemic growth control and maturational timing, which may help explain both the link between cholesterol and cancer as well as the connection between body fat (obesity) and early puberty.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| | - Mette Lassen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Lisa H Pedersen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
22
|
Cao X, Rojas M, Pastor-Pareja JC. Intrinsic and damage-induced JAK/STAT signaling regulate developmental timing by the Drosophila prothoracic gland. Dis Model Mech 2021; 15:273570. [PMID: 34842272 PMCID: PMC8807578 DOI: 10.1242/dmm.049160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental JAK/STAT roles intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), which controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and advanced metamorphosis. Conversely, JAK/STAT hyperactivation by overexpression of pathway components or SUMOylation loss caused PG hypertrophy and metamorphosis delay. Tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis, at least in part by inducing expression of the JAK/STAT target Apontic. JAK/STAT damage signaling, therefore, regulates metamorphosis onset by co-opting its developmental role in the PG. Our findings in Drosophila provide insights on how systemic effects of damage and cancer can interfere with hormonally controlled development and developmental transitions. Summary: Damage signaling from tumors mediated by JAK/STAT-activating Upd cytokines delays the Drosophila larva–pupa transition through co-option of a JAK/STAT developmental role in the prothoracic gland.
Collapse
Affiliation(s)
- Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marta Rojas
- School of Medicine, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
23
|
Juarez-Carreño S, Vallejo DM, Carranza-Valencia J, Palomino-Schätzlein M, Ramon-Cañellas P, Santoro R, de Hartog E, Ferres-Marco D, Romero A, Peterson HP, Ballesta-Illan E, Pineda-Lucena A, Dominguez M, Morante J. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep 2021; 37:109830. [PMID: 34644570 DOI: 10.1016/j.celrep.2021.109830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fat stores are critical for reproductive success and may govern maturation initiation. Here, we report that signaling and sensing fat sufficiency for sexual maturation commitment requires the lipid carrier apolipophorin in fat cells and Sema1a in the neuroendocrine prothoracic gland (PG). Larvae lacking apolpp or Sema1a fail to initiate maturation despite accruing sufficient fat stores, and they continue gaining weight until death. Mechanistically, sensing peripheral body-fat levels via the apolipophorin/Sema1a axis regulates endocytosis, endoplasmic reticulum remodeling, and ribosomal maturation for the acquisition of the PG cells' high biosynthetic and secretory capacity. Downstream of apolipophorin/Sema1a, leptin-like upd2 triggers the cessation of feeding and initiates sexual maturation. Human Leptin in the insect PG substitutes for upd2, preventing obesity and triggering maturation downstream of Sema1a. These data show how peripheral fat levels regulate the control of the maturation decision-making process via remodeling of endomembranes and ribosomal biogenesis in gland cells.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Diana Marcela Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Juan Carranza-Valencia
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | | | - Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Roberto Santoro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Emily de Hartog
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Aitana Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Esther Ballesta-Illan
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain; Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
24
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
25
|
Toyofuku M, Fujinaga D, Inaba K, Funahashi T, Fujikawa Y, Inoue H, Kataoka H, Niwa R, Ono H. The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104294. [PMID: 34389412 DOI: 10.1016/j.jinsphys.2021.104294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.
Collapse
Affiliation(s)
- Miwako Toyofuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kazue Inaba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomoki Funahashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
26
|
Chafino S, Martín D, Franch-Marro X. Activation of EGFR signaling by Tc-Vein and Tc-Spitz regulates the metamorphic transition in the red flour beetle Tribolium castaneum. Sci Rep 2021; 11:18807. [PMID: 34552169 PMCID: PMC8458297 DOI: 10.1038/s41598-021-98334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Animal development relies on a sequence of specific stages that allow the formation of adult structures with a determined size. In general, juvenile stages are dedicated mainly to growth, whereas last stages are devoted predominantly to the maturation of adult structures. In holometabolous insects, metamorphosis marks the end of the growth period as the animals stops feeding and initiate the final differentiation of the tissues. This transition is controlled by the steroid hormone ecdysone produced in the prothoracic gland. In Drosophila melanogaster different signals have been shown to regulate the production of ecdysone, such as PTTH/Torso, TGFß and Egfr signaling. However, to which extent the roles of these signals are conserved remains unknown. Here, we study the role of Egfr signaling in post-embryonic development of the basal holometabolous beetle Tribolium castaneum. We show that Tc-Egfr and Tc-pointed are required to induced a proper larval-pupal transition through the control of the expression of ecdysone biosynthetic genes. Furthermore, we identified an additional Tc-Egfr ligand in the Tribolium genome, the neuregulin-like protein Tc-Vein (Tc-Vn), which contributes to induce larval-pupal transition together with Tc-Spitz (Tc-Spi). Interestingly, we found that in addition to the redundant role in the control of pupa formation, each ligand possesses different functions in organ morphogenesis. Whereas Tc-Spi acts as the main ligand in urogomphi and gin traps, Tc-Vn is required in wings and elytra. Altogether, our findings show that in Tribolium, post-embryonic Tc-Egfr signaling activation depends on the presence of two ligands and that its role in metamorphic transition is conserved in holometabolous insects.
Collapse
Affiliation(s)
- Sílvia Chafino
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - David Martín
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - Xavier Franch-Marro
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
27
|
Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size. Cell Rep 2021; 36:109644. [PMID: 34469735 PMCID: PMC8428980 DOI: 10.1016/j.celrep.2021.109644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.
Collapse
|
28
|
Devilliers M, Garrido D, Poidevin M, Rubin T, Le Rouzic A, Montagne J. Differential metabolic sensitivity of insulin-like-response- and TORC1-dependent overgrowth in Drosophila fat cells. Genetics 2021; 217:1-12. [PMID: 33683355 DOI: 10.1093/genetics/iyaa010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
Collapse
Affiliation(s)
- Maelle Devilliers
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Damien Garrido
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Thomas Rubin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, Université Paris-Saclay, UMR 9191, F-91190 Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Hughson BN, Shimell M, O'Connor MB. AKH Signaling in D. melanogaster Alters Larval Development in a Nutrient-Dependent Manner That Influences Adult Metabolism. Front Physiol 2021; 12:619219. [PMID: 33708137 PMCID: PMC7940354 DOI: 10.3389/fphys.2021.619219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism, growth, and development are intrinsically linked, and their coordination is dependent upon inter-organ communication mediated by anabolic, catabolic, and steroid hormones. In Drosophila melanogaster, the corpora cardiaca (CC) influences metabolic homeostasis through adipokinetic hormone (AKH) signaling. AKH has glucagon-like properties and is evolutionarily conserved in mammals as the gonadotropin-releasing hormone, but its role in insect development is unknown. Here we report that AKH signaling alters larval development in a nutrient stress-dependent manner. This activity is regulated by the locus dg2, which encodes a cGMP-dependent protein kinase (PKG). CC-specific downregulation of dg2 expression delayed the developmental transition from larval to pupal life, and altered adult metabolism and behavior. These developmental effects were AKH-dependent, and were observed only in flies that experienced low nutrient stress during larval development. Calcium-mediated vesicle exocytosis regulates ecdysteroid secretion from the prothoracic gland (PG), and we found that AKH signaling increased cytosolic free calcium levels in the PG. We identified a novel pathway through which PKG acts in the CC to communicate metabolic information to the PG via AKH signaling. AKH signaling provides a means whereby larval nutrient stress can alter developmental trajectories into adulthood.
Collapse
Affiliation(s)
- Bryon N Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Kannangara JR, Mirth CK, Warr CG. Regulation of ecdysone production in Drosophila by neuropeptides and peptide hormones. Open Biol 2021; 11:200373. [PMID: 33593157 PMCID: PMC8103234 DOI: 10.1098/rsob.200373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In both mammals and insects, steroid hormones play a major role in directing the animal's progression through developmental stages. To maximize fitness outcomes, steroid hormone production is regulated by the environmental conditions experienced by the animal. In insects, the steroid hormone ecdysone mediates transitions between developmental stages and is regulated in response to environmental factors such as nutrition. These environmental signals are communicated to the ecdysone-producing gland via the action of neuropeptide and peptide hormone signalling pathways. While some of these pathways have been well characterized, there is evidence to suggest more signalling pathways than has previously been thought function to control ecdysone production, potentially in response to a greater range of environmental conditions. Here, we review the neuropeptide and peptide hormone signalling pathways known to regulate the production of ecdysone in the model genetic insect Drosophila melanogaster, as well as what is known regarding the environmental signals that trigger these pathways. Areas for future research are highlighted that can further contribute to our overall understanding of the complex orchestration of environmental, physiological and developmental cues that together produce a functioning adult organism.
Collapse
Affiliation(s)
- Jade R. Kannangara
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Coral G. Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
31
|
Pan X, Connacher RP, O'Connor MB. Control of the insect metamorphic transition by ecdysteroid production and secretion. CURRENT OPINION IN INSECT SCIENCE 2021; 43:11-20. [PMID: 32950745 PMCID: PMC7965781 DOI: 10.1016/j.cois.2020.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking pathways and the discoveries of novel factors regulating prothoracic gland function.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Robert P Connacher
- Department Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA.
| |
Collapse
|
32
|
Sood C, Doyle SE, Siegrist SE. Steroid hormones, dietary nutrients, and temporal progression of neurogenesis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:70-77. [PMID: 33127508 PMCID: PMC8058227 DOI: 10.1016/j.cois.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 05/13/2023]
Abstract
Temporal patterning of neural progenitors, in which different factors are sequentially expressed, is an evolutionarily conserved strategy for generating neuronal diversity during development. In the Drosophila embryo, mechanisms that mediate temporal patterning of neural stem cells (neuroblasts) are largely cell-intrinsic. However, after embryogenesis, neuroblast temporal patterning relies on extrinsic cues as well, as freshly hatched larvae seek out nutrients and other key resources in varying natural environments. We recap current understanding of neuroblast-intrinsic temporal programs and discuss how neuroblast extrinsic cues integrate and coordinate with neuroblast intrinsic programs to control numbers and types of neurons produced. One key emerging extrinsic factor that impacts temporal patterning of neuroblasts and their daughters as well as termination of neurogenesis is the steroid hormone, ecdysone, a known regulator of large-scale developmental transitions in insects and arthropods. Lastly, we consider evolutionary conservation and discuss recent work on thyroid hormone signaling in early vertebrate brain development.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
33
|
Giannios P, Casanova J. Systemic and local effect of the Drosophila headcase gene and its role in stress protection of Adult Progenitor Cells. PLoS Genet 2021; 17:e1009362. [PMID: 33556132 PMCID: PMC7895379 DOI: 10.1371/journal.pgen.1009362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
During the development of a holometabolous insect such as Drosophila, specific group of cells in the larva survive during metamorphosis, unlike the other larval cells, and finally give rise to the differentiated adult structures. These cells, also known as Adult Progenitor Cells (APCs), maintain their multipotent capacity, differentially respond to hormonal and nutritional signals, survive the intrinsic and environmental stress and respond to the final differentiation cues. However, not much is known about the specific molecular mechanisms that account for their unique characteristics. Here we show that a specific Drosophila APC gene, headcase (hdc), has a dual role in the normal development of these cells. It acts at a systemic level by controlling the hormone ecdysone in the prothoracic gland and at the same time it acts locally as a tissue growth suppressor in the APC clusters, where it modulates the activity of the TOR pathway and promotes their survival by contributing in the regulation of the Unfolded Protein Response. We also show that hdc provides protection against stress in the APCs and that its ectopic expression in cells that do not usually express hdc can confer these cells with an additional stress protection. Hdc is the founding member of a group of homolog proteins identified from C. elegans to humans, where has been found associated with cancer progression. The finding that the Drosophila hdc is specifically expressed in progenitor cells and that it provides protection against stress opens up a new hypothesis to be explored regarding the role of the human Heca and its contribution to carcinogenesis.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| |
Collapse
|
34
|
Mirth CK, Saunders TE, Amourda C. Growing Up in a Changing World: Environmental Regulation of Development in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:81-99. [PMID: 32822557 DOI: 10.1146/annurev-ento-041620-083838] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All organisms are exposed to changes in their environment throughout their life cycle. When confronted with these changes, they adjust their development and physiology to ensure that they can produce the functional structures necessary for survival and reproduction. While some traits are remarkably invariant, or robust, across environmental conditions, others show high degrees of variation, known as plasticity. Generally, developmental processes that establish cell identity are thought to be robust to environmental perturbation, while those relating to body and organ growth show greater degrees of plasticity. However, examples of plastic patterning and robust organ growth demonstrate that this is not a hard-and-fast rule.In this review, we explore how the developmental context and the gene regulatory mechanisms underlying trait formation determine the impacts of the environment on development in insects. Furthermore, we outline future issues that need to be resolved to understand how the structure of signaling networks defines whether a trait displays plasticity or robustness.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia;
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117588, Republic of Singapore
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673, Republic of Singapore
| | - Christopher Amourda
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
35
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
37
|
Jacobs HT, George J, Kemppainen E. Regulation of growth in Drosophila melanogaster: the roles of mitochondrial metabolism. J Biochem 2020; 167:267-277. [PMID: 31926002 PMCID: PMC7048069 DOI: 10.1093/jb/mvaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial functions are often considered purely from the standpoint of catabolism, but in growing cells they are mainly dedicated to anabolic processes, and can have a profound impact on the rate of growth. The Drosophila larva, which increases in body mass ∼200-fold over the course of ∼3 days at 25°C, provides an excellent model to study the underlying regulatory machinery that connects mitochondrial metabolic capacity to growth. In this review, we will focus on several key aspects of this machinery: nutrient sensing, endocrine control of feeding and nutrient mobilization, metabolic signalling, protein synthesis regulation and pathways of steroid biosynthesis and activity. In all these aspects, mitochondria appear to play a crucial role.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Jack George
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
38
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
39
|
Yamada T, Hironaka KI, Habara O, Morishita Y, Nishimura T. A developmental checkpoint directs metabolic remodelling as a strategy against starvation in Drosophila. Nat Metab 2020; 2:1096-1112. [PMID: 33046910 DOI: 10.1038/s42255-020-00293-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
Abstract
Steroid hormones are crucial regulators of life-stage transitions during development in animals. However, the molecular mechanisms by which developmental transition through these stages is coupled with optimal metabolic homeostasis remains poorly understood. Here, we demonstrate through mathematical modelling and experimental validation that ecdysteroid-induced metabolic remodelling from resource consumption to conservation can be a successful life-history strategy to maximize fitness in Drosophila larvae in a fluctuating environment. Specifically, the ecdysteroid-inducible protein ImpL2 protects against hydrolysis of circulating trehalose following pupal commitment in larvae. Stored glycogen and triglycerides in the fat body are also conserved, even under fasting conditions. Moreover, pupal commitment dictates reduced energy expenditure upon starvation to maintain available resources, thus negotiating trade-offs in resource allocation at the physiological and behavioural levels. The optimal stage-specific metabolic shift elucidated by our predictive and empirical approaches reveals that Drosophila has developed a highly controlled system for ensuring robust development that may be conserved among higher-order organisms in response to intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ken-Ichi Hironaka
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | | | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
40
|
Kannangara JR, Henstridge MA, Parsons LM, Kondo S, Mirth CK, Warr CG. A New Role for Neuropeptide F Signaling in Controlling Developmental Timing and Body Size in Drosophila melanogaster. Genetics 2020; 216:135-144. [PMID: 32675276 PMCID: PMC7463290 DOI: 10.1534/genetics.120.303475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
As juvenile animals grow, their behavior, physiology, and development need to be matched to environmental conditions to ensure they survive to adulthood. However, we know little about how behavior and physiology are integrated with development to achieve this outcome. Neuropeptides are prime candidates for achieving this due to their well-known signaling functions in controlling many aspects of behavior, physiology, and development in response to environmental cues. In the growing Drosophila larva, while several neuropeptides have been shown to regulate feeding behavior, and a handful to regulate growth, it is unclear if any of these play a global role in coordinating feeding behavior with developmental programs. Here, we demonstrate that Neuropeptide F Receptor (NPFR), best studied as a conserved regulator of feeding behavior from insects to mammals, also regulates development in Drosophila Knocking down NPFR in the prothoracic gland, which produces the steroid hormone ecdysone, generates developmental delay and an extended feeding period, resulting in increased body size. We show that these effects are due to decreased ecdysone production, as these animals have reduced expression of ecdysone biosynthesis genes and lower ecdysone titers. Moreover, these phenotypes can be rescued by feeding larvae food supplemented with ecdysone. Further, we show that NPFR negatively regulates the insulin signaling pathway in the prothoracic gland to achieve these effects. Taken together, our data demonstrate that NPFR signaling plays a key role in regulating animal development, and may, thus, play a global role in integrating feeding behavior and development in Drosophila.
Collapse
Affiliation(s)
- Jade R Kannangara
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Linda M Parsons
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Coral G Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
41
|
Vea IM, Shingleton AW. Network-regulated organ allometry: The developmental regulation of morphological scaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e391. [PMID: 32567243 DOI: 10.1002/wdev.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022]
Abstract
Morphological scaling relationships, or allometries, describe how traits grow coordinately and covary among individuals in a population. The developmental regulation of scaling is essential to generate correctly proportioned adults across a range of body sizes, while the mis-regulation of scaling may result in congenital birth defects. Research over several decades has identified the developmental mechanisms that regulate the size of individual traits. Nevertheless, we still have poor understanding of how these mechanisms work together to generate correlated size variation among traits in response to environmental and genetic variation. Conceptually, morphological scaling can be generated by size-regulatory factors that act directly on multiple growing traits (trait-autonomous scaling), or indirectly via hormones produced by central endocrine organs (systemically regulated scaling), and there are a number of well-established examples of such mechanisms. There is much less evidence, however, that genetic and environmental variation actually acts on these mechanisms to generate morphological scaling in natural populations. More recent studies indicate that growing organs can themselves regulate the growth of other organs in the body. This suggests that covariation in trait size can be generated by network-regulated scaling mechanisms that respond to changes in the growth of individual traits. Testing this hypothesis, and one of the main challenges of understanding morphological scaling, requires connecting mechanisms elucidated in the laboratory with patterns of scaling observed in the natural world. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
42
|
Chauhan N, Shrivastava NK, Agrawal N, Shakarad MN. Wing patterning in faster developing Drosophila is associated with high ecdysone titer and wingless expression. Mech Dev 2020; 163:103626. [PMID: 32526278 DOI: 10.1016/j.mod.2020.103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
'Developmental robustness' is the ability of biological systems to maintain a stable phenotype despite genetic, environmental or physiological perturbations. In holometabolous insects, accurate patterning and development is guaranteed by alignment of final gene expression patterns in tissues at specific developmental stage such as molting and pupariation, irrespective of individual rate of development. In the present study, we used faster developing Drosophila melanogaster populations that show reduction of ~22% in egg to adult development time. Flies from the faster developing population exhibit phenotype constancy, although significantly small in size. The reduction in development time in faster developing flies is possibly due to coordination between higher ecdysteroid release and higher expression of developmental genes. The two together might be ensuring appropriate pattern formation and early exit at each development stage in the populations selected for faster pre-adult development compared to their ancestral controls. We report that apart from plasticity in the rate of pattern progression, alteration in the level of gene expression may be responsible for pattern integrity even under reduced development time.
Collapse
Affiliation(s)
- Namita Chauhan
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Namita Agrawal
- Fly Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Mallikarjun N Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
43
|
Song X, Pei L, Zhang Y, Chen X, Zhong Q, Ji Y, Tang J, Feng F, Li B. Functional diversification of three delta-class glutathione S-transferases involved in development and detoxification in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2020; 29:320-336. [PMID: 31999035 DOI: 10.1111/imb.12637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme superfamily. Forty-one GSTs have been identified in Tribolium castaneum; however, none of the 41 GSTs has been functionally characterized. Here, three delta-class GSTs, TcGSTd1, TcGSTd2 and TcGSTd3, of T. castaneum were successfully cloned and expressed in Escherichia coli. All of the studied GSTs catalysed the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene. Insecticide treatment showed that the expression levels of TcGSTd3 and TcGSTd2 were significantly increased after exposure to phoxim and lambda-cyhalothrin, whereas TcGSTd1 was slightly upregulated only in response to phoxim. A disc diffusion assay showed that overexpression of TcGSTD3, but not TcGSTD1 or TcGSTD2, in E. coli increased resistance to paraquat-induced oxidative stress. RNA interference knockdown of TcGSTd1 caused metamorphosis deficiencies and reduced fecundity by regulating insulin/target-of-rapamycin signalling pathway-mediated ecdysteroid biosynthesis, and knockdown of TcGSTd3 led to reduced fertility and a decreased hatch rate of the offspring, probably caused by the reduced antioxidative activity in the reproductive organs. These results indicate that TcGSTd3 and TcGSTd2 may play vital roles in cellular detoxification, whereas TcGSTd1 may play essential roles in normal development of T. castaneum. These delta-class GSTs in T. castaneum have obtained different functions during the evolution.
Collapse
Affiliation(s)
- X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Pei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - X Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
44
|
Cruz J, Martín D, Franch-Marro X. Egfr Signaling Is a Major Regulator of Ecdysone Biosynthesis in the Drosophila Prothoracic Gland. Curr Biol 2020; 30:1547-1554.e4. [DOI: 10.1016/j.cub.2020.01.092] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
|
45
|
Xu LC, Nunes C, Wang VR, Saito A, Chen T, Basak P, Chang JJ, Koyama T, Suzuki Y. Distinct nutritional and endocrine regulation of prothoracic gland activities underlies divergent life history strategies in Manduca sexta and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103335. [PMID: 32061770 DOI: 10.1016/j.ibmb.2020.103335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Life history trade-offs lead to various strategies that maximize fitness, but the developmental mechanisms underlying these alternative strategies continue to be poorly understood. In insects, trade-offs exist between size and developmental time. Recent studies in the fruit fly Drosophila melanogaster have suggested that the steroidogenic prothoracic glands play a key role in determining the timing of metamorphosis. In this study, the nutrient-dependent growth and transcriptional activation of prothoracic glands were studied in D. melanogaster and the tobacco hornworm Manduca sexta. In both species, minimum viable weight (MVW) was associated with activation of ecdysteroid biosynthesis genes and growth of prothoracic gland cells. However, the timing of MVW attainment in M. sexta is delayed by the presence of the sesquiterpenoid hormone, juvenile hormone (JH), whereas in D. melanogaster it is not. Moreover, in D. melanogaster, the transcriptional regulation of ecdysteroidogenesis becomes nutrient-independent at the MVW/critical weight (CW) checkpoint. In contrast, in M. sexta, starvation consistently reduced transcriptional activation of ecdysteroid biosynthesis genes even after CW attainment, indicating that the nature of CW differs fundamentally between the two species. In D. melanogaster, the prothoracic glands dictate the timing of metamorphosis even in the absence of nutritional inputs, whereas in M. sexta, prothoracic gland activity is tightly coupled to the nutritional status of the body, thereby delaying the onset of metamorphosis before CW attainment. We propose that selection for survival under unpredictable nutritional availability leads to the evolution of increased modularity in both morphological and endocrine traits.
Collapse
Affiliation(s)
- Lily C Xu
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Catarina Nunes
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Victoria R Wang
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Akiho Saito
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Teresa Chen
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Priyanka Basak
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA
| | - Jane J Chang
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA; Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Takashi Koyama
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal; Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
46
|
Lim D, Lee S, Choi M, Han JY, Seong Y, Na D, Kwon Y, Lee YS. The conserved microRNA miR‐8‐3p coordinates the expression of V‐ATPase subunits to regulate ecdysone biosynthesis forDrosophilametamorphosis. FASEB J 2020; 34:6449-6465. [DOI: 10.1096/fj.201901516r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/28/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Do‐Hwan Lim
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Seungjae Lee
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Min‐Seok Choi
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| | - Jee Yun Han
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
| | - Youngmo Seong
- Department of Bioscience and Biotechnology Sejong University Seoul Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering Chung‐Ang University Seoul Republic of Korea
| | - Young‐Soo Kwon
- Department of Bioscience and Biotechnology Sejong University Seoul Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology Korea University Seoul Republic of Korea
- Institute of Animal Molecular Biotechnology Korea University Seoul Republic of Korea
| |
Collapse
|
47
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
48
|
Gu SH, Chen CH. Reactive oxygen species-mediated bombyxin signaling in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103279. [PMID: 31756435 DOI: 10.1016/j.ibmb.2019.103279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we demonstrated that bombyxin, an insect insulin-like peptide, modulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs) through redox signaling. Our results showed that bombyxin treatment resulted in a transient increase in intracellular reactive oxygen species (ROS) concentration, as measured using 2',7'-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant N-acetylcysteine (NAC) abolished the bombyxin-induced increase in fluorescence in Bombyx PGs. Furthermore, bombyxin-induced ROS production was inhibited by mitochondrial oxidative phosphorylation inhibitors (rotenone and antimycin A), indicating mitochondria-mediated ROS production. The stimulation of ROS production in response to bombyxin appears to undergo development-specific changes. We further investigated the action mechanism of bombyxin-stimulated ROS signaling. Results showed that in the presence of either NAC, rotenone, or antimycin A, bombyxin-stimulated phosphorylation of insulin receptor, Akt, and 4E-binding protein (4E-BP) was blocked and bombyxin-stimulated ecdysteroidogenesis in PGs was greatly inhibited. From these results, we conclude that ROS signaling appears to be involved in bombyxin-stimulated ecdysteroidogenesis of PGs in B. mori by modulating the phosphorylation of insulin receptor, Akt, and 4E-BP. To our knowledge, this is the first demonstration of redox regulation in insulin signaling in an insect system.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County, 717, Taiwan, ROC
| |
Collapse
|
49
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Ye C, Rasheed H, Ran Y, Yang X, Xing L, Su X. Transcriptome changes reveal the genetic mechanisms of the reproductive plasticity of workers in lower termites. BMC Genomics 2019; 20:702. [PMID: 31500567 PMCID: PMC6734246 DOI: 10.1186/s12864-019-6037-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the isolated workers of Reticulitermes labralis developed into reproductives, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results We identified 38,070 differentially expressed genes and found a pattern of gene expression involved in the differentiation of the workers into reproductives. 12, 543 genes were specifically upregulated in the isolated workers. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into reproductives. Ras functions as a signalling switch regulates the reproductive plasticity of workers. The catalase gene which is related to longevity was up-regulated in reproductives. Conclusion We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into reproductives and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes. Electronic supplementary material The online version of this article (10.1186/s12864-019-6037-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenxu Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China.,College of Life Sciences, Northwest University, Xi'an, China
| | - Humaira Rasheed
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yuehua Ran
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiaojuan Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Lianxi Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China.,College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China. .,College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|