1
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. Genetics 2023; 225:iyad122. [PMID: 37418686 PMCID: PMC10471200 DOI: 10.1093/genetics/iyad122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous end joining (NHEJ) pathway when homologous recombination is not an option. A zinc finger nuclease cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys+ colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys+ events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol ζ and Pol η. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required translesion synthesis polymerases as well as the exonuclease activity of the replicative Pol δ DNA polymerase. Survivors were equally split between NHEJ events and 1.2 or 11.7 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in nongrowing than in growing cells and was most efficient in G0 cells. These studies provide novel insights into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Saldanha J, Rageul J, Patel JA, Kim H. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork. Int J Mol Sci 2023; 24:10488. [PMID: 37445667 PMCID: PMC10341514 DOI: 10.3390/ijms241310488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
DNA replication is a tightly controlled process that ensures the faithful duplication of the genome. However, DNA damage arising from both endogenous and exogenous assaults gives rise to DNA replication stress associated with replication fork slowing or stalling. Therefore, protecting the stressed fork while prompting its recovery to complete DNA replication is critical for safeguarding genomic integrity and cell survival. Specifically, the plasticity of the replication fork in engaging distinct DNA damage tolerance mechanisms, including fork reversal, repriming, and translesion DNA synthesis, enables cells to overcome a variety of replication obstacles. Furthermore, stretches of single-stranded DNA generated upon fork stalling trigger the activation of the ATR kinase, which coordinates the cellular responses to replication stress by stabilizing the replication fork, promoting DNA repair, and controlling cell cycle and replication origin firing. Deregulation of the ATR checkpoint and aberrant levels of chronic replication stress is a common characteristic of cancer and a point of vulnerability being exploited in cancer therapy. Here, we discuss the various adaptive responses of a replication fork to replication stress and the roles of ATR signaling that bring fork stabilization mechanisms together. We also review how this knowledge is being harnessed for the development of checkpoint inhibitors to trigger the replication catastrophe of cancer cells.
Collapse
Affiliation(s)
- Joanne Saldanha
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jinal A. Patel
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hyungjin Kim
- The Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Shaltz S, Jinks-Robertson S. Genetic control of the error-prone repair of a chromosomal double-strand break with 5' overhangs in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539391. [PMID: 37205473 PMCID: PMC10187297 DOI: 10.1101/2023.05.04.539391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A targeted double-strand break introduced into the genome of Saccharomyces cerevisiae is repaired by the relatively error-prone nonhomologous-end joining (NHEJ) pathway when homologous recombination is not an option. A ZFN cleavage site was inserted out-of-frame into the LYS2 locus of a haploid yeast strain to study the genetic control of NHEJ when the ends contain 5' overhangs. Repair events that destroyed the cleavage site were identified either as Lys + colonies on selective medium or as surviving colonies on rich medium. Junction sequences in Lys + events solely reflected NHEJ and were influenced by the nuclease activity of Mre11 as well as by the presence/absence of the NHEJ-specific polymerase Pol4 and the translesion-synthesis DNA polymerases Pol σ and Pol 11. Although most NHEJ events were dependent on Pol4, a 29-bp deletion with endpoints in 3-bp repeats was an exception. The Pol4-independent deletion required TLS polymerases as well as the exonuclease activity of the replicative Pol DNA polymerase. Survivors were equally split between NHEJ events and 1 kb or 11 kb deletions that reflected microhomology-mediated end joining (MMEJ). MMEJ events required the processive resection activity of Exo1/Sgs1, but there unexpectedly was no dependence on the Rad1-Rad10 endonuclease for the removal of presumptive 3' tails. Finally, NHEJ was more efficient in non-growing than in growing cells and was most efficient in G0 cells. These studies provide novel insight into the flexibility and complexity of error-prone DSB repair in yeast.
Collapse
Affiliation(s)
- Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
5
|
Arbel M, Liefshitz B, Kupiec M. DNA damage bypass pathways and their effect on mutagenesis in yeast. FEMS Microbiol Rev 2021; 45:5896953. [PMID: 32840566 DOI: 10.1093/femsre/fuaa038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.
Collapse
Affiliation(s)
- Matan Arbel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Batia Liefshitz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
6
|
de Krijger I, Boersma V, Jacobs JJL. REV7: Jack of many trades. Trends Cell Biol 2021; 31:686-701. [PMID: 33962851 DOI: 10.1016/j.tcb.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The HORMA domain protein REV7, also known as MAD2L2, interacts with a variety of proteins and thereby contributes to the establishment of different complexes. With doing so, REV7 impacts a diverse range of cellular processes and gained increasing interest as more of its activities became uncovered. REV7 has important roles in translesion synthesis and mitotic progression, and acts as a central component in the recently discovered shieldin complex that operates in DNA double-strand break repair. Here we discuss the roles of REV7 in its various complexes, focusing on its activity in genome integrity maintenance. Moreover, we will describe current insights on REV7 structural features that allow it to be such a versatile protein.
Collapse
Affiliation(s)
- Inge de Krijger
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Cano‐Linares MI, Yáñez‐Vilches A, García‐Rodríguez N, Barrientos‐Moreno M, González‐Prieto R, San‐Segundo P, Ulrich HD, Prado F. Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance. EMBO Rep 2021; 22:e50410. [PMID: 33289333 PMCID: PMC7788459 DOI: 10.15252/embr.202050410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023] Open
Abstract
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage-induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57-dependent and -independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.
Collapse
Affiliation(s)
- María I Cano‐Linares
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Aurora Yáñez‐Vilches
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Néstor García‐Rodríguez
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Marta Barrientos‐Moreno
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| | - Román González‐Prieto
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
- Present address:
Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pedro San‐Segundo
- Institute of Functional Biology and Genomics (IBFG)CSIC‐University of SalamancaSalamancaSpain
| | | | - Félix Prado
- Department of Genome BiologyAndalusian Molecular Biology and Regenerative Medicine Center (CABIMER)CSIC‐University of Seville‐University Pablo de OlavideSevilleSpain
| |
Collapse
|
8
|
Meers C, Keskin H, Banyai G, Mazina O, Yang T, Gombolay AL, Mukherjee K, Kaparos EI, Newnam G, Mazin A, Storici F. Genetic Characterization of Three Distinct Mechanisms Supporting RNA-Driven DNA Repair and Modification Reveals Major Role of DNA Polymerase ζ. Mol Cell 2020; 79:1037-1050.e5. [PMID: 32882183 DOI: 10.1016/j.molcel.2020.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.
Collapse
Affiliation(s)
- Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabor Banyai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Efiyenia I Kaparos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
9
|
Sobolewska A, Halas A, Plachta M, McIntyre J, Sledziewska-Gojska E. Regulation of the abundance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage. Curr Genet 2020; 66:749-763. [PMID: 32076806 PMCID: PMC7363672 DOI: 10.1007/s00294-020-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.
Collapse
Affiliation(s)
- Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
10
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
11
|
Nazaryan-Petersen L, Oliveira IR, Mehrjouy MM, Mendez JMM, Bak M, Bugge M, Kalscheuer VM, Bache I, Hancks DC, Tommerup N. Multigenic truncation of the semaphorin-plexin pathway by a germline chromothriptic rearrangement associated with Moebius syndrome. Hum Mutat 2019; 40:1057-1062. [PMID: 31033088 DOI: 10.1002/humu.23775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Abstract
Moebius syndrome (MBS) is a congenital disorder caused by paralysis of the facial and abducens nerves. Although a number of candidate genes have been suspected, so far only mutations in PLXND1 and REV3L are confirmed to cause MBS. Here, we fine mapped the breakpoints of a complex chromosomal rearrangement (CCR) 46,XY,t(7;8;11;13) in a patient with MBS, which revealed 41 clustered breakpoints with typical hallmarks of chromothripsis. Among 12 truncated protein-coding genes, SEMA3A is known to bind to the MBS-associated PLXND1. Intriguingly, the CCR also truncated PIK3CG, which in silico interacts with REVL3 encoded by the other known MBS-gene REV3L, and with the SEMA3A/PLXND1 complex via FLT1. Additional studies of other complex rearrangements may reveal whether the multiple breakpoints in germline chromothripsis may predispose to complex multigenic disorders.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Inês R Oliveira
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Regulation and Evaluation of Medicines and Health products, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mana M Mehrjouy
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Juan M M Mendez
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Merete Bugge
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iben Bache
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dustin C Hancks
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Sakamoto AN. Translesion Synthesis in Plants: Ultraviolet Resistance and Beyond. FRONTIERS IN PLANT SCIENCE 2019; 10:1208. [PMID: 31649692 PMCID: PMC6794406 DOI: 10.3389/fpls.2019.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/03/2019] [Indexed: 05/06/2023]
Abstract
Plant genomes sustain various forms of DNA damage that stall replication forks. Translesion synthesis (TLS) is one of the pathways to overcome stalled replication in which specific polymerases (TLS polymerase) perform bypass synthesis across DNA damage. This article gives a brief overview of plant TLS polymerases. In Arabidopsis, DNA polymerase (Pol) ζ, η, κ, θ, and λ and Reversionless1 (Rev1) are shown to be involved in the TLS. For example, AtPolη bypasses ultraviolet (UV)-induced cyclobutane pyrimidine dimers in vitro. Disruption of AtPolζ or AtPolη increases root stem cell death after UV irradiation. These results suggest that AtPolζ and ATPolη bypass UV-induced damage, prevent replication arrest, and allow damaged cells to survive and grow. In general, TLS polymerases have low fidelity and often induce mutations. Accordingly, disruption of AtPolζ or AtRev1 reduces somatic mutation frequency, whereas disruption of AtPolη elevates it, suggesting that plants have both mutagenic and less mutagenic TLS activities. The stalled replication fork can be resolved by a strand switch pathway involving a DNA helicase Rad5. Disruption of both AtPolζ and AtRAD5a shows synergistic or additive effects in the sensitivity to DNA-damaging agents. Moreover, AtPolζ or AtRev1 disruption elevates homologous recombination frequencies in somatic tissues. These results suggest that the Rad5-dependent pathway and TLS are parallel. Plants grown in the presence of heat shock protein 90 (HSP90) inhibitor showed lower mutation frequencies, suggesting that HSP90 regulates mutagenic TLS in plants. Hypersensitivities of TLS-deficient plants to γ-ray and/or crosslink damage suggest that plant TLS polymerases have multiple roles, as reported in other organisms.
Collapse
|
13
|
McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Eukaryotic DNA Polymerases in Homologous Recombination. Annu Rev Genet 2017; 50:393-421. [PMID: 27893960 DOI: 10.1146/annurev-genet-120215-035243] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homologous recombination (HR) is a central process to ensure genomic stability in somatic cells and during meiosis. HR-associated DNA synthesis determines in large part the fidelity of the process. A number of recent studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination. We highlight recent findings from diverse eukaryotic organisms, including humans, that suggest both replicative and translesion DNA polymerases are involved in HR-associated DNA synthesis. Our focus is to integrate the emerging literature about DNA polymerase involvement during HR with the unique aspects of these repair mechanisms, including mutagenesis and template switching.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155;
| | | | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,College of Health Sciences, California Northstate University, Rancho Cordova, California 95670
| | - Paula Gonçalves Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616;
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
14
|
Kobbe S, Trapp O, Knoll A, Manuss A, Puchta H. The Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2718-29. [PMID: 26474640 PMCID: PMC4677884 DOI: 10.1104/pp.15.00806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required for resistance to interstrand and intrastrand cross-linking agents, but not alkylating agents. To better define the role of REV3 in relation to other key factors involved in DNA repair, we perform epistasis analysis and show that REV3-mediated resistance to DNA-damaging agents is independent of the replication damage checkpoint kinase ataxia telangiectasia-mutated and rad3-related homolog. REV3 cooperates with the endonuclease MMS and UV-sensitive protein81 in response to interstrand cross links and alkylated bases, whereas it acts independently of the ATP-dependent DNA helicase RECQ4A. Taken together, our data show that four DNA intrastrand cross-link subpathways exist in Arabidopsis, defined by ATP-dependent DNA Helicase RECQ4A, MMS and UV-sensitive protein81, REV3, and the ATPase Radiation Sensitive Protein 5A.
Collapse
Affiliation(s)
- Sabrina Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Anja Manuss
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| |
Collapse
|
15
|
Yang Y, Liu Z, Wang F, Temviriyanukul P, Ma X, Tu Y, Lv L, Lin YF, Huang M, Zhang T, Pei H, Chen BPC, Jansen JG, de Wind N, Fischhaber PL, Friedberg EC, Tang TS, Guo C. FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress. Nucleic Acids Res 2015; 43:8325-39. [PMID: 26187992 PMCID: PMC4787816 DOI: 10.1093/nar/gkv737] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022] Open
Abstract
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.
Collapse
Affiliation(s)
- Yeran Yang
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenbo Liu
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Piya Temviriyanukul
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Xiaolu Ma
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingna Lv
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Fen Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Huang
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huadong Pei
- Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA
| | - Errol C Friedberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- Key Laboratory of Genomics and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Uchiyama M, Terunuma J, Hanaoka F. The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. PLoS One 2015; 10:e0130000. [PMID: 26147350 PMCID: PMC4493104 DOI: 10.1371/journal.pone.0130000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis provides an alternative DNA replication mechanism when template DNA is damaged. In fission yeast, Eso1 (polη), Kpa1/DinB (polκ), Rev1, and Polζ (a complex of Rev3 and Rev7) have been identified as translesion synthesis polymerases. The enzymatic characteristics and protein-protein interactions of these polymerases have been intensively characterized; however, how these proteins are regulated during the cell cycle remains unclear. Therefore, we examined the cell cycle oscillation of translesion polymerases. Interestingly, the protein levels of Rev1 peaked during G1 phase and then decreased dramatically at the entry of S phase; this regulation was dependent on the proteasome. Temperature-sensitive proteasome mutants, such as mts2-U31 and mts3-U32, stabilized Rev1 protein when the temperature was shifted to the restrictive condition. In addition, deletion of pop1 or pop2, subunits of SCF ubiquitin ligase complexes, upregulated Rev1 protein levels. Besides these effects during the cell cycle, we also observed upregulation of Rev1 protein upon DNA damage. This upregulation was abolished when rad3, a checkpoint protein, was deleted or when the Rev1 promoter was replaced with a constitutive promoter. From these results, we hypothesize that translesion DNA synthesis is strictly controlled through Rev1 protein levels in order to avoid unwanted mutagenesis.
Collapse
Affiliation(s)
- Masashi Uchiyama
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Junko Terunuma
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Fumio Hanaoka
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
REV1 is important for the ATR-Chk1 DNA damage response pathway in Xenopus egg extracts. Biochem Biophys Res Commun 2015; 460:609-15. [PMID: 25800873 DOI: 10.1016/j.bbrc.2015.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
The translesion DNA synthesis (TLS) polymerase REV1 is implicated in the bypass of the irreparable DNA damage such as interstrand crosslinks (ICLs). However, the potential role of REV1 in DNA damage response (DDR) pathway has not been determined. In this research communication, we provide evidence to demonstrate that REV1 plays a previously unidentified but important role in the ATR-Chk1 checkpoint activation in response to mitomycin C (MMC)-induced ICLs in Xenopus egg extracts. We further pinpointed that REV1 plays a downstream role of a checkpoint protein complex assembly including ATR, ATRIP, TopBP1 and the Rad9-Rad1-Hus1 complex to MMC-induced ICLs on chromatin in the DDR pathway. Notably, domain dissection analysis demonstrates that a C-terminal domain, but not the individual ubiquitin binding motifs, of REV1 is important for the binding of REV1 to MMC-damaged chromatin and the MMC-induced Chk1 phosphorylation. Yet, the ATR-Chk1 DDR pathway appears to be dispensable for the preferential association of REV1 to MMC-damaged chromatin. Taken together, REV1 is important for the DDR pathway in Xenopus egg extracts.
Collapse
|
18
|
Jansen JG, Tsaalbi-Shtylik A, de Wind N. Roles of mutagenic translesion synthesis in mammalian genome stability, health and disease. DNA Repair (Amst) 2015; 29:56-64. [PMID: 25655219 DOI: 10.1016/j.dnarep.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
Abstract
Most spontaneous and DNA damage-induced nucleotide substitutions in eukaryotes depend on translesion synthesis polymerases Rev1 and Pol ζ, the latter consisting of the catalytic subunit Rev3 and the accessory protein Rev7. Here we review the regulation, and the biochemical and cellular functions, of Rev1/Pol ζ-dependent translesion synthesis. These are correlated with phenotypes of mouse models with defects in Rev1, Rev3 or Rev7. The data indicate that Rev1/Pol ζ-mediated translesion synthesis is important for adaptive immunity while playing paradoxical roles in oncogenesis. On the other hand, by enabling the replication of endogenously damaged templates, Rev1/Pol ζ -dependent translesion synthesis protects stem cells, thereby preventing features of ageing. In conclusion, Rev1/Pol ζ-dependent translesion synthesis at DNA helix-distorting nucleotide lesions orchestrates pleiotropic responses that determine organismal fitness and disease.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Anastasia Tsaalbi-Shtylik
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands.
| |
Collapse
|
19
|
Makarova AV, Nick McElhinny SA, Watts BE, Kunkel TA, Burgers PM. Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair (Amst) 2014; 18:63-7. [PMID: 24674899 DOI: 10.1016/j.dnarep.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 12/01/2022]
Abstract
During replication in yeast, the three B family DNA replicases frequently incorporate ribonucleotides (rNMPs) into DNA, and their presence in the nuclear genome can affect genome stability. This prompted us to examine ribonucleotide incorporation by the fourth B family member, Pol ζ, the enzyme responsible for the majority of damage-induced mutagenesis in eukaryotes. We first show that Pol ζ inserts rNMPs into DNA and can extend primer termini containing 3'-ribonucleotides. We then measure rNMP incorporation by Pol ζ in the presence of its cofactors, RPA, RFC and PCNA and at normal cellular dNTP and rNTP concentrations that exist under unstressed conditions. Under these conditions, Pol ζ stably incorporates one rNMP for every 200-300 dNMPs incorporated, a frequency that is slightly higher than for the high fidelity replicative DNA polymerases. Under damage-induced conditions wherein cellular dNTP concentrations are elevated 5-fold, Pol ζ only incorporates one rNMP per 1300 dNMPs. Functional interaction of Pol ζ with the mutasome assembly factor Rev1 gives comparable rNMP incorporation frequencies. These results suggest that ribonucleotide incorporation into DNA during Pol ζ-mediated mutagenesis in vivo may be rare.
Collapse
Affiliation(s)
- Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie A Nick McElhinny
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Brian E Watts
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Gallego-Sánchez A, Ufano S, Andrés S, Bueno A. Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae. PLoS One 2013; 8:e81108. [PMID: 24260543 PMCID: PMC3834268 DOI: 10.1371/journal.pone.0081108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2013] [Indexed: 01/04/2023] Open
Abstract
Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have consistently observed that mutation of the RAD53 counterbalances error-free and error-prone branches upon exposure of cells to DNA damage induced either by MMS alkylation or by UV-radiation. We have also found that the potential Mec1/Rad53 balance modulation is independent from Rad6/Rad18-mediated PCNA ubiquitylation, as mec1Δ or rad53Δ mutants show no defects in the modification of the sliding clamp, therefore, we infer that it is likely exerted by acting on TLS polymerases and/or template switching targets.
Collapse
Affiliation(s)
- Alfonso Gallego-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sandra Ufano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sonia Andrés
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
21
|
Guo X, Jinks-Robertson S. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast. DNA Repair (Amst) 2013; 12:1024-30. [PMID: 24210827 DOI: 10.1016/j.dnarep.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 11/27/2022]
Abstract
Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5'-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be involved either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination.
Collapse
Affiliation(s)
- Xiaoge Guo
- Graduate Program in Pharmacology and Molecular Cancer Biology, United States
| | | |
Collapse
|
22
|
Saini N, Zhang Y, Nishida Y, Sheng Z, Choudhury S, Mieczkowski P, Lobachev KS. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003551. [PMID: 23785298 PMCID: PMC3681665 DOI: 10.1371/journal.pgen.1003551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.
Collapse
Affiliation(s)
- Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yuri Nishida
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Shilpa Choudhury
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
- * E-mail:
| |
Collapse
|
23
|
Arbel-Eden A, Joseph-Strauss D, Masika H, Printzental O, Rachi E, Simchen G. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis. G3 (BETHESDA, MD.) 2013; 3:633-644. [PMID: 23550131 PMCID: PMC3618350 DOI: 10.1534/g3.113.005603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/09/2013] [Indexed: 12/14/2022]
Abstract
Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30 We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed.
Collapse
Affiliation(s)
- Ayelet Arbel-Eden
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem 91010, Israel
| | | | - Hagit Masika
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oxana Printzental
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eléanor Rachi
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Giora Simchen
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Abstract
The structural features that enable replicative DNA polymerases to synthesize DNA rapidly and accurately also limit their ability to copy damaged DNA. Direct replication of DNA damage is termed translesion synthesis (TLS), a mechanism conserved from bacteria to mammals and executed by an array of specialized DNA polymerases. This chapter examines how these translesion polymerases replicate damaged DNA and how they are regulated to balance their ability to replicate DNA lesions with the risk of undesirable mutagenesis. It also discusses how TLS is co-opted to increase the diversity of the immunoglobulin gene hypermutation and the contribution it makes to the mutations that sculpt the genome of cancer cells.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
25
|
Tang W, Dominska M, Gawel M, Greenwell PW, Petes TD. Genomic deletions and point mutations induced in Saccharomyces cerevisiae by the trinucleotide repeats (GAA·TTC) associated with Friedreich's ataxia. DNA Repair (Amst) 2012. [PMID: 23182423 DOI: 10.1016/j.dnarep.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expansion of certain trinucleotide repeats causes several types of human diseases, and such tracts are associated with the formation of deletions and other types of genetic rearrangements in Escherichia coli, yeast, and mammalian cells. Below, we show that long (230 repeats) tracts of the trinucleotide associated with Friedreich's ataxia (GAA·TTC) stimulate both large (>50 bp) deletions and point mutations in a reporter gene located more than 1 kb from the repetitive tract. Sequence analysis of deletion breakpoints indicates that the deletions reflect non-homologous end joining of double-stranded DNA breaks (DSBs) initiated in the tract. The tract-induced point mutations appear to reflect a different mechanism involving single-strand annealing of DNA molecules generated by DSBs within the tract, followed by filling-in of single-stranded gaps by the error-prone DNA polymerase zeta.
Collapse
Affiliation(s)
- Wei Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. Proc Natl Acad Sci U S A 2012; 109:12455-60. [PMID: 22711820 DOI: 10.1073/pnas.1206052109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication through a diverse array of DNA lesions occurs by the sequential action of two translesion synthesis (TLS) DNA polymerases (Pols), in which one inserts the nucleotide opposite the lesion and the other carries out the subsequent extension. By extending from the nucleotide inserted by another Pol, Polζ plays an indispensable role in mediating lesion bypass. Polζ comprises the Rev3 catalytic and Rev7 accessory subunits. Pol32, a subunit of the replicative polymerase Polδ, is also required for Polζ-dependent TLS, but how this Polδ subunit contributes to Polζ function in TLS has remained unknown. Here we show that yeast Polζ is a four-subunit enzyme containing Rev3, Rev7, Pol31, and Pol32; in this complex, association with Pol31/Pol32 is mediated via binding of the Rev3 C terminus to Pol31. The functional requirement of this complex is supported by evidence that mutational inactivation of Rev3's ability to bind Pol31 abrogates Polζ's role in TLS in yeast cells. These findings identify an unexpected role of Pol31 and Pol32 as two essential subunits of Polζ, and clarify why these proteins are required for Polζ-dependent TLS, but not for TLS mediated by Polη in yeast cells. To distinguish the four-subunit complex from the two-subunit Polζ, we designate the four-subunit enzyme "Polζ-d," where "-d" denotes the Pol31/Pol32 subunits of Polδ.
Collapse
|
27
|
Saribasak H, Maul RW, Cao Z, Yang WW, Schenten D, Kracker S, Gearhart PJ. DNA polymerase ζ generates tandem mutations in immunoglobulin variable regions. ACTA ACUST UNITED AC 2012; 209:1075-81. [PMID: 22615128 PMCID: PMC3371727 DOI: 10.1084/jem.20112234] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic inactivation of the genes encoding several low-fidelity DNA polymerases indicates that DNA polymerase ζ inserts tandem double-base substitutions in the immunoglobulin variable region in mouse B cells. Low-fidelity DNA polymerases introduce nucleotide substitutions in immunoglobulin variable regions during somatic hypermutation. Although DNA polymerase (pol) η is the major low-fidelity polymerase, other DNA polymerases may also contribute. Existing data are contradictory as to whether pol ζ is involved. We reasoned that the presence of pol η may mask the contribution of pol ζ, and therefore we generated mice deficient for pol η and heterozygous for pol ζ. The frequency and spectra of hypermutation was unaltered between Polζ+/− Polη−/− and Polζ+/+ Polη−/− clones. However, there was a decrease in tandem double-base substitutions in Polζ+/− Polη−/− cells compared with Polζ+/+ Polη−/− cells, suggesting that pol ζ generates tandem mutations. Contiguous mutations are consistent with the biochemical property of pol ζ to extend a mismatch with a second mutation. The presence of this unique signature implies that pol ζ contributes to mutational synthesis in vivo. Additionally, data on tandem mutations from wild type, Polζ+/−, Polζ−/−, Ung−/−, Msh2−/−, Msh6−/−, and Ung−/− Msh2−/− clones suggest that pol ζ may function in the MSH2–MSH6 pathway.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kane DP, Shusterman M, Rong Y, McVey M. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLoS Genet 2012; 8:e1002659. [PMID: 22532806 PMCID: PMC3330096 DOI: 10.1371/journal.pgen.1002659] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/04/2012] [Indexed: 12/04/2022] Open
Abstract
In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis. DNA polymerases are required during both DNA replication and various types of DNA repair. DNA double-strand breaks are frequently repaired by homologous recombination, a conservative process in which DNA is copied into the break site from a similar template. The specific polymerases that operate during homologous recombination repair of DNA double-strand breaks have not been fully characterized in multicellular organisms. In this study, we created mutant strains of Drosophila lacking one or more DNA polymerases and determined their ability to synthesize large amounts of DNA during homologous recombination. We found that the error-prone translesion polymerases eta and zeta play overlapping roles during the initiation of synthesis, while the Pol32 subunit of the replicative polymerase delta complex is required for repair involving large amounts of synthesis. In addition, we showed that flies lacking the Rev1 translesion polymerase synthesize more DNA during gap repair than their normal counterparts. Our results demonstrate that both replicative and translesion polymerases are involved in homologous recombination and identify Rev1 as a protein that may regulate the access of various polymerases to double-strand break repair intermediates.
Collapse
Affiliation(s)
- Daniel P. Kane
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Shusterman
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Yikang Rong
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- Program in Genetics, Tufts Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Sale JE. Competition, collaboration and coordination--determining how cells bypass DNA damage. J Cell Sci 2012; 125:1633-43. [PMID: 22499669 DOI: 10.1242/jcs.094748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated. In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of dynamically assembled 'modules', often comprising factors from different classical pathways, whose deployment is crucially dependent on the context in which the bypass event takes place.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
30
|
Yamashita T, Oda T, Sekimoto T. Translesion DNA Synthesis and Hsp90. Genes Environ 2012. [DOI: 10.3123/jemsge.34.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY, Glover TW, Canman CE. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res 2011; 40:682-91. [PMID: 21926160 PMCID: PMC3258153 DOI: 10.1093/nar/gkr769] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
REV1 and DNA Polymerase ζ (REV3 and REV7) play important roles in translesion DNA synthesis (TLS) in which DNA replication bypasses blocking lesions. REV1 and Polζ have also been implicated in promoting repair of DNA double-stranded breaks (DSBs). However, the mechanism by which these two TLS polymerases increase tolerance to DSBs is poorly understood. Here we demonstrate that full-length human REV1, REV3 and REV7 interact in vivo (as determined by co-immunoprecipitation studies) and together, promote homologous recombination repair. Cells lacking REV3 were hypersensitive to agents that cause DSBs including the PARP inhibitor, olaparib. REV1, REV3 or REV7-depleted cells displayed increased chromosomal aberrations, residual DSBs and sites of HR repair following exposure to ionizing radiation. Notably, cells depleted of DNA polymerase η (Polη) or the E3 ubiquitin ligase RAD18 were proficient in DSB repair following exposure to IR indicating that Polη-dependent lesion bypass or RAD18-dependent monoubiquitination of PCNA are not necessary to promote REV1 and Polζ-dependent DNA repair. Thus, the REV1/Polζ complex maintains genomic stability by directly participating in DSB repair in addition to the canonical TLS pathway.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
de Groote FH, Jansen JG, Masuda Y, Shah DM, Kamiya K, de Wind N, Siegal G. The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes. DNA Repair (Amst) 2011; 10:915-25. [PMID: 21752727 DOI: 10.1016/j.dnarep.2011.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/25/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.
Collapse
Affiliation(s)
- Frederik H de Groote
- Department of Protein Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratory, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
REV1 is a Y-family polymerase that plays a central role in mutagenic translesion DNA synthesis (TLS), contributing to tumor initiation and progression. In a current model, a monoubiquitinated form of the replication accessory protein, proliferating cell nuclear antigen (PCNA), serves as a platform to recruit REV1 to damaged sites on the DNA template. Emerging evidence indicates that posttranslational mechanisms regulate REV1 in yeast; however, the regulation of REV1 in higher eukaryotes is poorly understood. Here we show that the molecular chaperone Hsp90 is a critical regulator of REV1 in human cells. Hsp90 specifically binds REV1 in vivo and in vitro. Treatment with a specific inhibitor of Hsp90 reduces REV1 protein levels in several cell types through proteasomal degradation. This is associated with suppression of UV-induced mutagenesis. Furthermore, Hsp90 inhibition disrupts the interaction between REV1 and monoubiquitinated PCNA and suppresses UV-induced focus formation. These results indicate that Hsp90 promotes folding of REV1 into a stable and/or functional form(s) to bind to monoubiquitinated PCNA. The present findings reveal a novel role of Hsp90 in the regulation of TLS-mediated mutagenesis.
Collapse
|
34
|
Abstract
There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Richard D. Wood
- Correspondence to: 1808 Park Road 1C, P.O. Box 389, Smithville, TX, USA, 78957 Tel: (512) 237-9431 Fax: (512) 237-6532
| |
Collapse
|
35
|
Abstract
In response to DNA damage, TLS (translesion synthesis) allows replicative bypass of various DNA lesions, which stall normal replication. TLS is achieved by low-fidelity polymerases harbouring less stringent active sites. In humans, Y-family polymerases together with Pol zeta (polymerase zeta) are responsible for TLS across different types of damage. Protein-protein interaction contributes significantly to the regulation of TLS. REV1 plays a central role in TLS because it interacts with all other Y-family members and Pol zeta. Ubiquitin-dependent regulatory mechanisms also play important roles in TLS. Ubiquitin-binding domains have been found in TLS polymerases and they might be required for TLS activity. Mono-ubiquitination of PCNA (proliferating-cell nuclear antigen), the central scaffold of TLS polymerases, is thought to promote TLS. In addition, both non-proteolytic and proteolytic polyubiquitination of PCNA and TLS polymerases has been demonstrated. Owing to their low fidelity, the recruitment of TLS polymerases is strictly restricted to stalled replication forks.
Collapse
|
36
|
Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD. Loss of DNA polymerase zeta enhances spontaneous tumorigenesis. Cancer Res 2010; 70:2770-8. [PMID: 20215524 DOI: 10.1158/0008-5472.can-09-4267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.
Collapse
Affiliation(s)
- John P Wittschieben
- Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
37
|
Halas A, Baranowska H, Podlaska A, Sledziewska-Gojska E. Evaluation of the roles of Pol zeta and NHEJ in starvation-associated spontaneous mutagenesis in the yeast Saccharomyces cerevisiae. Curr Genet 2009; 55:245-51. [PMID: 19305999 DOI: 10.1007/s00294-009-0239-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The vast majority of microorganisms live under starvation-associated stress conditions that cause mutagenesis despite the limitation of DNA replication and cell division. In this study, we compared the roles of polymerase zeta (Pol zeta) and non-homologous DNA-end joining (NHEJ) in starvation-associated spontaneous base substitutions and frameshifts, using yeast mutants carrying deletions of REV3 (encoding the catalytic subunit of Pol zeta), YKU80 (encoding a protein involved in the initiation of NHEJ), or both genes. We found that approximately 50% of starvation-associated spontaneous frameshifts and 40% of base substitutions required NHEJ to occur. The role of Pol zeta was only slightly less pronounced, with 30-40% of frameshifts and 35-45% of base substitutions being dependent on Rev3. In comparison with the single mutants, the rev3 yku80 double mutant showed an additive decrease in the level of both base substitutions and frameshifts, indicating that Pol zeta and NHEJ function independently in starvation-associated mutagenesis. Our results also imply that about 30% of starvation-associated base substitutions and frameshifts arise by some unknown mechanism that does not involve Pol zeta or NHEJ.
Collapse
Affiliation(s)
- Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
38
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 451] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
39
|
Schenten D, Kracker S, Esposito G, Franco S, Klein U, Murphy M, Alt FW, Rajewsky K. Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability. ACTA ACUST UNITED AC 2009; 206:477-90. [PMID: 19204108 PMCID: PMC2646585 DOI: 10.1084/jem.20080669] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polζ is an error-prone DNA polymerase that is critical for embryonic development and maintenance of genome stability. To analyze its suggested role in somatic hypermutation (SHM) and possible contribution to DNA double-strand break (DSB) repair in class switch recombination (CSR), we ablated Rev3, the catalytic subunit of Polζ, selectively in mature B cells in vivo. The frequency of somatic mutation was reduced in the mutant cells but the pattern of SHM was unaffected. Rev3-deficient B cells also exhibited pronounced chromosomal instability and impaired proliferation capacity. Although the data thus argue against a direct role of Polζ in SHM, Polζ deficiency directly interfered with CSR in that activated Rev3-deficient B cells exhibited a reduced efficiency of CSR and an increased frequency of DNA breaks in the immunoglobulin H locus. Based on our results, we suggest a nonredundant role of Polζ in DNA DSB repair through nonhomologous end joining.
Collapse
|
40
|
Abstract
Mutations can be beneficial under conditions in which genetic diversity is advantageous, such as somatic hypermutation and antibody generation, but they can also be lethal when they disrupt basic cellular processes or cause uncontrolled proliferation and cancer. Mutations arise from inaccurate processing of lesions generated by endogenous and exogenous DNA damaging agents, and the genome is particularly vulnerable to such damage during S phase. In this phase of the cell cycle, many lesions in the DNA template block replication. Such lesions must be bypassed in order to preserve fork stability and to ensure completion of DNA replication. Lesion bypass is carried out by a set of error-prone and error-free processes collectively referred to as DNA damage tolerance mechanisms. Here, we discuss how two types of DNA damage tolerance, translesion synthesis and template switching, are regulated at stalled replication forks by ubiquitination of PCNA, and the conditions under which they occur.
Collapse
|
41
|
Hirano Y, Reddy J, Sugimoto K. Role of budding yeast Rad18 in repair of HO-induced double-strand breaks. DNA Repair (Amst) 2008; 8:51-9. [PMID: 18824138 DOI: 10.1016/j.dnarep.2008.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/22/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, United States
| | | | | |
Collapse
|
42
|
D'Souza S, Waters LS, Walker GC. Novel conserved motifs in Rev1 C-terminus are required for mutagenic DNA damage tolerance. DNA Repair (Amst) 2008; 7:1455-70. [PMID: 18603483 DOI: 10.1016/j.dnarep.2008.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/02/2008] [Accepted: 05/08/2008] [Indexed: 01/28/2023]
Abstract
The genes encoding Rev1 and DNA polymerase zeta (Rev3/Rev7) are together required for the vast majority of DNA damage-induced mutations in eukaryotes from yeast to humans. Here, we provide insight into the critical role that the Saccharomyces cerevisiae Rev1 C-terminus plays in the process of mutagenic DNA damage tolerance. The Rev1 C-terminus was previously thought to be poorly conserved and therefore not likely to be important for mediating protein-protein interactions. However, through comprehensive alignments of the Rev1 C-terminus, we have identified novel and hitherto unrecognized conserved motifs that we show play an essential role in REV1-dependent survival and mutagenesis in S. cerevisiae, likely in its post-replicative gap-filling mode. We further show that the minimal C-terminal fragment of Rev1 containing these highly conserved motifs is sufficient to interact with Rev7.
Collapse
Affiliation(s)
- Sanjay D'Souza
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
43
|
Edmunds CE, Simpson LJ, Sale JE. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell 2008; 30:519-29. [PMID: 18498753 DOI: 10.1016/j.molcel.2008.03.024] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/07/2007] [Accepted: 03/18/2008] [Indexed: 12/18/2022]
Abstract
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.
Collapse
Affiliation(s)
- Charlotte E Edmunds
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
44
|
Tseng SF, Gabriel A, Teng SC. Proofreading activity of DNA polymerase Pol2 mediates 3'-end processing during nonhomologous end joining in yeast. PLoS Genet 2008; 4:e1000060. [PMID: 18437220 PMCID: PMC2312331 DOI: 10.1371/journal.pgen.1000060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 03/26/2008] [Indexed: 02/02/2023] Open
Abstract
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends, Pol2 is important for the recession of 3' flaps that can form during imprecise pairing. Indeed, a mutation in the 3'-5' exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3' flaps. Thus, Pol2 performs a key 3' end-processing step in NHEJ.
Collapse
Affiliation(s)
- Shun-Fu Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Abram Gabriel
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Göhler T, Munoz IM, Rouse J, Blow JJ. PTIP/Swift is required for efficient PCNA ubiquitination in response to DNA damage. DNA Repair (Amst) 2008; 7:775-87. [PMID: 18353733 DOI: 10.1016/j.dnarep.2008.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.
Collapse
Affiliation(s)
- Thomas Göhler
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
46
|
Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 2008; 18:162-73. [PMID: 18157158 DOI: 10.1038/cr.2007.114] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modifications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination complexes Rad6-Rad18 and Mms2-Ubc13-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same K164 residue by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic instability and cancer.
Collapse
|
47
|
Gan GN, Wittschieben JP, Wittschieben BØ, Wood RD. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 2008; 18:174-83. [PMID: 18157155 DOI: 10.1038/cr.2007.117] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most current knowledge about DNA polymerase zeta (pol zeta) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol zeta consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol zeta can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.
Collapse
Affiliation(s)
- Gregory N Gan
- Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
48
|
Monti P, Ciribilli Y, Russo D, Bisio A, Perfumo C, Andreotti V, Menichini P, Inga A, Huang X, Gold B, Fronza G. Rev1 and Polzeta influence toxicity and mutagenicity of Me-lex, a sequence selective N3-adenine methylating agent. DNA Repair (Amst) 2008; 7:431-8. [PMID: 18182332 DOI: 10.1016/j.dnarep.2007.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/24/2022]
Abstract
The relative toxicity and mutagenicity of Me-lex, which selectively generates 3-methyladenine (3-MeA), is dependent on the nature of the DNA repair background. Base excision repair (BER)-defective S. cerevisiae strains mag1 and apn1apn2 were both significantly more sensitive to Me-lex toxicity, but only the latter is significantly more prone to Me-lex-induced mutagenesis. To examine the contribution of translesion synthesis (TLS) DNA polymerases in the bypass of Me-lex-induced lesions, the REV3 and REV1 genes were independently deleted in the parental yeast strain and in different DNA repair-deficient derivatives: the nucleotide excision repair (NER)-deficient rad14, and the BER-deficient mag1 or apn1apn2 strains. The strains contained an integrated ADE2 reporter gene under control of the transcription factor p53. A centromeric yeast expression vector containing the wild-type p53 cDNA was treated in vitro with increasing concentrations of Me-lex and transformed into the different yeast strains. The toxicity of Me-lex-induced lesions was evaluated based on the plasmid transformation efficiency compared to the untreated vector, while Me-lex mutagenicity was assessed using the p53 reporter assay. In the present study, we demonstrate that disruption of Polzeta (through deletion of its catalytic subunit coded by REV3) or Rev1 (by REV1 deletion) increased Me-lex lethality and decreased Me-lex mutagenicity in both the NER-defective (rad14) and BER-defective (mag1; apn1apn2) strains. Therefore, Polzeta and Rev1 contribute to resistance of the lethal effects of Me-lex-induced lesions (3-MeA and derived AP sites) by bypassing lesions and fixing some mutations.
Collapse
Affiliation(s)
- Paola Monti
- Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Barkley LR, Ohmori H, Vaziri C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 2007; 47:392-408. [PMID: 17652783 PMCID: PMC3103048 DOI: 10.1007/s12013-007-0032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.
Collapse
Affiliation(s)
- Laura R Barkley
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
50
|
Sakamoto AN, Stone JE, Kissling GE, McCulloch SD, Pavlov YI, Kunkel TA. Mutator alleles of yeast DNA polymerase zeta. DNA Repair (Amst) 2007; 6:1829-38. [PMID: 17715002 PMCID: PMC2128049 DOI: 10.1016/j.dnarep.2007.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 11/30/2022]
Abstract
The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.
Collapse
Affiliation(s)
- Ayako N Sakamoto
- Research Group for Gene Resources, Department of Ion-Beam-Applied Biology, Japan Atomic Energy Agency, Watanuki-machi 1233, Takasaki, Gunma 370-1292, Japan
| | | | | | | | | | | |
Collapse
|