1
|
Balachandra S, Amodeo AA. Bellymount-pulsed tracking: a novel approach for real-time in vivo imaging of Drosophila abdominal tissues. G3 (BETHESDA, MD.) 2025; 15:jkae271. [PMID: 39556480 PMCID: PMC11708215 DOI: 10.1093/g3journal/jkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live-imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis, coupled with the requirement for inputs from multiple tissues, has made long-term culture challenging. Here, we have developed Bellymount-pulsed tracking (Bellymount-PT), which allows continuous, noninvasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 h. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT, we measure key events of oogenesis, including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Haussmann IU, Dix TC, McQuarrie DWJ, Dezi V, Hans AI, Arnold R, Soller M. Structure-optimized sgRNA selection with PlatinumCRISPr for efficient Cas9 generation of knockouts. Genome Res 2024; 34:2279-2292. [PMID: 39626969 PMCID: PMC11694751 DOI: 10.1101/gr.279479.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/07/2024] [Indexed: 12/25/2024]
Abstract
A single guide RNA (sgRNA) directs Cas9 nuclease for gene-specific scission of double-stranded DNA. High Cas9 activity is essential for efficient gene editing to generate gene deletions and gene replacements by homologous recombination. However, cleavage efficiency is below 50% for more than half of randomly selected sgRNA sequences in human cell culture screens or model organisms. We used in vitro assays to determine intrinsic molecular parameters for maximal sgRNA activity including correct folding of sgRNAs and Cas9 structural information. From the comparison of over 10 data sets, we find major constraints in sgRNA design originating from defective secondary structure of the sgRNA, sequence context of the seed region, GC context, and detrimental motifs, but we also find considerable variation among different prediction tools when applied to different data sets. To aid selection of efficient sgRNAs, we developed web-based PlatinumCRISPr, an sgRNA design tool to evaluate base-pairing and sequence composition parameters for optimal design of highly efficient sgRNAs for Cas9 genome editing. We applied this tool to select sgRNAs to efficiently generate gene deletions in Drosophila Ythdc1 and Ythdf, that bind to N 6 methylated adenosines (m6A) in mRNA. However, we discovered that generating small deletions with sgRNAs and Cas9 leads to ectopic reinsertion of the deleted DNA fragment elsewhere in the genome. These insertions can be removed by standard genetic recombination and chromosome exchange. These new insights into sgRNA design and the mechanisms of CRISPR-Cas9 genome editing advance the efficient use of this technique for safer applications in humans.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- College of Life Science, Birmingham City University, Birmingham B15 3TN, United Kingdom
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Veronica Dezi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Abdullah I Hans
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roland Arnold
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
3
|
McQuarrie DWJ, Alizada A, Nicholson BC, Soller M. Rapid evolution of promoters from germline-specifically expressed genes including transposon silencing factors. BMC Genomics 2024; 25:678. [PMID: 38977960 PMCID: PMC11229233 DOI: 10.1186/s12864-024-10584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Azad Alizada
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Guan GX, Yu XP, Li DT. Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. BIOLOGY 2023; 12:1283. [PMID: 37886993 PMCID: PMC10604773 DOI: 10.3390/biology12101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Following insect mating, females often exhibit a series of physiological, behavioral, and gene expression changes. These post-mating responses (PMRs) are induced by seminal fluid components other than sperm, which not only form network proteins to assist sperm localization, supplement female-specific protein requirements, and facilitate the formation of specialized functional structures, but also activate neuronal signaling pathways in insects. This review primarily discusses the roles of seminal fluid proteins (SFPs) and octopamine (OA) in various PMRs in insects. It explores the regulatory mechanisms and mediation conditions by which they trigger PMRs, along with the series of gene expression differences they induce. Insect PMRs involve a transition from protein signaling to neuronal signaling, ultimately manifested through neural regulation and gene expression. The intricate signaling network formed as a result significantly influences female behavior and organ function, contributing to both successful reproduction and the outcomes of sexual conflict.
Collapse
Affiliation(s)
| | | | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
5
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Shields EJ, Sorida M, Sheng L, Sieriebriennikov B, Ding L, Bonasio R. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 2021; 19:254. [PMID: 34838024 PMCID: PMC8626913 DOI: 10.1186/s12915-021-01188-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly contiguous genome assemblies have become available for a variety of species, but accurate and complete annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites, remains difficult with traditional approaches. RESULTS Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome annotations include additional splice isoforms and extended 3' untranslated regions for more than 4000 genes. Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3' untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes differentially expressed across castes in specific cell types. CONCLUSIONS Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome annotations and maximize the amount of information that can be obtained from existing and future genomic datasets in Harpegnathos and other organisms.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Masato Sorida
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Long Ding
- Department of Biology, New York University, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Nallasivan MP, Haussmann IU, Civetta A, Soller M. Channel nuclear pore protein 54 directs sexual differentiation and neuronal wiring of female reproductive behaviors in Drosophila. BMC Biol 2021; 19:226. [PMID: 34666772 PMCID: PMC8527774 DOI: 10.1186/s12915-021-01154-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Female reproductive behaviors and physiology change profoundly after mating. The control of pregnancy-associated changes in physiology and behaviors are largely hard-wired into the brain to guarantee reproductive success, yet the gene expression programs that direct neuronal differentiation and circuit wiring at the end of the sex determination pathway in response to mating are largely unknown. In Drosophila, the post-mating response induced by male-derived sex-peptide in females is a well-established model to elucidate how complex innate behaviors are hard-wired into the brain. Here, we use a genetic approach to further characterize the molecular and cellular architecture of the sex-peptide response in Drosophila females. Results Screening for mutations that affect the sensitivity to sex-peptide, we identified the channel nuclear pore protein Nup54 gene as an essential component for mediating the sex-peptide response, with viable mutant alleles leading to the inability of laying eggs and reducing receptivity upon sex-peptide exposure. Nup54 directs correct wiring of eight adult brain neurons that express pickpocket and are required for egg-laying, while additional channel Nups also mediate sexual differentiation. Consistent with links of Nups to speciation, the Nup54 promoter is a hot spot for rapid evolution and promoter variants alter nucleo-cytoplasmic shuttling. Conclusions These results implicate nuclear pore functionality to neuronal wiring underlying the sex-peptide response and sexual differentiation as a response to sexual conflict arising from male-derived sex-peptide to direct the female post-mating response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01154-6.
Collapse
Affiliation(s)
- Mohanakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Garaulet DL, Moro A, Lai EC. A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 2021; 36:109335. [PMID: 34233178 PMCID: PMC8344067 DOI: 10.1016/j.celrep.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, implying that the default female state is virgin. However, we recently showed that loss of miR-iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ Dsx) specifies the virgin behavioral state. Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in specific neurons determines the behavior of adult virgin flies.
Collapse
Affiliation(s)
- Daniel L Garaulet
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Albertomaria Moro
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
9
|
miRNAs and Neural Alternative Polyadenylation Specify the Virgin Behavioral State. Dev Cell 2020; 54:410-423.e4. [PMID: 32579967 DOI: 10.1016/j.devcel.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
How are diverse regulatory strategies integrated to impose appropriately patterned gene expression that underlie in vivo phenotypes? Here, we reveal how coordinated miRNA regulation and neural-specific alternative polyadenylation (APA) of a single locus controls complex behaviors. Our entry was the unexpected observation that deletion of Bithorax complex (BX-C) miRNAs converts virgin female flies into a subjective post-mated behavioral state, normally induced by seminal proteins following copulation. Strikingly, this behavioral switch is directly attributable to misregulation of homothorax (hth). We localize specific CNS abdominal neurons where de-repressed Hth compromises virgin behavior in BX-C miRNA mutants. Moreover, we use genome engineering to demonstrate that precise mutation of hth 3' UTR sites for BX-C miRNAs or deletion of its neural 3' UTR extension containing most of these sites both induce post-mated behaviors in virgins. Thus, facilitation of miRNA-mediated repression by neural APA is required for virgin females to execute behaviors appropriate to their internal state.
Collapse
|
10
|
Garner SRC, Castellanos MC, Baillie KE, Lian T, Allan DW. Drosophila female-specific Ilp7 motoneurons are generated by Fruitless-dependent cell death in males and by a double-assurance survival role for Transformer in females. Development 2018; 145:dev.150821. [PMID: 29229771 DOI: 10.1242/dev.150821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023]
Abstract
Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless (fru) into the FruMC isoform. However, in females, fru alleles that only generate FruM isoforms failed to kill FS-Ilp7 motoneurons. This blockade of FruM-dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer (tra), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the FruM isoform is expressed. In addition, we found that FruMC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, FruMC-dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons.
Collapse
Affiliation(s)
- Sarah Rose C Garner
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Monica C Castellanos
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Katherine E Baillie
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Dove AE, Cook BL, Irgebay Z, Vecsey CG. Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster. Physiol Behav 2017; 180:146-158. [PMID: 28851647 DOI: 10.1016/j.physbeh.2017.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
Abstract
Sleep can be altered by an organism's previous experience. For instance, female Drosophila melanogaster experience a post-mating reduction in daytime sleep that is purportedly mediated by sex peptide (SP), one of many seminal fluid proteins (SFPs) transferred from male to female during mating. In the present study, we first characterized this mating effect on sleep more fully, as it had previously only been tested in young flies under 12h light/12h dark conditions. We found that mating reduced sleep equivalently in 3-day-old or 14-day-old females, and could even occur in females who had been mated previously, suggesting that there is not a developmental critical period for the suppression of sleep by mating. In conditions of constant darkness, circadian rhythms were not affected by prior mating. In either constant darkness or constant light, the sleep reduction due to mating was no longer confined to the subjective day but could be observed throughout the 24-hour period. This suggests that the endogenous clock may dictate the timing of when the mating effect on sleep is expressed. We recently reported that genetic elimination of SP only partially blocked the post-mating female siesta sleep reduction, suggesting that the effect was unlikely to be governed solely by SP. We found here that the daytime sleep reduction was also reduced but not eliminated in females mated to mutant males lacking the vast majority of SFPs. This suggested that SFPs other than SP play a minimal role in the mating effect on sleep, and that additional non-SFP signals from the male might be involved. Males lacking sperm were able to induce a normal initial mating effect on female sleep, although the effect declined more rapidly in these females. This result indicated that neither the presence of sperm within the female reproductive tract nor female impregnation are required for the initial mating effect on sleep to occur, although sperm may serve to prolong the effect. Finally, we tested for contributions from other aspects of the mating experience. NorpA and eya2 mutants with disrupted vision showed normal mating effects on sleep. By separating males from females with a mesh, we found that visual and olfactory stimuli from male exposure, in the absence of physical contact, could not replicate the mating effect. Further, in ken/barbie male flies lacking external genitalia, courtship and physical contact without ejaculation were also unable to replicate the mating effect. These findings confirmed that the influence of mating on sleep does in fact require male/female contact including copulation, but may not be mediated exclusively by SP transfer.
Collapse
Affiliation(s)
- Abigail E Dove
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Brianne L Cook
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States
| | - Zhazira Irgebay
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Christopher G Vecsey
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States; Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States.
| |
Collapse
|
12
|
Kurz CL, Charroux B, Chaduli D, Viallat-Lieutaud A, Royet J. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition. eLife 2017; 6. [PMID: 28264763 PMCID: PMC5365318 DOI: 10.7554/elife.21937] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 12/15/2022] Open
Abstract
As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg-laying rate by activating NF-κB signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioral response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioral immunity. DOI:http://dx.doi.org/10.7554/eLife.21937.001 Bacteria are all around us: they are on our skin, in the food that we eat and inside our bodies, particularly in the gut. While many of these bacteria are harmless and some even help us digest our food, others can make us ill. Upon detecting harmful bacteria, our bodies therefore trigger an immune response intended to destroy them. Some insects – including butterflies, moths and grasshoppers – have an additional way of defending themselves against bacteria besides their immune response. Whenever they detect harmful microorganisms, the insects change their behavior so as to reduce their chances of becoming infected and limit the damage an infection would cause. The insects move away from areas containing harmful bacteria, for example, and temporarily stop eating. But whereas the insects’ immune response to bacteria is well documented, little was known about the mechanisms that underlie these changes in behavior. Kurz, Charroux et al. set out to rectify this using another insect species, the fruit fly Drosophila. Flies that are infected with bacteria lay fewer eggs than healthy flies: a change in behavior that helps protect the offspring from infection. Kurz, Charroux et al. show that fruit flies are able to detect a component of the cell wall that surrounds all bacteria. This substance, known as peptidoglycan, activates a set of neurons in the fly that produce a chemical called octopamine. These neurons in turn activate a signaling pathway featuring a molecule known as NF-κB, and this causes the flies to lay fewer eggs. Notably, peptidoglycan and NF-κB are also the molecules that trigger the anti-bacterial immune response. Fruit flies thus use the same pathway in immune cells and in neurons to trigger immune responses and behavioral changes, respectively. The challenge now is to identify precisely which neurons respond to bacterial peptidoglycan, and to work out how peptidoglycan changes the activity of these cells. Furthermore, studies have recently shown that bacterial peptidoglycan can influence the development of the mouse brain, as well as mouse behavior. This suggests that mechanisms for detecting harmful bacteria may be conserved across evolution, a possibility that requires further investigation. DOI:http://dx.doi.org/10.7554/eLife.21937.002
Collapse
Affiliation(s)
- C Leopold Kurz
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Bernard Charroux
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Delphine Chaduli
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Annelise Viallat-Lieutaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Julien Royet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| |
Collapse
|
13
|
Garbe DS, Vigderman AS, Moscato E, Dove AE, Vecsey CG, Kayser MS, Sehgal A. Changes in Female Drosophila Sleep following Mating Are Mediated by SPSN-SAG Neurons. J Biol Rhythms 2016; 31:551-567. [PMID: 27658900 DOI: 10.1177/0748730416668048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Female Drosophila melanogaster, like many other organisms, exhibit different behavioral repertoires after mating with a male. These postmating responses (PMRs) include increased egg production and laying, increased rejection behavior (avoiding further male advances), decreased longevity, altered gustation and decreased sleep. Sex Peptide (SP), a protein transferred from the male during copulation, is largely responsible for many of these behavioral responses, and acts through a specific circuit to induce rejection behavior and alter dietary preference. However, less is known about the mechanisms and neurons that influence sleep in mated females. In this study, we investigated postmating changes in female sleep across strains and ages and on different media, and report that these changes are robust and relatively consistent under a variety of conditions. We find that female sleep is reduced by male-derived SP acting through the canonical sex peptide receptor (SPR) within the same neurons responsible for altering other PMRs. This circuit includes the SPSN-SAG neurons, whose silencing by DREADD induces postmating behaviors including sleep. Our data are consistent with the idea that mating status is communicated to the central brain through a common circuit that diverges in higher brain centers to modify a collection of postmating sensorimotor processes.
Collapse
Affiliation(s)
- David S Garbe
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail S Vigderman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilia Moscato
- Department of Psychiatry at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail E Dove
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Christopher G Vecsey
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania.,Neuroscience Program, Skidmore College, Saratoga Springs, New York
| | - Matthew S Kayser
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Psychiatry at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Howard Hughes Medical Institute/Department of Neuroscience
| |
Collapse
|
14
|
Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing. Mol Cell Biol 2015; 35:3104-15. [PMID: 26124284 DOI: 10.1128/mcb.00473-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023] Open
Abstract
Neuronally coexpressed ELAV/Hu proteins comprise a family of highly related RNA binding proteins which bind to very similar cognate sequences. How this redundancy is linked to in vivo function and how gene-specific regulation is achieved have not been clear. Analysis of mutants in Drosophila ELAV/Hu family proteins ELAV, FNE, and RBP9 and of genetic interactions among them indicates that they have mostly independent roles in neuronal development and function but have converging roles in the regulation of synaptic plasticity. Conversely, ELAV, FNE, RBP9, and human HuR bind ELAV target RNA in vitro with similar affinities. Likewise, all can regulate alternative splicing of ELAV target genes in nonneuronal wing disc cells and substitute for ELAV in eye development upon artificially increased expression; they can also substantially restore ELAV's biological functions when expressed under the control of the elav gene. Furthermore, ELAV-related Sex-lethal can regulate ELAV targets, and ELAV/Hu proteins can interfere with sexual differentiation. An ancient relationship to Sex-lethal is revealed by gonadal expression of RBP9, providing a maternal fail-safe for dosage compensation. Our results indicate that highly related ELAV/Hu RNA binding proteins select targets for mRNA processing through alteration of their expression levels and subcellular localization but only minimally by altered RNA binding specificity.
Collapse
|
15
|
Abstract
Across taxa, female behavior and physiology change significantly following the receipt of ejaculate molecules during mating. For example, receipt of sex peptide (SP) in female Drosophila melanogaster significantly alters female receptivity, egg production, lifespan, hormone levels, immunity, sleep, and feeding patterns. These changes are underpinned by distinct tissue- and time-specific changes in diverse sets of mRNAs. However, little is yet known about the regulation of these gene expression changes, and hence the potential role of microRNAs (miRNAs), in female postmating responses. A preliminary screen of genomic responses in females to receipt of SP suggested that there were changes in the expression of several miRNAs. Here we tested directly whether females lacking four of the candidate miRNAs highlighted (miR-279, miR-317, miR-278, and miR-184) showed altered fecundity, receptivity, and lifespan responses to receipt of SP, when mated once or continually to SP null or control males. The results showed that miRNA-lacking females mated to SP null males exhibited altered receptivity, but not reproductive output, in comparison to controls. However, these effects interacted significantly with the genetic background of the miRNA-lacking females. No significant survival effects were observed in miRNA-lacking females housed continually with SP null or control males. However, continual exposure to control males that transferred SP resulted in significantly higher variation in miRNA-lacking female lifespan than did continual exposure to SP null males. The results provide the first insight into the effects and importance of miRNAs in regulating postmating responses in females.
Collapse
|
16
|
Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB. Abdominal-B neurons control Drosophila virgin female receptivity. Curr Biol 2014; 24:1584-1595. [PMID: 24998527 PMCID: PMC4476023 DOI: 10.1016/j.cub.2014.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Female sexual receptivity offers an excellent model for complex behavioral decisions. The female must parse her own reproductive state, the external environment, and male sensory cues to decide whether to copulate. In the fly Drosophila melanogaster, virgin female receptivity has received relatively little attention, and its neural circuitry and individual behavioral components remain unmapped. Using a genome-wide neuronal RNAi screen, we identify a subpopulation of neurons responsible for pausing, a novel behavioral aspect of virgin female receptivity characterized in this study. RESULTS We show that Abdominal-B (Abd-B), a homeobox transcription factor, is required in developing neurons for high levels of virgin female receptivity. Silencing adult Abd-B neurons significantly decreased receptivity. We characterize two components of receptivity that are elicited in sexually mature females by male courtship: pausing and vaginal plate opening. Silencing Abd-B neurons decreased pausing but did not affect vaginal plate opening, demonstrating that these two components of female sexual behavior are functionally separable. Synthetic activation of Abd-B neurons increased pausing, but male courtship song alone was not sufficient to elicit this behavior. CONCLUSIONS Our results provide an entry point to the neural circuit controlling virgin female receptivity. The female integrates multiple sensory cues from the male to execute discrete motor programs prior to copulation. Abd-B neurons control pausing, a key aspect of female sexual receptivity, in response to male courtship.
Collapse
Affiliation(s)
- Jennifer J Bussell
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Nilay Yapici
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Stephen X Zhang
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Barry J Dickson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA; Howard Hughes Medical Institute.
| |
Collapse
|
17
|
Laturney M, Billeter JC. Neurogenetics of female reproductive behaviors in Drosophila melanogaster. ADVANCES IN GENETICS 2014; 85:1-108. [PMID: 24880733 DOI: 10.1016/b978-0-12-800271-1.00001-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.
Collapse
Affiliation(s)
- Meghan Laturney
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Haussmann IU, Hemani Y, Wijesekera T, Dauwalder B, Soller M. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc Biol Sci 2013; 280:20131938. [PMID: 24089336 DOI: 10.1098/rspb.2013.1938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Male-derived sex-peptide (SP) induces profound changes in the behaviour of Drosophila females, resulting in decreased receptivity to further mating and increased egg laying. SP can mediate the switch in female reproductive behaviours via a G protein-coupled receptor, SPR, in neurons expressing fruitless, doublesex and pickpocket. Whether SPR is the sole receptor and whether SP induces the postmating switch in a single pathway has not, to our knowledge been tested. Here we report that the SP response can be induced in the absence of SPR when SP is ectopically expressed in neurons or when SP, transferred by mating, can access neurons through a leaky blood brain barrier. Membrane-tethered SP can induce oviposition via doublesex, but not fruitless and pickpocket neurons in SPR mutant females. Although pickpocket and doublesex neurons rely on G(o) signalling to reduce receptivity and induce oviposition, G(o) signalling in fruitless neurons is required only to induce oviposition, but not to reduce receptivity. Our results show that SP's action in reducing receptivity and inducing oviposition can be separated in fruitless and doublesex neurons. Hence, the SP-induced postmating switch incorporates shared, but also distinct circuitry of fruitless, doublesex and pickpocket neurons and additional receptors.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, , Birmingham B15 2TT, UK, Department of Biology and Biochemistry, University of Houston, , Houston, TX, USA
| | | | | | | | | |
Collapse
|
19
|
Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proc Natl Acad Sci U S A 2013; 110:13612-7. [PMID: 23898199 DOI: 10.1073/pnas.1312477110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanical stimuli, including tactile and sound signals, convey a variety of information important for animals to navigate the environment and avoid predators. Recent studies have revealed that Drosophila larvae can sense harsh or gentle touch with dendritic arborization (da) neurons in the body wall and can detect vibration with chordotonal organs (Cho). Whether they can also detect and respond to vibration or sound from their predators remains an open question. Here we report that larvae respond to sound of wasps and yellow jackets, as well as to pure tones of frequencies that are represented in such natural sounds, with startle and burrowing behaviors. The larval response to sound/vibration requires Cho neurons and, to a lesser extent, class IV da neurons. Our calcium imaging and electrophysiological experiments reveal that Cho neurons, but not class IV da neurons, are excited by natural sounds or pure tones, with tuning curves and intensity dependence appropriate for the behavioral responses. Furthermore, our study implicates the transient receptor potential (TRP) channels NOMPC, NANCHUNG, and INACTIVE, but not the dmPIEZO channel, in the mechanotransduction and/or signal amplification for the detection of sound by the larval Cho neurons. These findings indicate that larval Cho, like their counterparts in the adult fly, use some of the same mechanotransduction channels to detect sound waves and mediate the sensation akin to hearing in Drosophila larvae, allowing them to respond to the appearance of predators or other environmental cues at a distance with behaviors crucial for survival.
Collapse
|
20
|
Kubli E, Bopp D. Sexual behavior: how Sex Peptide flips the postmating switch of female flies. Curr Biol 2013; 22:R520-2. [PMID: 22789998 DOI: 10.1016/j.cub.2012.04.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Drosophila male Sex Peptide elicits an amazing variety of postmating responses in mated females, some of which are transmitted via a receptor on specific neurons of the female genital tract. New work shows that neurons expressing the sex-determination gene doublesex (dsx) play a pivotal role in the female postmating switch.
Collapse
Affiliation(s)
- Eric Kubli
- Institute of Molecular Life Sciences, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
21
|
Avila FW, Findlay GD, Gothilf A, Niño EL. BARD workshop: “Insect reproductive molecules: From model systems to agricultural applications”. Mol Reprod Dev 2012; 79:816-20. [DOI: 10.1002/mrd.22133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022]
|
22
|
Rezával C, Pavlou HJ, Dornan AJ, Chan YB, Kravitz EA, Goodwin SF. Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol 2012; 22:1155-65. [PMID: 22658598 PMCID: PMC3396843 DOI: 10.1016/j.cub.2012.04.062] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
Background After mating, Drosophila females undergo a remarkable phenotypic switch resulting in decreased sexual receptivity and increased egg laying. Transfer of male sex peptide (SP) during copulation mediates these postmating responses via sensory neurons that coexpress the sex-determination gene fruitless (fru) and the proprioceptive neuronal marker pickpocket (ppk) in the female reproductive system. Little is known about the neuronal pathways involved in relaying SP-sensory information to central circuits and how these inputs are processed to direct female-specific changes that occur in response to mating. Results We demonstrate an essential role played by neurons expressing the sex-determination gene doublesex (dsx) in regulating the female postmating response. We uncovered shared circuitry between dsx and a subset of the previously described SP-responsive fru+/ppk+-expressing neurons in the reproductive system. In addition, we identified sexually dimorphic dsx circuitry within the abdominal ganglion (Abg) critical for mediating postmating responses. Some of these dsx neurons target posterior regions of the brain while others project onto the uterus. Conclusions We propose that dsx-specified circuitry is required to induce female postmating behavioral responses, from sensing SP to conveying this signal to higher-order circuits for processing and through to the generation of postmating behavioral and physiological outputs.
Collapse
Affiliation(s)
- Carolina Rezával
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
23
|
Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension. Proc Natl Acad Sci U S A 2012; 109:6987-92. [PMID: 22493273 DOI: 10.1073/pnas.1115453109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycosphingolipids (GSLs) are of fundamental importance in the nervous system. However, the molecular details associated with GSL function are largely unknown, in part because of the complexity of GSL biosynthesis in vertebrates. In Drosophila, only one major GSL biosynthetic pathway exists, controlled by the glycosyltransferase Egghead (Egh). Here we discovered that loss of Egh causes overgrowth of peripheral nerves and attraction of immune cells to the nerves. This phenotype is reminiscent of the human disorder neurofibromatosis type 1, which is characterized by disfiguring nerve sheath tumors with mast cell infiltration, increased cancer risk, and learning deficits. Neurofibromatosis type 1 is due to a reduction of the tumor suppressor neurofibromin, a negative regulator of the small GTPase Ras. Enhanced Ras signaling promotes glial growth through activation of phosphatidylinositol 3-kinase (PI3K) and its downstream kinase Akt. We find that overgrowth of peripheral nerves in egh mutants is suppressed by down-regulation of the PI3K signaling pathway by expression of either dominant-negative PI3K, the tumor suppressor PTEN, or the transcription factor FOXO in the subperineurial glia. These results show that loss of the glycosyltransferase Egh affects membrane signaling and activation of PI3K signaling in glia of the peripheral nervous system, and suggest that glycosyltransferases may suppress proliferation.
Collapse
|
24
|
Pontier SM, Schweisguth F. Glycosphingolipids in signaling and development: From liposomes to model organisms. Dev Dyn 2011; 241:92-106. [DOI: 10.1002/dvdy.22766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 01/05/2023] Open
|
25
|
Ellis LL, Carney GE. Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner. Genetics 2011; 187:157-69. [PMID: 20980240 PMCID: PMC3018301 DOI: 10.1534/genetics.110.122754] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Behavior is influenced by an organism's genes and environment, including its interactions with same or opposite sex individuals. Drosophila melanogaster perform innate, yet socially modifiable, courtship behaviors that are sex specific and require rapid integration and response to multiple sensory cues. Furthermore, males must recognize and distinguish other males from female courtship objects. It is likely that perception, integration, and response to sex-specific cues is partially mediated by changes in gene expression. Reasoning that social interactions with members of either sex would impact gene expression, we compared expression profiles in heads of males that courted females, males that interacted with other males, or males that did not interact with another fly. Expression of 281 loci changes when males interact with females, whereas 505 changes occur in response to male-male interactions. Of these genes, 265 are responsive to encounters with either sex and 240 respond specifically to male-male interactions. Interestingly, 16 genes change expression only when a male courts a female, suggesting that these changes are a specific response to male-female courtship interactions. We supported our hypothesis that socially-responsive genes can function in behavior by showing that egghead (egh) expression, which increases during social interactions, is required for robust male-to-female courtship. We predict that analyzing additional socially-responsive genes will give us insight into genes and neural signaling pathways that influence reproductive and other behavioral interactions.
Collapse
Affiliation(s)
| | - Ginger E. Carney
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
26
|
Differential activity of EWG transcription factor isoforms identifies a subset of differentially regulated genes important for synaptic growth regulation. Dev Biol 2010; 348:224-30. [PMID: 20854801 DOI: 10.1016/j.ydbio.2010.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 12/23/2022]
Abstract
The vast majority of genes in the human genome is alternatively spliced. The functional consequences of this type of post-transcriptional gene regulation that is particularly prominent in the brain, however, remains largely elusive. Here we analyzed the role of alternative splicing in the transcription factor erect wing (ewg) in Drosophila and dissect its function through differential rescue with transgenes encoding different isoforms. Transgenes expressing the SC3 ORF isoform fully rescue viability and synaptic growth defects. In contrast, transgenes expressing the ∆DJ isoform, that lack exons D and J, have a lower activity as inferred from their expression levels and exert reduced rescue of viability and synaptic growth defects. By comparison of the gene expression profile of ewg(l1) mutants rescued either by the SC3 ORF or the ∆DJ transgene, we identified a set of genes whose expression is exclusively restored by the SC3 isoform. These genes are mostly involved in regulating gene expression while a core function of EWG is indicated by the regulation of metabolic genes by both isoforms. In conclusion, we demonstrated that differential rescue with different isoform encoding transgenes of the transcription factor EWG identifies a unique set of genes associated with synaptic growth regulation.
Collapse
|
27
|
Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF. Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. ADVANCES IN GENETICS 2010; 68:23-56. [PMID: 20109658 PMCID: PMC3925388 DOI: 10.1016/s0065-2660(09)68002-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana F. Wolfner
- Corresponding author: Department of Molecular Biology & Genetics, 421 Biotechnology Building, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
28
|
Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 2009; 23:156-72. [PMID: 19140035 DOI: 10.1080/01677060802471718] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as "Kenyon cells." Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the gamma, alpha'/beta', and alpha/beta neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Male Drosophila manipulate the sexual behaviour of their female mating partners by release of a Sex-peptide, but how does this work? A G-protein-coupled receptor has now been identified which acts in the female flies to detect male Sex-peptide and trigger increased egg laying and reduced sexual receptivity.
Collapse
Affiliation(s)
- Eric Kubli
- Zoological Institute, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Haussmann IU, White K, Soller M. Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways. Genome Biol 2008; 9:R73. [PMID: 18419806 PMCID: PMC2643944 DOI: 10.1186/gb-2008-9-4-r73] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/14/2008] [Accepted: 04/17/2008] [Indexed: 12/31/2022] Open
Abstract
Background Formation of synaptic connections is a dynamic and highly regulated process. Little is known about the gene networks that regulate synaptic growth and how they balance stimulatory and restrictive signals. Results Here we show that the neuronally expressed transcription factor gene erect wing (ewg) is a major target of the RNA binding protein ELAV and that EWG restricts synaptic growth at neuromuscular junctions. Using a functional genomics approach we demonstrate that EWG acts primarily through increasing mRNA levels of genes involved in transcriptional and post-transcriptional regulation of gene expression, while genes at the end of the regulatory expression hierarchy (effector genes) represent only a minor portion, indicating an extensive regulatory network. Among EWG-regulated genes are components of Wingless and Notch signaling pathways. In a clonal analysis we demonstrate that EWG genetically interacts with Wingless and Notch, and also with TGF-β and AP-1 pathways in the regulation of synaptic growth. Conclusion Our results show that EWG restricts synaptic growth by integrating multiple cellular signaling pathways into an extensive regulatory gene expression network.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
31
|
Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2008; 3:e1848. [PMID: 18365004 PMCID: PMC2268740 DOI: 10.1371/journal.pone.0001848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/12/2008] [Indexed: 12/24/2022] Open
Abstract
Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.
Collapse
|
32
|
Domanitskaya EV, Liu H, Chen S, Kubli E. The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. FEBS J 2007; 274:5659-68. [PMID: 17922838 DOI: 10.1111/j.1742-4658.2007.06088.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Seminal fluid elicits a variety of physiological and behavioral changes in insect females. In Drosophila melanogaster females, sex peptide (SP) is the major seminal agent eliciting oviposition and reduction of receptivity. But SP also has many other effects; for example, it stimulates food intake, egg production, ovulation, juvenile hormone production and antimicrobial peptide synthesis. Thus, SP very probably has several receptors. To identify putative targets and signaling cascades, we studied the genome-wide regulation of genes by microarray analysis of RNA isolated from females after mating with wild-type males or males lacking SP, respectively. In addition, we studied the effects of SP on the proteome of females. Sex peptide regulates gene activity differentially in the head and in the abdomen. Genes coding for unspecific antimicrobial peptides are specifically transcribed in the abdomen, e.g. the antimicrobial peptide drosocin in epithelial tissues of the female genital tract (oviduct and calyx). Hence, SP elicits a systemic [Peng J, Zipperlen P & Kubli E (2005) Curr Biol15, 1690-1694] and an epithelial immune response. Ectopic expression of SP in the fat body of transgenic virgin females (with subsequent secretion into the hemolymph) does not elicit drosocin synthesis in the genital tract. Thus, the receptors for the stimulation of the systemic and the epithelial responses by SP are compartmentalized. The hydroxyproline (P*) motif of SP, P*TKFP*IP*SP*NP*, is identified as a novel elicitor of the innate immune response. We suggest that SP acts by chemical mimicry of sugar components of the bacterial cell wall. Thus, SP may induce the immune system via pattern recognition receptors.
Collapse
|
33
|
Ravi Ram K, Wolfner MF. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 2007; 47:427-45. [PMID: 21672851 DOI: 10.1093/icb/icm046] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Successful reproduction requires contributions from both the male and the female. In Drosophila, contributions from the male include accessory gland proteins (Acps) that are components of the seminal fluid. Upon their transfer to the female, Acps affect the female's physiology and behavior. Although primary sequences of Acp genes exhibit variation among species and genera, the conservation of protein biochemical classes in the seminal fluid suggests a conservation of functions. Bioinformatics coupled with molecular and genetic tools available for Drosophila melanogaster has expanded the functional analysis of Acps in recent years to the genomic/proteomic scale. Molecular interplay between Acps and the female enhances her egg production, reduces her receptivity to remating, alters her immune response and feeding behavior, facilitates storage and utilization of sperm in the female and affects her longevity. Here, we provide an overview of the D. melanogaster Acps and integrate the results from several studies that bring the current number of known D. melanogaster Acps to 112. We then discuss several examples of how the female's physiological processes and behaviors are mediated by interactions between Acps and the female. Understanding how Acps elicit particular female responses will provide insights into reproductive biology and chemical communication, tools for analyzing models of sexual cooperation and/or sexual conflict, and information potentially useful for strategies for managing insect pests.
Collapse
Affiliation(s)
- K Ravi Ram
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Barnes AI, Boone JM, Partridge L, Chapman T. A functioning ovary is not required for sex peptide to reduce receptivity to mating in D. melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:343-8. [PMID: 17303161 DOI: 10.1016/j.jinsphys.2006.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/14/2006] [Accepted: 12/21/2006] [Indexed: 05/14/2023]
Abstract
In many species of invertebrates that mate multiply, mating induces a temporary reduction in sexual receptivity and an increase in the rate of egg laying. These processes often appear to be co-ordinately regulated, and triggered by the passage of seminal fluid components. However, little is known about the mechanisms of the links between these processes. In Drosophila melanogaster females, post-mating sexual receptivity is decreased and egg laying increased by the actions of the male ejaculate-derived sex peptide (SP). Effects of SP on egg laying and receptivity have not been observed separately, which has led to the suggestion that the reduction in receptivity is at least partially dependent on the status of egg development or egg laying, with the presence of an egg in the uterus being a strong predictor of receptivity state. Here, we examine the response to SP of females in which egg development is arrested at an early, pre-vitellogenic stage. We find that females in which egg development is arrested mate normally and that normal receptivity responses to SP are independent of early egg arrest. Among fertile control females that laid eggs, a significant effect of SP on receptivity was also observed, independent of whether an egg was present in the uterus. The results show that the effects of SP on receptivity are not dependent upon a fully functional ovary, and hence that egg development or laying is not causal in the SP receptivity response.
Collapse
Affiliation(s)
- Andrew I Barnes
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|