1
|
Gherri E, Garofalo G, O'Dowd A, Cudia A. The anticipatory effect of goal-directed action planning with a lower limb on peri-personal space. Cortex 2025; 185:170-183. [PMID: 40073715 DOI: 10.1016/j.cortex.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
Recent studies have demonstrated that the representation of peri-personal space (PPS) can be strongly modulated by the intention to execute a spatially-directed hand-movement. However, the question of whether analogous motor-induced PPS modulations can be observed during the planning and execution of goal-directed lower limbs movements has been scarcely investigated. Here we asked whether changes in the visuo-tactile PPS maps occur during the planning of a goal directed foot-movement. We asked participants to respond to the location of a tactile stimulus delivered to the index finger (top) or the thumb (bottom) of the right hand while ignoring a visual distractor presented at congruent or incongruent elevations, either close to the foot or close to the goal of the foot movement. This version of the cross-modal congruency task was performed under two different experimental conditions, as a baseline (static task, no movement involved) and embedded into a dual-task in which participants also had to plan and execute a goal-directed foot movement (dynamic task). In the static task, comparable cross-modal congruency effects (CCE) were present near the foot and near the movement goal. In the dynamic task, the CCE near the foot shrank considerably, whereas a sizable CCE was present near the movement goal. This anticipatory reweighting of the multisensory representation of near-space demonstrates that PPS is modulated by the intention to perform a goal-directed foot movement, with a weakened representation of the space around the currently occupied foot location when a movement is imminent.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy, University of Bologna, Italy.
| | | | - Alan O'Dowd
- Trinity Institute of Neurosciences, Trinity College Dublin, Ireland
| | | |
Collapse
|
2
|
Vannuscorps G, Caramazza A. Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Soc Cogn Affect Neurosci 2023; 18:nsad046. [PMID: 37688518 PMCID: PMC10576201 DOI: 10.1093/scan/nsad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Observing other people acting activates imitative motor plans in the observer. Whether, and if so when and how, such 'effector-specific motor simulation' contributes to action recognition remains unclear. We report that individuals born without upper limbs (IDs)-who cannot covertly imitate upper-limb movements-are significantly less accurate at recognizing degraded (but not intact) upper-limb than lower-limb actions (i.e. point-light animations). This finding emphasizes the need to reframe the current controversy regarding the role of effector-specific motor simulation in action recognition: instead of focusing on the dichotomy between motor and non-motor theories, the field would benefit from new hypotheses specifying when and how effector-specific motor simulation may supplement core action recognition processes to accommodate the full variety of action stimuli that humans can recognize.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, 1348, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Avenue E. Mounier 53, Brussels 1200, Belgium
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Kirkland Street 33, Cambridge, MA 02138, USA
- CIMEC (Center for Mind-Brain Sciences), University of Trento, Via delle Regole 101, Mattarello TN 38123, Italy
| |
Collapse
|
3
|
Craighero L, Granziol U, Sartori L. Digital Intentions in the Fingers: I Know What You Are Doing with Your Smartphone. Brain Sci 2023; 13:1418. [PMID: 37891787 PMCID: PMC10605869 DOI: 10.3390/brainsci13101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Every day, we make thousands of finger movements on the touchscreen of our smartphones. The same movements might be directed at various distal goals. We can type "What is the weather in Rome?" in Google to acquire information from a weather site, or we may type it on WhatsApp to decide whether to visit Rome with a friend. In this study, we show that by watching an agent's typing hands, an observer can infer whether the agent is typing on the smartphone to obtain information or to share it with others. The probability of answering correctly varies with age and typing style. According to embodied cognition, we propose that the recognition process relies on detecting subtle differences in the agent's movement, a skill that grows with sensorimotor competence. We expect that this preliminary work will serve as a starting point for further research on sensorimotor representations of digital actions.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Umberto Granziol
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Lonardo L, Völter CJ, Lamm C, Huber L. Dogs Rely On Visual Cues Rather Than On Effector-Specific Movement Representations to Predict Human Action Targets. Open Mind (Camb) 2023; 7:588-607. [PMID: 37840756 PMCID: PMC10575556 DOI: 10.1162/opmi_a_00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
The ability to predict others' actions is one of the main pillars of social cognition. We investigated the processes underlying this ability by pitting motor representations of the observed movements against visual familiarity. In two pre-registered eye-tracking experiments, we measured the gaze arrival times of 16 dogs (Canis familiaris) who observed videos of a human or a conspecific executing the same goal-directed actions. On the first trial, when the human agent performed human-typical movements outside dogs' specific motor repertoire, dogs' gaze arrived at the target object anticipatorily (i.e., before the human touched the target object). When the agent was a conspecific, dogs' gaze arrived to the target object reactively (i.e., upon or after touch). When the human agent performed unusual movements more closely related to the dogs' motor possibilities (e.g., crawling instead of walking), dogs' gaze arrival times were intermediate between the other two conditions. In a replication experiment, with slightly different stimuli, dogs' looks to the target object were neither significantly predictive nor reactive, irrespective of the agent. However, when including looks at the target object that were not preceded by looks to the agents, on average dogs looked anticipatorily and sooner at the human agent's action target than at the conspecific's. Looking times and pupil size analyses suggest that the dogs' attention was captured more by the dog agent. These results suggest that visual familiarity with the observed action and saliency of the agent had a stronger influence on the dogs' looking behaviour than effector-specific movement representations in anticipating action targets.
Collapse
Affiliation(s)
- Lucrezia Lonardo
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Christoph J. Völter
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring. J Clin Med 2023; 12:jcm12041327. [PMID: 36835865 PMCID: PMC9961867 DOI: 10.3390/jcm12041327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
This preliminary study introduces a novel action observation therapy (AOT) protocol associated with electroencephalographic (EEG) monitoring to be used in the future as a rehabilitation strategy for the upper limb in patients with subacute stroke. To provide initial evidence on the usefulness of this method, we compared the outcome of 11 patients who received daily AOT for three weeks with that of patients who undertook two other approaches recently investigated by our group, namely intensive conventional therapy (ICT), and robot-assisted therapy combined with functional electrical stimulation (RAT-FES). The three rehabilitative interventions showed similar arm motor recovery as indexed by Fugl-Meyer's assessment of the upper extremity (FMA_UE) and box and block test (BBT). The improvement in the FMA_UE was yet more favourable in patients with mild/moderate motor impairments who received AOT, in contrast with patients carrying similar disabilities who received the other two treatments. This suggests that AOT might be more effective in this subgroup of patients, perhaps because the integrity of their mirror neurons system (MNS) was more preserved, as indexed by EEG recording from central electrodes during action observation. In conclusion, AOT may reveal an effective rehabilitative tool in patients with subacute stroke; the EEG evaluation of MNS integrity may help to select patients who could maximally benefit from this intervention.
Collapse
|
6
|
Craighero L, Mele S, Gaifas V, Bonaguri E, Straudi S. Evidence of motor resonance in stroke patients with severe upper limb function impairments. Cortex 2023; 159:16-25. [PMID: 36603404 DOI: 10.1016/j.cortex.2022.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022]
Abstract
For the past fifteen years, observation of actions has proved to be effective in the motor rehabilitation of stroke. Despite this, no evidence has ever been provided that this practice is able to activate the efferent motor system of a limb unable to perform the observed action due to stroke. In fact, transcranial magnetic stimulation cannot easily be used in these patients, and the fMRI evidence is inconclusive. This creates a logical problem, as the effectiveness of action observation in functional recovery is attributed to its ability to evoke action simulation, up to sub-threshold muscle activation (i.e., motor resonance), in healthy individuals. To provide the necessary proof-of-concept, patients with severe upper limb function impairments and matched control participants were submitted to a verified action prediction paradigm. They were asked to watch videos showing gripping movements towards a graspable or an ungraspable object, and to press a button the instant the agent touched the object. The presence of more accurate responses for the graspable object trials is considered an indirect evidence of motor resonance. Participants were required to perform the task in two sessions which differed in the hand used to respond. Despite the serious difficulty of movement, 8 out of 18 patients were able to perform the task with their impaired hand. We found that the responses given by the paretic hand showed a modulation of the action prediction time no different from that showed by the non-paretic hand, which, in turn, did not differ from that showed by the matched control participants. The present proof-of-concept study shows that action observation involves the efferent motor system even when the hand used to respond is unable to perform the observed action due to a cortical lesion, providing the missing evidence to support the already established use of Action Observation Training (AOT) in motor rehabilitation of stroke.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Sonia Mele
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy.
| | - Valentina Gaifas
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Emma Bonaguri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Via Aldo Moro, 8, 44124 Ferrara, Italy.
| |
Collapse
|
7
|
Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study. Neuroimage 2021; 243:118511. [PMID: 34450263 DOI: 10.1016/j.neuroimage.2021.118511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
During execution and observation of reaching-grasping actions, the brain must encode, at the same time, the final action goal and the type of grip necessary to achieve it. Recently, it has been proposed that the Mirror Neuron System (MNS) is involved not only in coding the final goal of the observed action, but also the type of grip used to grasp the object. However, the specific contribution of the different areas of the MNS, at both cortical and subcortical level, in disentangling action goal and grip type is still unclear. Here, twenty human volunteers participated in an fMRI study in which they performed two tasks: (a) observation of four different types of actions, consisting in reaching-to-grasp a box handle with two possible grips (precision, hook) and two possible goals (open, close); (b) action execution, in which participants performed grasping actions similar to those presented during the observation task. A conjunction analysis revealed the presence of shared activated voxels for both action observation and execution within several cortical areas including dorsal and ventral premotor cortex, inferior and superior parietal cortex, intraparietal sulcus, primary somatosensory cortex, and cerebellar lobules VI and VIII. ROI analyses showed a main effect for grip type in several premotor and parietal areas and cerebellar lobule VI, with higher BOLD activation during observation of precision vs hook actions. A grip x goal interaction was also present in the left inferior parietal cortex, with higher BOLD activity during precision-to-close actions. A multivariate pattern analysis (MVPA) revealed a significant accuracy for the grip model in all ROIs, while for the action goal model, significant accuracy was observed only for left inferior parietal cortex ROI. These findings indicate that a large network involving cortical and cerebellar areas is involved in the processing of type of grip, while final action goal appears to be mainly processed within the inferior parietal region, suggesting a differential contribution of the areas activated in this study.
Collapse
|
8
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
9
|
Abstract
To date, both in monkeys and humans, very few studies have addressed the issue of the lateralization of the cortical parietal and premotor areas involved in the organization of voluntary movements and in-action understanding. In this review, we will first analyze studies in the monkey, describing the functional properties of neurons of the parieto-frontal circuits, involved in the organization of reaching-grasping actions, in terms of unilateral or bilateral control. We will concentrate, in particular, on the properties of the mirror neuron system (MNS). Then, we will consider the evidence about the mirror neuron mechanism in humans, describing studies in which action perception, as well as action execution, produces unilateral or bilateral brain activation. Finally, we will report some investigations demonstrating plastic changes of the MNS following specific unilateral brain damage, discussing how this plasticity can be related to the rehabilitation outcome
Collapse
|
10
|
Brain correlates of motor complexity during observed and executed actions. Sci Rep 2020; 10:10965. [PMID: 32620887 PMCID: PMC7335074 DOI: 10.1038/s41598-020-67327-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, cortical areas with motor properties have attracted attention widely to their involvement in both action generation and perception. Inferior frontal gyrus (IFG), ventral premotor cortex (PMv) and inferior parietal lobule (IPL), presumably consisting of motor-related areas, are of particular interest, given that they respond to motor behaviors both when they are performed and observed. Converging neuroimaging evidence has shown the functional roles of IFG, PMv and IPL in action understanding. Most studies have focused on the effects of modulations in goals and kinematics of observed actions on the brain response, but little research has explored the effects of manipulations in motor complexity. To address this, we used fNIRS to examine the brain activity in the frontal, motor, parietal and occipital regions, aiming to better understand the brain correlates involved in encoding motor complexity. Twenty-one healthy adults executed and observed two hand actions that differed in motor complexity. We found that motor complexity sensitive brain regions were present in the pars opercularis IFG/PMv, primary motor cortex (M1), IPL/supramarginal gyrus and middle occipital gyrus (MOG) during action execution, and in pars opercularis IFG/PMv and M1 during action observation. Our findings suggest that the processing of motor complexity involves not only M1 but also pars opercularis IFG, PMv and IPL, each of which plays a critical role in action perception and execution.
Collapse
|
11
|
Abdelgabar AR, Suttrup J, Broersen R, Bhandari R, Picard S, Keysers C, De Zeeuw CI, Gazzola V. Action perception recruits the cerebellum and is impaired in patients with spinocerebellar ataxia. Brain 2020; 142:3791-3805. [PMID: 31747689 PMCID: PMC7409410 DOI: 10.1093/brain/awz337] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022] Open
Abstract
Our cerebellum has been proposed to generate prediction signals that may help us plan and execute our motor programmes. However, to what extent our cerebellum is also actively involved in perceiving the action of others remains to be elucidated. Using functional MRI, we show here that observing goal-directed hand actions of others bilaterally recruits lobules VI, VIIb and VIIIa in the cerebellar hemispheres. Moreover, whereas healthy subjects (n = 31) were found to be able to discriminate subtle differences in the kinematics of observed limb movements of others, patients suffering from spinocerebellar ataxia type 6 (SCA6; n = 21) were severely impaired in performing such tasks. Our data suggest that the human cerebellum is actively involved in perceiving the kinematics of the hand actions of others and that SCA6 patients’ deficits include a difficulty in perceiving the actions of other individuals. This finding alerts us to the fact that cerebellar disorders can alter social cognition.
Collapse
Affiliation(s)
- Abdel R Abdelgabar
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Judith Suttrup
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin Broersen
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| | - Ritu Bhandari
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Samuel Picard
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Christian Keysers
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
12
|
Farina E, Borgnis F, Pozzo T. Mirror neurons and their relationship with neurodegenerative disorders. J Neurosci Res 2020; 98:1070-1094. [DOI: 10.1002/jnr.24579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Thierry Pozzo
- INSERM UMR1093‐CAPS, Université Bourgogne Franche‐Comté Dijon France
- IT@UniFe Center for Translational Neurophysiology Istituto Italiano di Tecnologia Ferrara Italy
| |
Collapse
|
13
|
Borja Jimenez KC, Abdelgabar AR, De Angelis L, McKay LS, Keysers C, Gazzola V. Changes in brain activity following the voluntary control of empathy. Neuroimage 2020; 216:116529. [PMID: 31931155 DOI: 10.1016/j.neuroimage.2020.116529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
In neuroscience, empathy is often conceived as relatively automatic. The voluntary control that people can exert on brain mechanisms that map the emotions of others onto our own emotions has received comparatively less attention. Here, we therefore measured brain activity while participants watched emotional Hollywood movies under two different instructions: to rate the main characters' emotions by empathizing with them, or to do so while keeping a detached perspective. We found that participants yielded highly consistent and similar ratings of emotions under both conditions. Using intersubject correlation-based analyses we found that, when encouraged to empathize, participants' brain activity in limbic (including cingulate and putamen) and somatomotor regions (including premotor, SI and SII) synchronized more during the movie than when encouraged to detach. Using intersubject functional connectivity we found that comparing the empathic and detached perspectives revealed widespread increases in functional connectivity between large scale networks. Our findings contribute to the increasing awareness that we have voluntary control over the neural mechanisms through which we process the emotions of others.
Collapse
Affiliation(s)
- K C Borja Jimenez
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - A R Abdelgabar
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - L De Angelis
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - L S McKay
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Current Address: Division of Psychology, School of Education & Social Sciences, University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
| | - C Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018, WV, Amsterdam, the Netherlands
| | - V Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018, WV, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Betti S, Deceuninck M, Sartori L, Castiello U. Action Observation and Effector Independency. Front Hum Neurosci 2019; 13:416. [PMID: 32038195 PMCID: PMC6988794 DOI: 10.3389/fnhum.2019.00416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
The finding of reasonably consistent spatial and temporal productions of actions across different body parts has been used to argue in favor of the existence of a high-order representation of motor programs. In these terms, a generalized motor program consists of an abstract memory structure apt to specify a class of non-specific instructions used to guide a broad range of movements (e.g., “grasp,” “bite”). Although a number of studies, using a variety of tasks, have assessed the issue of effector independence in terms of action execution, little is known regarding the issue of effector independence within an action observation context. Here corticospinal excitability (CSE) of the right hand’s first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles was assessed by means of single-pulse transcranial magnetic stimulation (spTMS) during observation of a grasping action performed by the hand, the foot, the mouth, the elbow, or the knee. The results indicate that observing a grasping action performed with different body parts activates the effector typically adopted to execute that action, i.e., the hand. We contend that, as far as grasping is concerned, motor activations by action observation are evident in the muscles typically used to perform the observed action, even when the action is executed with another effector. Nevertheless, some exceptions call for a deeper analysis of motor coding.
Collapse
Affiliation(s)
- Sonia Betti
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marie Deceuninck
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Papitto G, Friederici AD, Zaccarella E. The topographical organization of motor processing: An ALE meta-analysis on six action domains and the relevance of Broca's region. Neuroimage 2019; 206:116321. [PMID: 31678500 DOI: 10.1016/j.neuroimage.2019.116321] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Action is a cover term used to refer to a large set of motor processes differing in domain specificities (e.g. execution or observation). Here we review neuroimaging evidence on action processing (N = 416; Subjects = 5912) using quantitative Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modeling (MACM) approaches to delineate the functional specificities of six domains: (1) Action Execution, (2) Action Imitation, (3) Motor Imagery, (4) Action Observation, (5) Motor Learning, (6) Motor Preparation. Our results show distinct functional patterns for the different domains with convergence in posterior BA44 (pBA44) for execution, imitation and imagery processing. The functional connectivity network seeding in the motor-based localized cluster of pBA44 differs from the connectivity network seeding in the (language-related) anterior BA44. The two networks implement distinct cognitive functions. We propose that the motor-related network encompassing pBA44 is recruited when processing movements requiring a mental representation of the action itself.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Does watching Han Solo or C-3PO similarly influence our language processing? PSYCHOLOGICAL RESEARCH 2019; 84:1572-1585. [PMID: 30931488 DOI: 10.1007/s00426-019-01169-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated that perceiving an action influences the subsequent processing of action verbs. However, which characteristics of the perceived action are truly determinant to enable this influence is still unknown. The current study investigated the role of the agent executing an action in this action-language relationship. Participants performed a semantic decision task after seeing a video of a human or a robot performing an action. The results of the first study showed that perceiving a human being executing an action as well as perceiving a robot facilitate subsequent language processing, suggesting that the humanness (The term "humanness" is used as meaning "belonging to human race" and not to refer to a personal quality) of the agent is not crucial in the link between action and language. However, this experiment was conducted with Japanese people who are very familiar with robots; thus, an alternative explanation could be that it is the unfamiliarity with the agent that could perturb the action-language relationship. To assess this hypothesis, we carried out two additional experiments with French participants. The results of the second study showed that, unlike the observation of a human agent, the observation of a robot did not influence language processing. Finally, the results of the third study showed that, after a familiarization phase, French participants too were influenced by the observation of a robot. Overall, the outcomes of these studies indicate that, more than the humanness of the agent, it is the familiarity which we have with this agent that is crucial in the action-language relationship.
Collapse
|
17
|
Visual attention and action: How cueing, direct mapping, and social interactions drive orienting. Psychon Bull Rev 2018; 25:1585-1605. [PMID: 28808932 DOI: 10.3758/s13423-017-1354-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another's goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated.
Collapse
|
18
|
Vannuscorps G, F Wurm M, Striem-Amit E, Caramazza A. Large-Scale Organization of the Hand Action Observation Network in Individuals Born Without Hands. Cereb Cortex 2018; 29:3434-3444. [DOI: 10.1093/cercor/bhy212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/12/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Abstract
The human high-level visual cortex comprises regions specialized for the processing of distinct types of stimuli, such as objects, animals, and human actions. How does this specialization emerge? Here, we investigated the role of effector-specific visuomotor coupling experience in shaping the organization of the action observation network (AON) as a window on this question. Observed body movements are frequently coupled with corresponding motor codes, e.g., during monitoring one’s own movements and imitation, resulting in bidirectionally connected circuits between areas involved in body movements observation (e.g., of the hand) and the motor codes involved in their execution. If the organization of the AON is shaped by this effector-specific visuomotor coupling, then, it should not form for body movements that do not belong to individuals’ motor repertoire. To test this prediction, we used fMRI to investigate the spatial arrangement and functional properties of the hand and foot action observation circuits in individuals born without upper limbs. Multivoxel pattern decoding, pattern similarity, and univariate analyses revealed an intact hand AON in the individuals born without upper limbs. This suggests that the organization of the AON does not require effector-specific visuomotor coupling.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Mind/Brain Sciences (CIMeC), Università degli Studi di Trento, Rovereto, Italy
- Faculty of Psychology and Educational Sciences, Psychological Sciences Research Institute and Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Moritz F Wurm
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Mind/Brain Sciences (CIMeC), Università degli Studi di Trento, Rovereto, Italy
| | - Ella Striem-Amit
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Mind/Brain Sciences (CIMeC), Università degli Studi di Trento, Rovereto, Italy
| |
Collapse
|
19
|
Kirsch LP, Diersch N, Sumanapala DK, Cross ES. Dance Training Shapes Action Perception and Its Neural Implementation within the Young and Older Adult Brain. Neural Plast 2018; 2018:5459106. [PMID: 30123253 PMCID: PMC6079376 DOI: 10.1155/2018/5459106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
How we perceive others in action is shaped by our prior experience. Many factors influence brain responses when observing others in action, including training in a particular physical skill, such as sport or dance, and also general development and aging processes. Here, we investigate how learning a complex motor skill shapes neural and behavioural responses among a dance-naïve sample of 20 young and 19 older adults. Across four days, participants physically rehearsed one set of dance sequences, observed a second set, and a third set remained untrained. Functional MRI was obtained prior to and immediately following training. Participants' behavioural performance on motor and visual tasks improved across the training period, with younger adults showing steeper performance gains than older adults. At the brain level, both age groups demonstrated decreased sensorimotor cortical engagement after physical training, with younger adults showing more pronounced decreases in inferior parietal activity compared to older adults. Neural decoding results demonstrate that among both age groups, visual and motor regions contain experience-specific representations of new motor learning. By combining behavioural measures of performance with univariate and multivariate measures of brain activity, we can start to build a more complete picture of age-related changes in experience-dependent plasticity.
Collapse
Affiliation(s)
- Louise P. Kirsch
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Research Department of Clinical, Educational, and Health Psychology, Division of Psychology and Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Nadine Diersch
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dilini K. Sumanapala
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Emily S. Cross
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
- Institute of Neuroscience and Psychology & School of Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Osiurak F, Lesourd M, Delporte L, Rossetti Y. Tool Use and Generalized Motor Programs: We All Are Natural Born Poly-Dexters. Sci Rep 2018; 8:10429. [PMID: 29993002 PMCID: PMC6041280 DOI: 10.1038/s41598-018-28759-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022] Open
Abstract
For most people, human tool use is inextricably entwined with manual dexterity. This folk belief is widespread among scientists too. In this line, human tool use is based on motor programs about how the hand interacts with tools, implying that the use of end-effectors other than the hand should generate motor control difficulties (e.g., inability to reproduce a specific tool-use action over time), because these so-called programs characterize the spatiotemporal parameters of hand movements, but not of other end-effectors. To test this, we asked participants to perform three tool-use actions (e.g., pounding a nail) with four end-effectors (i.e., right foot, right elbow, left hand, right hand). We show that participants not only spontaneously performed the tool-use actions effectively, but also crucially kept tools’ spatiotemporal parameters constant among the end-effectors. This phenomenon, which we call poly-dexterity, is at odds with the view that the human brain stores hand-centered motor programs for tool use. Poly-dexterity is instead consistent with the idea that, once the tool-use action is formed mentally, general motor programs can be applied to a variety of end-effectors. Reversing the usual evolutionary perspective, our findings support that, in the course of evolution, manual dexterity has come after tool-use skills.
Collapse
Affiliation(s)
- François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, 5, avenue Pierre Mendès-France, 69676, Bron Cedex, France. .,Institut Universitaire de France, 103, Boulevard Saint-Michel, 75005, Paris, France.
| | - Mathieu Lesourd
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, 5, avenue Pierre Mendès-France, 69676, Bron Cedex, France
| | - Ludovic Delporte
- Integrative, Multisensory, Perception, Action, & Cognition Team, Centre de Recherche en Neurosciences de Lyon, INSERM-CNRS-Université de Lyon, 16, avenue Doyen Lépine, 69676, Bron Cedex, France.,Mouvement, Handicap et Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, 20, route de Vourles, 69230, St Genis Laval, France
| | - Yves Rossetti
- Integrative, Multisensory, Perception, Action, & Cognition Team, Centre de Recherche en Neurosciences de Lyon, INSERM-CNRS-Université de Lyon, 16, avenue Doyen Lépine, 69676, Bron Cedex, France.,Mouvement, Handicap et Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, 20, route de Vourles, 69230, St Genis Laval, France
| |
Collapse
|
21
|
Abstract
The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools.
Collapse
|
22
|
Pomiechowska B, Csibra G. Motor activation during action perception depends on action interpretation. Neuropsychologia 2017; 105:84-91. [PMID: 28189494 PMCID: PMC5447367 DOI: 10.1016/j.neuropsychologia.2017.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Since the discovery of motor mirroring, the involvement of the motor system in action interpretation has been widely discussed. While some theories proposed that motor mirroring underlies human action understanding, others suggested that it is a corollary of action interpretation. We put these two accounts to the test by employing superficially similar actions that invite radically different interpretations of the underlying intentions. Using an action-observation task, we assessed motor activation (as indexed by the suppression of the EEG mu rhythm) in response to actions typically interpreted as instrumental (e.g., grasping) or referential (e.g., pointing) towards an object. Only the observation of instrumental actions resulted in enhanced mu suppression. In addition, the exposure to grasping actions failed to elicit mu suppression when they were preceded by speech, suggesting that the presence of communicative signals modulated the interpretation of the observed actions. These results suggest that the involvement of sensorimotor cortices during action processing is conditional on a particular (instrumental) action interpretation, and that action interpretation relies on inferential processes and top-down mechanisms that are implemented outside of the motor system.
Collapse
Affiliation(s)
- Barbara Pomiechowska
- Cognitive Development Center, Department of Cognitive Science, Central European University, Budapest, Hungary.
| | - Gergely Csibra
- Cognitive Development Center, Department of Cognitive Science, Central European University, Budapest, Hungary; Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
23
|
Inter-Model Warming Projection Spread: Inherited Traits from Control Climate Diversity. Sci Rep 2017; 7:4300. [PMID: 28655902 PMCID: PMC5487336 DOI: 10.1038/s41598-017-04623-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
Since Chaney's report, the range of global warming projections in response to a doubling of CO2-from 1.5 °C to 4.5 °C or greater -remains largely unscathed by the onslaught of new scientific insights. Conventional thinking regards inter-model differences in climate feedbacks as the sole cause of the warming projection spread (WPS). Our findings shed new light on this issue indicating that climate feedbacks inherit diversity from the model control climate, besides the models' intrinsic climate feedback diversity that is independent of the control climate state. Regulated by the control climate ice coverage, models with greater (lesser) ice coverage generally possess a colder (warmer) and drier (moister) climate, exhibit a stronger (weaker) ice-albedo feedback, and experience greater (weaker) warming. The water vapor feedback also inherits diversity from the control climate but in an opposite way: a colder (warmer) climate generally possesses a weaker (stronger) water vapor feedback, yielding a weaker (stronger) warming. These inherited traits influence the warming response in opposing manners, resulting in a weaker correlation between the WPS and control climate diversity. Our study indicates that a better understanding of the diversity amongst climate model mean states may help to narrow down the range of global warming projections.
Collapse
|
24
|
Sensorimotor-independent development of hands and tools selectivity in the visual cortex. Proc Natl Acad Sci U S A 2017; 114:4787-4792. [PMID: 28416679 DOI: 10.1073/pnas.1620289114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The visual occipito-temporal cortex is composed of several distinct regions specialized in the identification of different object kinds such as tools and bodies. Its organization appears to reflect not only the visual characteristics of the inputs but also the behavior that can be achieved with them. For example, there are spatially overlapping responses for viewing hands and tools, which is likely due to their common role in object-directed actions. How dependent is occipito-temporal cortex organization on object manipulation and motor experience? To investigate this question, we studied five individuals born without hands (individuals with upper limb dysplasia), who use tools with their feet. Using fMRI, we found the typical selective hand-tool overlap (HTO) not only in typically developed control participants but also in four of the five dysplasics. Functional connectivity of the HTO in the dysplasics also showed a largely similar pattern as in the controls. The preservation of functional organization in the dysplasics suggests that occipito-temporal cortex specialization is driven largely by inherited connectivity constraints that do not require sensorimotor experience. These findings complement discoveries of intact functional organization of the occipito-temporal cortex in people born blind, supporting an organization largely independent of any one specific sensory or motor experience.
Collapse
|
25
|
Valchev N, Tidoni E, Hamilton AFDC, Gazzola V, Avenanti A. Primary somatosensory cortex necessary for the perception of weight from other people's action: A continuous theta-burst TMS experiment. Neuroimage 2017; 152:195-206. [PMID: 28254507 PMCID: PMC5440175 DOI: 10.1016/j.neuroimage.2017.02.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imaging studies show an involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task. Participants observed the right hand of an actor lifting a box and estimated its relative weight. In counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action understanding. TMS over the somatosensory cortex disrupts performance on a weight judgment task. Disruption is specific for judgements based on observed human actions. No TMS effect is found for judgements based on observed non-human motion. No effect is found when TMS is administered over nearby frontal and parietal region.
Collapse
Affiliation(s)
- Nikola Valchev
- BCN Neuroimaging Centre, Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry, Yale University, CMHC S110, 34 Park Street, New Haven, CT 06519, USA
| | - Emmanuele Tidoni
- Centre for Studies and Research in Cognitive Neuroscience and Department of Psychology, University of Bologna, Campus Cesena, 47521 Cesena, Italyhe somatosensory aspects of the actions of others rem; IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonia F de C Hamilton
- School of Psychology, University of Nottingham, Nottingham, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Valeria Gazzola
- BCN Neuroimaging Centre, Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands; The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1001 NK Amsterdam, The Netherlands.
| | - Alessio Avenanti
- Centre for Studies and Research in Cognitive Neuroscience and Department of Psychology, University of Bologna, Campus Cesena, 47521 Cesena, Italyhe somatosensory aspects of the actions of others rem; IRCSS Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
26
|
Neural Representations of Observed Actions Generalize across Static and Dynamic Visual Input. J Neurosci 2017; 37:3056-3071. [PMID: 28209734 DOI: 10.1523/jneurosci.2496-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/16/2017] [Accepted: 02/03/2017] [Indexed: 11/21/2022] Open
Abstract
People interact with entities in the environment in distinct and categorizable ways (e.g., kicking is making contact with foot). We can recognize these action categories across variations in actors, objects, and settings; moreover, we can recognize them from both dynamic and static visual input. However, the neural systems that support action recognition across these perceptual differences are unclear. Here, we used multivoxel pattern analysis of fMRI data to identify brain regions that support visual action categorization in a format-independent way. Human participants were scanned while viewing eight categories of interactions (e.g., pulling) depicted in two visual formats: (1) visually controlled videos of two interacting actors and (2) visually varied photographs selected from the internet involving different actors, objects, and settings. Action category was decodable across visual formats in bilateral inferior parietal, bilateral occipitotemporal, left premotor, and left middle frontal cortex. In most of these regions, the representational similarity of action categories was consistent across subjects and visual formats, a property that can contribute to a common understanding of actions among individuals. These results suggest that the identified brain regions support action category codes that are important for action recognition and action understanding.SIGNIFICANCE STATEMENT Humans tend to interpret the observed actions of others in terms of categories that are invariant to incidental features: whether a girl pushes a boy or a button and whether we see it in real-time or in a single snapshot, it is still pushing Here, we investigated the brain systems that facilitate the visual recognition of these action categories across such differences. Using fMRI, we identified several areas of parietal, occipitotemporal, and frontal cortex that exhibit action category codes that are similar across viewing of dynamic videos and still photographs. Our results provide strong evidence for the involvement of these brain regions in recognizing the way that people interact physically with objects and other people.
Collapse
|
27
|
Grasp-specific motor resonance is influenced by the visibility of the observed actor. Cortex 2016; 84:43-54. [PMID: 27697663 PMCID: PMC5084682 DOI: 10.1016/j.cortex.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022]
Abstract
Motor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp). Participants were presented with six visual conditions in which visual stimuli (video vs static image), view (whole person vs hand) and grasp (precision grip vs whole hand grasp) were varied in a 2 × 2 × 2 factorial design. Observing videos, but not static images, of a hand grasping different objects resulted in a grasp-specific interaction, such that FDI and ADM MEPs were differentially modulated depending on the type of grasp being observed (precision grip vs whole hand grasp). This interaction was present when observing the hand acting, but not when observing the whole person acting. Additional experiments revealed that these results were unlikely to be due to the relative size of the hand being observed. Our results suggest that observation of videos rather than static images is critical for motor resonance. Importantly, observing the whole person performing the action abolished the grasp-specific effect, which could be due to a variety of PMv inputs converging on M1.
Collapse
|
28
|
The origin of the biomechanical bias in apparent body movement perception. Neuropsychologia 2016; 89:281-286. [DOI: 10.1016/j.neuropsychologia.2016.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022]
|
29
|
Vannuscorps G, Caramazza A. Typical action perception and interpretation without motor simulation. Proc Natl Acad Sci U S A 2016; 113:86-91. [PMID: 26699468 PMCID: PMC4711885 DOI: 10.1073/pnas.1516978112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others' actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation--an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions.
Collapse
Affiliation(s)
- Gilles Vannuscorps
- Center for Mind/Brain Sciences, Università degli Studi di Trento, Mattarello, 38122, Italy; Department of Psychology, Harvard University, Cambridge, MA 02138; Institute of Psychological Sciences, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Alfonso Caramazza
- Center for Mind/Brain Sciences, Università degli Studi di Trento, Mattarello, 38122, Italy; Department of Psychology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
30
|
The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 16:191-206. [DOI: 10.3758/s13415-015-0399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Biagi L, Cioni G, Fogassi L, Guzzetta A, Sgandurra G, Tosetti M. Action observation network in childhood: a comparative fMRI study with adults. Dev Sci 2015; 19:1075-1086. [PMID: 26537750 DOI: 10.1111/desc.12353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Abstract
Very little is known about the action observation network and the mirror neuron system (AON/MNS) in children and its age-related properties compared with those observed in adults. In the present fMRI study we explored the activation of areas belonging to the AON/MNS in children and adults during observation of complex hand-grasping actions, as compared to observation of simple grasping acts executed with the left and the right hand, seen from a first person perspective. The results indicate that during the action observation tasks in children there was activation of a cortical network similar to that found in adults, including the premotor cortex, the posterior part of the inferior frontal gyrus and the posterior parietal lobe. However, the activation in children was more widespread and showed a higher inter-subject variability compared with adults. Furthermore, the activated network seems more lateralized to the left hemisphere in adults and more bilateral in children, with a linear growth of lateralization index as a function of age. Finally, in children the activation in the anterior intraparietal cortex (AIP) of each hemisphere was higher during observation of the contralateral hand (hand identity effect) and during the observation of complex actions relative to simple grasping acts, confirming the role of AIP for action-related hand identity previously described in adults. These results support the assumption that structure and size of action representations are sensitive to mechanisms of development and show physiological plasticity. These properties of the AON/MNS could constitute a powerful tool for spontaneous reorganization and recovery of motor deficits after brain injury in children and in adults, as well as for specific rehabilitation programmes.
Collapse
Affiliation(s)
- Laura Biagi
- Department of Developmental Neuroscience and MR Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience and MR Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy. .,Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Leonardo Fogassi
- Department of Neuroscience, University of Parma, and Istituto Italiano di Tecnologia (RTM), Parma, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience and MR Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Giuseppina Sgandurra
- Department of Developmental Neuroscience and MR Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Michela Tosetti
- Department of Developmental Neuroscience and MR Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
32
|
Betti S, Castiello U, Sartori L. Kick with the finger: symbolic actions shape motor cortex excitability. Eur J Neurosci 2015; 42:2860-6. [PMID: 26354677 DOI: 10.1111/ejn.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
A large body of research indicates that observing actions made by others is associated with corresponding motor facilitation of the observer's corticospinal system. However, it is still controversial whether this matching mechanism strictly reflects the kinematics of the observed action or its meaning. To test this issue, motor evoked potentials induced by single-pulse transcranial magnetic stimulation were recorded from hand and leg muscles while participants observed a symbolic action carried out with the index finger, but classically performed with the leg (i.e., a soccer penalty kick). A control condition in which participants observed a similar (but not symbolic) hand movement was also included. Results showed that motor facilitation occurs both in the observer's hand (first dorsal interosseous) and leg (quadriceps femoris) muscles. The present study provides evidence that both the kinematics and the symbolic value of an observed action are able to modulate motor cortex excitability. The human motor system is thus not only involved in mirroring observed actions but is also finely tuned to their symbolic value.
Collapse
Affiliation(s)
- Sonia Betti
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy.,Center for Cognitive Neuroscience, Università di Padova, Padova, Italy.,Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, Roma, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy.,Center for Cognitive Neuroscience, Università di Padova, Padova, Italy
| |
Collapse
|
33
|
de Klerk CCJM, Johnson MH, Southgate V. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy. Dev Cogn Neurosci 2015; 15:1-10. [PMID: 26318840 PMCID: PMC4649773 DOI: 10.1016/j.dcn.2015.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 11/15/2022] Open
Abstract
Previous studies have shown that sensorimotor cortex activation is somatotopically-organised during action execution and observation in adulthood. Here we aimed to investigate the development of this phenomenon in infancy. We elicited arm and leg actions from 12-month-old infants and presented them, and a control group of adults, with videos of arm and leg actions while we measured their sensorimotor alpha suppression using EEG. Sensorimotor alpha suppression during action execution was somatotopically organised in 12-month-old infants: there was more suppression over the arm areas when infants performed reaching actions, and more suppression over the leg area when they performed kicking actions. Adults also showed somatotopically-organised activation during the observation of reaching and kicking actions. In contrast, infants did not show somatotopically-organised activation during action observation, but instead activated the arm areas when observing both reaching and kicking actions. We suggest that the somatotopic organisation of sensorimotor cortex activation during action observation may depend on infants' understanding of the action goal and their expectations about how this goal will be achieved.
Collapse
Affiliation(s)
- Carina C J M de Klerk
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom.
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom
| | - Victoria Southgate
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, United Kingdom
| |
Collapse
|
34
|
Van Overwalle F, D'aes T, Mariën P. Social cognition and the cerebellum: A meta-analytic connectivity analysis. Hum Brain Mapp 2015; 36:5137-54. [PMID: 26419890 DOI: 10.1002/hbm.23002] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023] Open
Abstract
This meta-analytic connectivity modeling (MACM) study explores the functional connectivity of the cerebellum with the cerebrum in social cognitive processes. In a recent meta-analysis, Van Overwalle, Baetens, Mariën, and Vandekerckhove (2014) documented that the cerebellum is implicated in social processes of "body" reading (mirroring; e.g., understanding other persons' intentions from observing their movements) and "mind" reading (mentalizing, e.g., inferring other persons' beliefs, intentions or personality traits, reconstructing persons' past, future, or hypothetical events). In a recent functional connectivity study, Buckner et al. (2011) offered a novel parcellation of cerebellar topography that substantially overlaps with the cerebellar meta-analytic findings of Van Overwalle et al. (2014). This overlap suggests that the involvement of the cerebellum in social reasoning depends on its functional connectivity with the cerebrum. To test this hypothesis, we explored the meta-analytic co-activations as indices of functional connectivity between the cerebellum and the cerebrum during social cognition. The MACM results confirm substantial and distinct connectivity with respect to the functions of (a) action understanding ("body" reading) and (b) mentalizing ("mind" reading). The consistent and strong connectivity findings of this analysis suggest that cerebellar activity during social judgments reflects distinct mirroring and mentalizing functionality, and that these cerebellar functions are connected with corresponding functional networks in the cerebrum.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Tine D'aes
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Peter Mariën
- Faculty of Arts, Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.,Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Lindendreef 1, Antwerp, B-2020, Belgium
| |
Collapse
|
35
|
Pazzaglia M, Galli G. Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders. Front Behav Neurosci 2015; 9:222. [PMID: 26347631 PMCID: PMC4543860 DOI: 10.3389/fnbeh.2015.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Dipartimento di Psicologia, Università degli Studi di Roma "La Sapienza" Rome, Italy ; IRCCS Santa Lucia Foundation Rome, Italy
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The experience of ourselves as an embodied agent with a first-person perspective is referred to as 'bodily self'. We present a selective overview of relevant clinical and experimental studies. RECENT FINDINGS Sharing multisensory body space with others can be observed in patients with structurally altered bodies (amputations, congenital absence of limbs), with altered functionality after hemiplegia, such as denial of limb ownership (somatoparaphrenia) and with alterations in bodily self-consciousness on the level of the entire body (e.g. in autoscopic phenomena). In healthy participants, the mechanisms underpinning body ownership and observer perspective are empirically investigated by multisensory stimulation paradigms to alter the bodily self. The resulting illusions have promoted the understanding of complex disturbances of the bodily self, such as out-of-body experiences. We discuss the role of interoception in differentiating between self and others and review current advances in the study of body integrity identity disorder, a condition shaped as much by neurological as by social-psychological factors. SUMMARY We advocate a social neuroscience approach to the bodily self that takes into account the interactions between body, mind and society and might help close the divide between neurology and psychiatry.
Collapse
|
37
|
Abstract
Complementary colors are color pairs which, when combined in the right proportions, produce white or black. Complementary actions refer here to forms of social interaction wherein individuals adapt their joint actions according to a common aim. Notably, complementary actions are incongruent actions. But being incongruent is not sufficient to be complementary (i.e., to complete the action of another person). Successful complementary interactions are founded on the abilities: (i) to simulate another person's movements, (ii) to predict another person's future action/s, (iii) to produce an appropriate incongruent response which differ, while interacting, with observed ones, and (iv) to complete the social interaction by integrating the predicted effects of one's own action with those of another person. This definition clearly alludes to the functional importance of complementary actions in the perception-action cycle and prompts us to scrutinize what is taking place behind the scenes. Preliminary data on this topic have been provided by recent cutting-edge studies utilizing different research methods. This mini-review aims to provide an up-to-date overview of the processes and the specific activations underlying complementary actions.
Collapse
Affiliation(s)
- Luisa Sartori
- Dipartimento di Psicologia Generale, Università di Padova , Padova, Italy ; Cognitive Neuroscience Center, Università di Padova , Padova, Italy
| | - Sonia Betti
- Dipartimento di Psicologia Generale, Università di Padova , Padova, Italy
| |
Collapse
|
38
|
Clark I, Dumas G. Toward a neural basis for peer-interaction: what makes peer-learning tick? Front Psychol 2015; 6:28. [PMID: 25713542 PMCID: PMC4322849 DOI: 10.3389/fpsyg.2015.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 12/27/2022] Open
Abstract
Many of the instructional practices that have been advanced as intrinsically motivating are inherent in socio-constructivist learning environments. There is now emerging scientific evidence to explain why interactive learning environments promote the intrinsic motivation to learn. The "two-body" and "second person" approaches have begun to explore the "dark matter" of social neuroscience: the intra- and inter-individual brain dynamics during social interaction. Moreover, studies indicate that when young learners are given expanded opportunities to actively and equitably participate in collaborative learning activities they experienced feelings of well-being, contentment, or even excitement. Neuroscience starts demonstrating how this naturally rewarding aspect is strongly associated with the implication of the mesolimbic dopaminergic pathway during social interaction. The production of dopamine reinforces the desire to continue the interaction, and heightens feelings of anticipation for future peer-learning activities. Here we review how cooperative learning and problem-solving interactions can bring about the "intrinsic" motivation to learn. Overall, the reported theoretical arguments and neuroscientific results have clear implications for school and organization approaches and support social constructivist perspectives.
Collapse
Affiliation(s)
- Ian Clark
- Nagoya University of Commerce and Business, Nagoya, Japan
| | - Guillaume Dumas
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| |
Collapse
|
39
|
Thioux M, Keysers C. Object visibility alters the relative contribution of ventral visual stream and mirror neuron system to goal anticipation during action observation. Neuroimage 2015; 105:380-94. [PMID: 25462688 PMCID: PMC4968654 DOI: 10.1016/j.neuroimage.2014.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022] Open
Abstract
We used fMRI to study the effect of hiding the target of a grasping action on the cerebral activity of an observer whose task was to anticipate the size of the object being grasped. Activity in the putative mirror neuron system (pMNS) was higher when the target was concealed from the view of the observer and anticipating the size of the object being grasped requested paying attention to the hand kinematics. In contrast, activity in ventral visual areas outside the pMNS increased when the target was fully visible, and the performance improved in this condition. A repetition suppression analysis demonstrated that in full view, the size of the object being grasped by the actor was encoded in the ventral visual stream. Dynamic causal modeling showed that monitoring a grasping action increased the coupling between the parietal and ventral premotor nodes of the pMNS. The modulation of the functional connectivity between these nodes was correlated with the subject's capability to detect the size of hidden objects. In full view, synaptic activity increased within the ventral visual stream, and the connectivity with the pMNS was diminished. The re-enactment of observed actions in the pMNS is crucial when interpreting others' actions requires paying attention to the body kinematics. However, when the context permits, visual-spatial information processing may complement pMNS computations for improved action anticipation accuracy.
Collapse
Affiliation(s)
- Marc Thioux
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Neuroscience, University Medical Centre Groningen, University of Groningen, 9713 AW Groningen, The Netherlands.
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Neuroscience, University Medical Centre Groningen, University of Groningen, 9713 AW Groningen, The Netherlands
| |
Collapse
|
40
|
Where there is a goal, there is a way: what, why and how the parieto-frontal mirror network can mediate imitative behaviours. Neurosci Biobehav Rev 2014; 47:177-93. [PMID: 25149267 DOI: 10.1016/j.neubiorev.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/29/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
The relationships between mirror neurons (MNs) and motor imitation, and its clinical implications in autism spectrum disorder (ASD) have been widely investigated; however, the literature remains—at least partially—controversial. In this review we support a multi-level action understanding model focusing on the mirror-based understanding. We review the functional role of the parieto-frontal MNs (PFMN) network claiming that PFMNs function cannot be limited to imitation nor can imitation be explained solely by the activity of PFMNs. The distinction between movement, motor act and motor action is useful to characterize deeply both act(ion) understanding and imitation of act(ion). A more abstract representation of act(ion) may be crucial for clarifying what, why and how an imitator is imitating. What counts in social interactions is achieving goals: it does not matter which effector or string of motor acts you eventually use for achieving (proximal and distal) goals. Similarly, what counts is the ability to recognize/imitate the style of act(ion) regardless of the way in which it is expressed. We address this crucial point referring to its potential implications in ASD.
Collapse
|
41
|
Ansuini C, Cavallo A, Bertone C, Becchio C. The visible face of intention: why kinematics matters. Front Psychol 2014; 5:815. [PMID: 25104946 PMCID: PMC4109428 DOI: 10.3389/fpsyg.2014.00815] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/09/2014] [Indexed: 11/13/2022] Open
Abstract
A key component of social understanding is the ability to read intentions from movements. But how do we discern intentions in others' actions? What kind of intention information is actually available in the features of others' movements? Based on the assumption that intentions are hidden away in the other person's mind, standard theories of social cognition have mainly focused on the contribution of higher level processes. Here, we delineate an alternative approach to the problem of intention-from-movement understanding. We argue that intentions become "visible" in the surface flow of agents' motions. Consequently, the ability to understand others' intentions cannot be divorced from the capability to detect essential kinematics. This hypothesis has far reaching implications for how we know other minds and predict others' behavior.
Collapse
Affiliation(s)
- Caterina Ansuini
- Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology Genova, Italy
| | - Andrea Cavallo
- Department of Psychology, Centre for Cognitive Science, University of Torino Torino, Italy
| | - Cesare Bertone
- Department of Psychology, Centre for Cognitive Science, University of Torino Torino, Italy
| | - Cristina Becchio
- Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology Genova, Italy ; Department of Psychology, Centre for Cognitive Science, University of Torino Torino, Italy
| |
Collapse
|
42
|
Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S. Cortical Mechanisms Underlying the Organization of Goal-Directed Actions and Mirror Neuron-Based Action Understanding. Physiol Rev 2014; 94:655-706. [PMID: 24692357 DOI: 10.1152/physrev.00009.2013] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the functions of motor system evolved remarkably in the last 20 years. This is the consequence not only of an increase in the amount of data on this system but especially of a paradigm shift in our conceptualization of it. Motor system is not considered anymore just a “producer” of movements, as it was in the past, but a system crucially involved in cognitive functions. In the present study we review the data on the cortical organization underlying goal-directed actions and action understanding. Our review is subdivided into two major parts. In the first part, we review the anatomical and functional organization of the premotor and parietal areas of monkeys and humans. We show that the parietal and frontal areas form circuits devoted to specific motor functions. We discuss, in particular, the visuo-motor transformation necessary for reaching and for grasping. In the second part we show how a specific neural mechanism, the mirror mechanism, is involved in understanding the action and intention of others. This mechanism is located in the same parieto-frontal circuits that mediate goal-directed actions. We conclude by indicating future directions for studies on the mirror mechanism and suggest some major topics for forthcoming research.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Maddalena Fabbri-Destro
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Stefano Rozzi
- Department of Neuroscience, University of Parma, Parma, Italy; Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| |
Collapse
|
43
|
de Vignemont F. Shared body representations and the ‘Whose’ system. Neuropsychologia 2014; 55:128-36. [DOI: 10.1016/j.neuropsychologia.2013.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/02/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022]
|
44
|
Gerson SA. Sharing and Comparing: How Comparing Shared Goals Broadens Goal Understanding in Development. CHILD DEVELOPMENT PERSPECTIVES 2014. [DOI: 10.1111/cdep.12056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage 2013; 86:554-72. [PMID: 24076206 DOI: 10.1016/j.neuroimage.2013.09.033] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023] Open
Abstract
This meta-analysis explores the role of the cerebellum in social cognition. Recent meta-analyses of neuroimaging studies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotionality, with a few meta-analyses pointing to an involvement of at most 54% of the individual studies. In this study, novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneous subdomains, confirmed this low involvement of the cerebellum in conditions that trigger the mirror network (e.g., when familiar movements of body parts are observed) and the mentalizing network (when no moving body parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions that strongly involve the cerebellum in 50-100% of the individual studies. In particular, when the level of abstraction is high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groups rather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than the present, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta-analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and that the areas of the cerebellum which are consistently involved in social cognitive processes show extensive overlap with the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive functioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher abstraction mentalizing in particular. We also point out a number of methodological limitations of some available studies on the social brain that hamper the detection of cerebellar activity.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Kris Baetens
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Mariën
- Faculty of Arts, Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Lindendreef 1, B-2020 Antwerp, Belgium
| | - Marie Vandekerckhove
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
46
|
Southgate V. Do infants provide evidence that the mirror system is involved in action understanding? Conscious Cogn 2013; 22:1114-21. [PMID: 23773550 PMCID: PMC3807794 DOI: 10.1016/j.concog.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022]
Abstract
The mirror neuron theory of action understanding makes predictions concerning how the limited motor repertoire of young infants should impact on their ability to interpret others' actions. In line with this theory, an increasing body of research has identified a correlation between infants' abilities to perform an action, and their ability to interpret that action as goal-directed when performed by others. In this paper, I will argue that the infant data does by no means unequivocally support the mirror neuron theory of action understanding and that alternative interpretations of the data should be considered. Furthermore, some of this data can be better interpreted in terms of an alternative view, which holds that the role of the motor system in action perception is more likely to be one of enabling the observer to predict, after a goal has been identified, how that goal will be attained.
Collapse
Affiliation(s)
- Victoria Southgate
- Centre for Brain and Cognitive Development, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
47
|
Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Conscious Cogn 2013; 22:1095-104. [DOI: 10.1016/j.concog.2013.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
|
48
|
Abstract
AbstractIn this response we address additions to as well as criticisms and possible misinterpretations of our proposal for a second-person neuroscience. We map out the most crucial aspects of our approach by (1) acknowledging that second-person engaged interaction is not the only way to understand others, although we claim that it is ontogenetically prior; (2) claiming that spectatorial paradigms need to be complemented in order to enable a full understanding of social interactions; and (3) restating that our theoretical proposal not only questions the mechanism by which a cognitive process comes into being, but asks whether it is at all meaningful to speak of a mechanism and a cognitive process when it is confined to intra-agent space. We address theoretical criticisms of our approach by pointing out that while a second-person social understanding may not be the only mechanism, alternative approaches cannot hold their ground without resorting to second-person concepts, if not in the expression, certainly in the development of social understanding. In this context, we also address issues of agency and intentionality, theoretical alternatives, and clinical implications of our approach.
Collapse
|
49
|
Sgandurra G, Ferrari A, Cossu G, Guzzetta A, Fogassi L, Cioni G. Randomized Trial of Observation and Execution of Upper Extremity Actions Versus Action Alone in Children With Unilateral Cerebral Palsy. Neurorehabil Neural Repair 2013; 27:808-15. [DOI: 10.1177/1545968313497101] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The properties of the mirror neuron system suggest a new type of upper limb (UL) rehabilitation in children with unilateral cerebral palsy (UCP), based on observation of action therapy followed by execution of a variety of observed movements (AOT). Objective. We tested the effects of AOT in the Upper Limb Children Action Observation Training (UP-CAT) trial. Methods. In a randomized, evaluator-blinded, block-designed trial, 24 UCP children with mild to moderate hand impairment were assigned to 2 groups. The experimental group observed, 1 hour per day for 3 consecutive weeks, video sequences of unimanual or bimanual goal-directed actions and subsequently executed observed actions with the hemiparetic UL or both ULs. The control group performed the same actions in the same order as the experimental sample, but had watched computer games. The Assisting Hand Assessment (AHA) scale was the primary outcome measure; the Melbourne assessment and ABILHAND-Kids were secondary ones. Outcomes were assessed at 1 week (T1), 8 weeks (T2), and 24 weeks (T3) after the end of the training. Results. The experimental group improved more ( P = .008) in score changes for the AHA at the primary endpoints T1 ( P = .008), T2 ( P = .019), and T3 ( P = .049). No between-group significant changes were found for ABILHAND-Kids or Melbourne assessment. Conclusions. UP-CAT improved daily UL activities in UCP children, suggesting a new rehabilitation approach based on a neurophysiological model of motor learning.
Collapse
Affiliation(s)
| | - Adriano Ferrari
- IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
- University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Cossu
- University of Parma and Istituto Italiano di Tecnologia (Rete Tecnologica Multidisciplinare) Parma, Italy
| | | | - Leonardo Fogassi
- University of Parma and Istituto Italiano di Tecnologia (Rete Tecnologica Multidisciplinare) Parma, Italy
| | - Giovanni Cioni
- IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
- University of Pisa, Calambrone, Pisa, Italy
| |
Collapse
|
50
|
Lago-Rodriguez A, Lopez-Alonso V, Fernández-del-Olmo M. Mirror neuron system and observational learning: Behavioral and neurophysiological evidence. Behav Brain Res 2013; 248:104-13. [DOI: 10.1016/j.bbr.2013.03.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022]
|