1
|
Villani A, Fanelli F, Mulè G, Moretti A, Loi M. Shedding light on Pleurotus: An update on taxonomy, properties, and photobiology. Microbiol Res 2025; 295:128110. [PMID: 40020547 DOI: 10.1016/j.micres.2025.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Pleurotus genus (Jacq.) P. Kumm comprises widely known edible mushrooms whose commercial and biotechnological exploitation has been steadily increasing worldwide. With the advent of modern DNA-based approach, the taxonomic definition of species within Pleurotus genus has undergone major changes but remains unclear. Furthermore, knowledge regarding the photobiology of Pleurotus and the role of light in regulating its primary and secondary metabolism, along with key commercial and biotechnological aspects, remains limited. This review aims to depict a comprehensive overview on Pleurotus genus, with a particular focus on its controversial taxonomy, biotechnological potential and photobiology and to provide significant insights to address future research on this topic and exploit light technology to maximize Pleurotus potential.
Collapse
Affiliation(s)
- Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 70126, Italy
| |
Collapse
|
2
|
Park HM, Son YE, Cho HJ, Yu JH, Park HS. Characterization of Blue Light Receptors LreA and LreB in Aspergillus flavus. J Microbiol Biotechnol 2025; 35:e2411054. [PMID: 39947678 PMCID: PMC11876014 DOI: 10.4014/jmb.2411.11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
Light is a key external signal factor that regulates asexual development, stress resistance, and secondary metabolism in fungi. In the presence of light, photoreceptors sense several light receptors and affect fungal life. In this study, we characterized the function of the blue light receptors LreA and LreB in Aspergillus flavus, a potent pathogenic and toxigenic fungus. lreA or lreB deletion increased the growth rate but decreased conidial production in the presence or absence of light. The ΔlreA-mutant strain and the ΔlreB-mutant strain produced abnormal conidiophores, suggesting that lreA and lreB were essential for proper conidiation in A. flavus. The absence of lreA or lreB slightly decreased the stress response tolerance against thermal and oxidative stresses. In kernel infection, the ΔlreA mutant strain and the ΔlreB mutant strain produced conidia and aflatoxin B1 that were less than those produced by the control strains. Therefore, LreA and LreB play key roles in the growth, asexual development, and pathogenicity of A. flavus.
Collapse
Affiliation(s)
- Hye-Min Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Mina S, Hérivaux A, Yaakoub H, Courdavault V, Wéry M, Papon N. Structure and distribution of sensor histidine kinases in the fungal kingdom. Curr Genet 2024; 70:17. [PMID: 39276214 DOI: 10.1007/s00294-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.
Collapse
Affiliation(s)
- Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.
| | - Anaïs Hérivaux
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
- Nantes-Université, INRAE, UMR 1280, PhAN, Nantes, 44000, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Méline Wéry
- Univ Angers, SFR ICAT, Angers, F-49000, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
5
|
Jia K, Jia Y, Zeng Q, Yan Z, Wang S. Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus. J Fungi (Basel) 2024; 10:650. [PMID: 39330410 PMCID: PMC11433291 DOI: 10.3390/jof10090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yipu Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhua Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoqi Yan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Shen Y, Yang X, Zhu M, Duan S, Liu Q, Yang J. The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:626. [PMID: 39330386 PMCID: PMC11432822 DOI: 10.3390/jof10090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
Collapse
Affiliation(s)
- Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
7
|
Schuhmacher L, Heck S, Pitz M, Mathey E, Lamparter T, Blumhofer A, Leister K, Fischer R. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. J Biol Chem 2024; 300:107238. [PMID: 38552736 PMCID: PMC11061223 DOI: 10.1016/j.jbc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Collapse
Affiliation(s)
- Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Steffen Heck
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Michael Pitz
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Elena Mathey
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Tilman Lamparter
- Joseph Kölreuter Institute for Plant Research, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Alexander Blumhofer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Kai Leister
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
8
|
Sun T, Li Y, Li J, Gao J, Zhang J, Fischer R, Shen Q, Yu Z. Red and far-red light improve the antagonistic ability of Trichoderma guizhouense against phytopathogenic fungi by promoting phytochrome-dependent aerial hyphal growth. PLoS Genet 2024; 20:e1011282. [PMID: 38768261 PMCID: PMC11142658 DOI: 10.1371/journal.pgen.1011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/31/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.
Collapse
Affiliation(s)
- Tingting Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yifan Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jie Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jia Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Wang WJ, Li XP, Shen WH, Huang QY, Cong RP, Zheng LP, Wang JW. Nitric oxide mediates red light-induced perylenequinone production in Shiraia mycelium culture. BIORESOUR BIOPROCESS 2024; 11:2. [PMID: 38647587 PMCID: PMC10991179 DOI: 10.1186/s40643-023-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Perylenequinones (PQs) from bambusicolous Shiraia fungi serve as excellent photosensitizers for photodynamic therapy. However, the lower yield of PQ production in mycelium cultures is an important bottleneck for their clinical application. Light has long been recognized as a pivotal regulatory signal for fungal secondary metabolite biosynthesis. In this study, we explored the role of nitric oxide (NO) in the growth and PQ biosynthesis in mycelium cultures of Shiraia sp. S9 exposed to red light. The continuous irradiation with red light (627 nm, 200 lx) suppressed fungal conidiation, promoted hyphal branching, and elicited a notable increase in PQ accumulation. Red light exposure induced NO generation, peaking to 81.7 μmol/g FW on day 8 of the culture, with the involvement of nitric oxide synthase (NOS)- or nitrate reductase (NR)-dependent pathways. The application of a NO donor sodium nitroprusside (SNP) restored conidiation of Shiraia sp. S9 under red light and stimulated PQ production, which was mitigated upon the introduction of NO scavenger carboxy-PTIO or soluble guanylate cyclase inhibitor NS-2028. These results showed that red light-induced NO, as a signaling molecule, was involved in the regulation of growth and PQ production in Shiraia sp. S9 through the NO-cGMP-PKG signaling pathway. While mycelial H2O2 content exhibited no significant alternations, a transient increase of intracellular Ca2+ and extracellular ATP (eATP) content was detected upon exposure to red light. The generation of NO was found to be interdependent on cytosolic Ca2+ and eATP concentration. These signal molecules cooperated synergistically to enhance membrane permeability and elevate the transcript levels of PQ biosynthetic genes in Shiraia sp. S9. Notably, the combined treatment of red light with 5 μM SNP yielded a synergistic effect, resulting in a substantially higher level of hypocrellin A (HA, 254 mg/L), about 3.0-fold over the dark control. Our findings provide valuable insights into the regulation of NO on fungal secondary metabolite biosynthesis and present a promising strategy involving the combined elicitation with SNP for enhanced production of photoactive PQs and other valuable secondary metabolites in fungi.
Collapse
Affiliation(s)
- Wen Juan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
11
|
Cheng B, Tao N, Ma Y, Chai H, Liu P, Chen W, Zhao Y. Overexpression of the Capebp2 Gene Encoding the PEBP-like Protein Promotes the Cap Redifferentiation in Cyclocybe aegerita. J Fungi (Basel) 2023; 9:657. [PMID: 37367593 DOI: 10.3390/jof9060657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Phosphatidylethanolamine-binding protein (PEBP) is widely involved in various physiological behaviors, such as the transition from vegetative growth to reproductive growth in plants, tumorigenesis in the human, etc. However, few functional studies have examined pebp genes affecting the development of fungi. In this study, Capebp2 was cloned from Cyclocybe aegerita AC0007 strains based on the genome sequence and gene prediction, and the sequence alignment of CaPEBP2 with other PEBP proteins from other biological sources including plant, animal, fungi, and bacteria indicated that PEBP had low sequence similarity in fungi, whereas all protein sequences had some conserved motifs such as DPDAP and HRY. Expression analysis showed the transcription level of Capebp2 increased approximately 20-fold in fruiting bodies compared with mycelia. To uncover the function of Capebp2 in C. aegetita development, Capebp2 was cloned into a pATH vector driven by the actin promoter for obtaining overexpression transformant lines. Fruiting experiments showed the transformed strains overexpressing Capebp2 exhibited redifferentiation of the cap on their surface, including intact fruiting bodies or partial lamella during fruiting development stage, and the longitudinal section indicated that all regenerated bodies or lamella sprouted from the flesh and shared the epidermis with the mother fruiting bodies. In summary, the sequence characterization of Capebp2, expression level during different development stages, and function on fruiting body development were documented in this study, and these findings provided a reference to study the role of pebp in the development process of basidiomycetes. Importantly, gene mining of pebp, function characterization, and the regulating pathways involved need to be uncovered in further studies.
Collapse
Affiliation(s)
- Bopu Cheng
- College of Life Science, Southwest Forestry University, Kunming 650224, China
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, China
- Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650223, China
| |
Collapse
|
12
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans. Microbiol Spectr 2023:e0016623. [PMID: 36920196 PMCID: PMC10101098 DOI: 10.1128/spectrum.00166-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
In the filamentous fungus Aspergillus nidulans, the velvet family protein VeA and the global regulator of secondary metabolism LaeA govern development and secondary metabolism mostly by acting as the VelB/VeA/LaeA heterotrimeric complex. While functions of these highly conserved controllers have been well studied, the genome-wide regulatory networks governing cellular and chemical development remain to be uncovered. Here, by integrating transcriptomic analyses, protein-DNA interactions, and the known A. nidulans gene/protein interaction data, we have unraveled the gene regulatory networks governed by VeA and LaeA. Within the networks, VeA and LaeA directly control the expression of numerous genes involved in asexual/sexual development and primary/secondary metabolism in A. nidulans. Totals of 3,190 and 1,834 potential direct target genes of VeA and LaeA were identified, respectively, including several important developmental and metabolic regulators such as flbA·B·C, velB·C, areA, mpkB, and hogA. Moreover, by analyzing over 8,800 ChIP-seq peaks, we have revealed the predicted common consensus sequences 5'-TGATTGGCTG-3' and 5'-TCACGTGAC-3' that VeA and LaeA might bind to interchangeably. These findings further expand the biochemical and genomic studies of the VelB/VeA/LaeA complex functionality in the gene regulation. In summary, this study unveils genes that are under the regulation of VeA and LaeA, proposes the VeA- and LaeA-mediated gene regulatory networks, and demonstrates their genome-wide developmental and metabolic regulations in A. nidulans. IMPORTANCE Fungal development and metabolism are genetically programmed events involving specialized cellular differentiation, cellular communication, and temporal and spatial regulation of gene expression. In genus Aspergillus, the global regulators VeA and LaeA govern developmental and metabolic processes by affecting the expression of downstream genes, including multiple transcription factors and signaling elements. Due to their vital roles in overall biology, functions of VeA and LaeA have been extensively studied, but there still has been a lack of knowledge about their genome-wide regulatory networks. In this study, employing the model fungus A. nidulans, we have identified direct targets of VeA and LaeA and their gene regulatory networks by integrating transcriptome, protein-DNA interaction, and protein-protein interaction analyses. Our results demonstrate the genome-wide regulatory mechanisms of these global regulators, thereby advancing the knowledge of fungal biology and genetics.
Collapse
|
14
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Cerón-Bustamante M, Balducci E, Beccari G, Nicholson P, Covarelli L, Benincasa P. Effect of light spectra on cereal fungal pathogens, a review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Yap A, Glarcher I, Misslinger M, Haas H. Characterization and engineering of the xylose-inducible xylP promoter for use in mold fungal species. Metab Eng Commun 2022; 15:e00214. [DOI: 10.1016/j.mec.2022.e00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
17
|
Steindorff AS, Seong K, Carver A, Calhoun S, Fischer MS, Stillman K, Liu H, Drula E, Henrissat B, Simpson HJ, Schilling JS, Lipzen A, He G, Yan M, Andreopoulos B, Pangilinan J, LaButti K, Ng V, Traxler M, Bruns TD, Grigoriev IV. Diversity of genomic adaptations to the post-fire environment in Pezizales fungi points to crosstalk between charcoal tolerance and sexual development. THE NEW PHYTOLOGIST 2022; 236:1154-1167. [PMID: 35898177 DOI: 10.1111/nph.18407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse. In this work, we explored this diversity and sequenced six new genomes of pyrophilous Pezizales fungi isolated after the 2013 Rim Fire near Yosemite Park in California, USA: Pyronema domesticum, Pyronema omphalodes, Tricharina praecox, Geopyxis carbonaria, Morchella snyderi, and Peziza echinospora. A comparative genomics analysis revealed the enrichment of gene families involved in responses to stress and the degradation of pyrolyzed organic matter. In addition, we found that both protein sequence lengths and G + C content in the third base of codons (GC3) in pyrophilous fungi fall between those in mesophilic/nonpyrophilous and thermophilic fungi. A comparative transcriptome analysis of P. domesticum under two conditions - growing on charcoal, and during sexual development - identified modules of genes that are co-expressed in the charcoal and light-induced sexual development conditions. In addition, environmental sensors such as transcription factors STE12, LreA, LreB, VosA, and EsdC were upregulated in the charcoal condition. Taken together, these results highlight genomic adaptations of pyrophilous fungi and indicate a potential connection between charcoal tolerance and fruiting body formation in P. domesticum.
Collapse
Affiliation(s)
- Andrei S Steindorff
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyungyong Seong
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Akiko Carver
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sara Calhoun
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Monika S Fischer
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kyra Stillman
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Haowen Liu
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy, 13288 Aix Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Hunter J Simpson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Anna Lipzen
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Guifen He
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mi Yan
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew Traxler
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas D Bruns
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
18
|
Cea-Sánchez S, Corrochano-Luque M, Gutiérrez G, Glass NL, Cánovas D, Corrochano LM. Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. mBio 2022; 13:e0150522. [PMID: 35913159 PMCID: PMC9426599 DOI: 10.1128/mbio.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Asexual reproduction in fungi facilitates the dispersal and colonization of new substrates and, in pathogenic fungi, allows infection of plants and animals. The velvet complex is a fungus-specific protein complex that participates in the regulation of gene expression in response to environmental signals like light, as well as developmental processes, pathogenesis, and secondary metabolism. The velvet complex in the fungus Neurospora crassa is composed of three proteins, VE-1, VE-2, and LAE-1. Mutations in ve-1 or ve-2, but not in lae-1, led to shorter heights of aerial tissue, a mixture of aerial hyphae and developing macroconidia, and increased microconidiation when they were combined with mutations in the transcription factor gene fl. VE-2 and LAE-1 were detected during vegetative growth and conidiation, unlike VE-1, which was mostly observed in samples obtained from submerged vegetative hyphae. We propose that VE-1 is the limiting component of the velvet complex during conidiation and has a major role in the transcriptional regulation of conidiation. Characterization of the role of VE-1 during mycelial growth and asexual development (conidiation) by transcriptome sequencing (RNA-seq) experiments allowed the identification of a set of genes regulated by VE-1 that participate in the regulation of conidiation, most notably the transcription factor genes vib-1 and fl. We propose that VE-1 and VE-2 regulate the development of aerial tissue and the balance between macro- and microconidiation in coordination with FL and VIB-1. IMPORTANCE Most fungi disperse in nature and infect new hosts by producing vegetative spores or conidia during asexual development. This is a process that is regulated by environmental signals like light and the availability of nutrients. A protein complex, the velvet complex, participates in the integration of environmental signals to regulate conidiation. We have found that a key component of this complex in the fungus Neurospora crassa, VE-1, has a major role in the regulation of transcription during conidiation. VE-1 regulates a large number of genes, including the genes for the transcription factors FL and VIB-1. Our results will help to understand how environmental signals are integrated in the fungal cell to regulate development.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - N. Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, California, USA
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
19
|
Lam MI, Vojnits K, Zhao M, MacNaughton P, Pakpour S. The effect of indoor daylight spectrum and intensity on viability of indoor pathogens on different surface materials. INDOOR AIR 2022; 32:e13076. [PMID: 35904390 DOI: 10.1111/ina.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.
Collapse
Affiliation(s)
- Man In Lam
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kinga Vojnits
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael Zhao
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Piers MacNaughton
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sepideh Pakpour
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
20
|
Gil-Sánchez MDM, Cea-Sánchez S, Luque EM, Cánovas D, Corrochano LM. Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa. BMC Biol 2022; 20:149. [PMID: 35761233 PMCID: PMC9238092 DOI: 10.1186/s12915-022-01351-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fungi use light as an environmental signal to regulate developmental transitions that are key aspects of their biological cycles and that are also relevant for their dispersal and infectivity as plant or animal pathogens. In addition, light regulates the accumulation of photoprotective pigments, like carotenoids, and other secondary metabolites. Most fungal light responses occur after changes in gene transcription and we describe here a novel effect of light in the regulation of degradation of VE-1, a key component of the velvet complex, in the model fungus Neurospora crassa. The velvet complex is a fungal-specific protein complex that coordinates fungal development, secondary metabolism, and light regulation by interacting with other regulators and photoreceptors and modifying gene expression. RESULTS We have characterized the role of VE-1 during conidiation in N. crassa. In vegetative mycelia, VE-1 is localized in the cytoplasm and nuclei and is required for light-dependent transcription but does not interact with the photoreceptor and transcription factor WC-1. VE-1 is more stable in light than in darkness during asexual development (conidiation). We have shown that this light effect requires the blue-light photoreceptor WC-1. We have characterized the role of the proteasome, the COP9 signalosome (CSN), and the adaptor component of cullin-RING ubiquitin ligases, FWD-1, in the degradation of VE-1. CONCLUSIONS We propose that this new effect of light allows the fungal cell to adapt quickly to changes in light exposure by promoting the accumulation of VE-1 for the regulation of genes that participate in the biosynthesis of photoprotective pigments.
Collapse
Affiliation(s)
| | - Sara Cea-Sánchez
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain
| | - Luis M Corrochano
- Departamento de Genética, Universidad de Sevilla, Reina Mercedes s/n, 41012, Seville, Spain.
| |
Collapse
|
21
|
Tiley AMM, Lawless C, Pilo P, Karki SJ, Lu J, Long Z, Gibriel H, Bailey AM, Feechan A. The Zymoseptoria tritici white collar-1 gene, ZtWco-1, is required for development and virulence on wheat. Fungal Genet Biol 2022; 161:103715. [PMID: 35709910 DOI: 10.1016/j.fgb.2022.103715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
The fungus Zymoseptoria tritici causes Septoria Tritici Blotch (STB), which is one of the most devastating diseases of wheat in Europe. There are currently no fully durable methods of control against Z. tritici, so novel strategies are urgently required. One of the ways in which fungi are able to respond to their surrounding environment is through the use of photoreceptor proteins which detect light signals. Although previous evidence suggests that Z. tritici can detect light, no photoreceptor genes have been characterised in this pathogen. This study characterises ZtWco-1, a predicted photoreceptor gene in Z. tritici. The ZtWco-1 gene is a putative homolog to the blue light photoreceptor from Neurospora crassa, wc-1. Z. tritici mutants with deletions in ZtWco-1 have defects in hyphal branching, melanisation and virulence on wheat. In addition, we identify the putative circadian clock gene ZtFrq in Z. tritici. This study provides evidence for the genetic regulation of light detection in Z. tritici and it open avenues for future research into whether this pathogen has a circadian clock.
Collapse
Affiliation(s)
- Anna M M Tiley
- Agri-Food Biosciences Institute, 18a Newforge Ln, Belfast BT9 5PX, United Kingdom; School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland.
| | - Colleen Lawless
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland; School of Biology and Environmental Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Paola Pilo
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Sujit J Karki
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Jijun Lu
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Zhuowei Long
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Hesham Gibriel
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland; Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Angela Feechan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland.
| |
Collapse
|
22
|
Shen L, Chapeland-Leclerc F, Ruprich-Robert G, Chen Q, Chen S, Adnan M, Wang J, Liu G, Xie N. Involvement of VIVID in white light-responsive pigmentation, sexual development and sterigmatocystin biosynthesis in the filamentous fungus Podospora anserina. Environ Microbiol 2022; 24:2907-2923. [PMID: 35315561 DOI: 10.1111/1462-2920.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Light serves as a source of information and regulates diverse physiological processes in living organisms. Fungi perceive and respond to light through a complex photosensory system. Fungi have evolved the desensitization mechanism to adapt to the changing light signal in a natural environment. White light exerts multiple essential impacts on the model filamentous fungus P. anserina. However, the light sensing and response in this species has not been investigated. In this study, we demonstrated that the loss of function of the light desensitization protein VIVID (VVD) in P. anserina triggered exacerbated light responses, and therefore led to drastic morphological and physiological changes. The white light-sensitive mutant Δvvd showed growth reduction, spermatia overproduction, enhanced hyphae pigmentation and reduced oxidative stress tolerance. We observed the decreased expression level of sterigmatocystin gene cluster by transcriptome analysis, and finally detected the reduced production of sterigmatocystin in Δvvd in response to white light. Our data indicate that VVD acts as a repressor of white collar complex. This study exhibits a vital role of VVD in governing white light-responsive gene expression and secondary metabolite production, and contributes to a better understanding of the photoreceptor VVD in P. anserina. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Shen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Qiyi Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Siyu Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
23
|
A Simple and Low-Cost Strategy to Improve Conidial Yield and Stress Resistance of Trichoderma guizhouense through Optimizing Illumination Conditions. J Fungi (Basel) 2022; 8:jof8010050. [PMID: 35049990 PMCID: PMC8779183 DOI: 10.3390/jof8010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Light is perceived by photoreceptors in fungi and further integrated into the stress-activated MAPK HOG pathway, and thereby potentially activates the expression of genes for stress responses. This indicates that the precise control of light conditions can likely improve the conidial yield and stress resistance to guarantee the low cost and long shelf life of Trichoderma-based biocontrol agents and biofertilizers. In this study, effects of wavelengths and intensities of light on conidial yield and stress tolerance to osmotic, oxidative and pH stresses in Trichoderma guizhouense were investigated. We found that 2 μmol photons/(m2 × s) of blue light increased the conidial yield more than 1000 folds as compared to dark condition and simultaneously enhanced conidial stress resistance. The enhanced conidial stress resistance is probably due to the upregulated stress-related genes in blue light, which is under the control of the blue light receptor BLR1 and the MAP kinase HOG1.
Collapse
|
24
|
In-on A, Thananusak R, Ruengjitchatchawalya M, Vongsangnak W, Laomettachit T. Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in Cordyceps militaris. BIOLOGY 2022; 11:biology11010071. [PMID: 35053069 PMCID: PMC8773263 DOI: 10.3390/biology11010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023]
Abstract
Cordyceps militaris is an edible fungus that produces many beneficial compounds, including cordycepin and carotenoid. In many fungi, growth, development and secondary metabolite production are controlled by crosstalk between light-signaling pathways and other regulatory cascades. However, little is known about the gene regulation upon light exposure in C. militaris. This study aims to construct a gene regulatory network (GRN) that responds to light in C. militaris. First, a genome-scale GRN was built based on transcription factor (TF)-target gene interactions predicted from the Regulatory Sequence Analysis Tools (RSAT). Then, a light-responsive GRN was extracted by integrating the transcriptomic data onto the genome-scale GRN. The light-responsive network contains 2689 genes and 6837 interactions. From the network, five TFs, Snf21 (CCM_04586), an AT-hook DNA-binding motif TF (CCM_08536), a homeobox TF (CCM_07504), a forkhead box protein L2 (CCM_02646) and a heat shock factor Hsf1 (CCM_05142), were identified as key regulators that co-regulate a large group of growth and developmental genes. The identified regulatory network and expression profiles from our analysis suggested how light may induce the growth and development of C. militaris into a sexual cycle. The light-mediated regulation also couples fungal development with cordycepin and carotenoid production. This study leads to an enhanced understanding of the light-responsive regulation of growth, development and secondary metabolite production in the fungi.
Collapse
Affiliation(s)
- Ammarin In-on
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Correspondence: (W.V.); (T.L.)
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand; (A.I.-o.); (M.R.)
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
- Correspondence: (W.V.); (T.L.)
| |
Collapse
|
25
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
26
|
Chen Y, Cao Y, Gai Y, Ma H, Zhu Z, Chung KR, Li H. Genome-Wide Identification and Functional Characterization of GATA Transcription Factor Gene Family in Alternaria alternata. J Fungi (Basel) 2021; 7:jof7121013. [PMID: 34946995 PMCID: PMC8706292 DOI: 10.3390/jof7121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.
Collapse
Affiliation(s)
- Yanan Chen
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yingzi Cao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yunpeng Gai
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Haijie Ma
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Zengrong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Correspondence: ; Tel.: +86-13634190823
| |
Collapse
|
27
|
Ge X, Li R, Zhang X, Zhao J, Zhang Y, Xin Q. Transcriptome sequencing and global analysis of blue light-responsive genes provide clues for high carotenoid yields in Blakeslea trispora. Int Microbiol 2021; 25:325-338. [PMID: 34746983 DOI: 10.1007/s10123-021-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
Blakeslea trispora has great potential uses in industrial production because of the excellent capability of producing a large quantity of carotenoids. However, the mechanisms of light-induced carotenoid biosynthesis even the structural and regulatory genes in pathways remain unclear. In this paper, we reported the first transcriptome study in B. trispora in which we have carried out global survey of expression changes of genes participated in blue light response. We verified that the yield of β-carotene increased 3-fold when transferred from darkness to blue light for 24 h and the enhancement of transcription levels of carRA and carB presented a positive correlation with the increase in carotenoid production. RNA-seq analysis revealed that 1124 genes were upregulated and 740 genes were downregulated respectively after blue light exposure. Annotation through GO, KEGG, Swissprot, and COG databases showed 11119 unigenes compared well with known gene sequences, 5514 unigenes were classified into Gene Ontology, and 4675 unigenes were involved in distinct pathways. Among the blue light-responsive genes, 4 genes (carG1, carG3, carRA and carB) identified to function in carotenoid metabolic pathways were dominantly upregulated. We also discovered that 142 TF genes belonging to 45 different superfamilies showed significant differential expression (p≤ 0.05), 62 of which were obviously repressed by blue light. The detailed profile of transcription data will not only allow us to conduct further functional genomics study in B. trispora, but also enhance our understanding of potential metabolic pathway and regulatory network involved in light-regulated carotenoid synthesis.
Collapse
Affiliation(s)
- Xin Ge
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Baoding, 071002, People's Republic of China
| | - Ruiqing Li
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China
| | - Xiaomeng Zhang
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China
| | - Jingyi Zhao
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China
| | - Yanan Zhang
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China
| | - Qi Xin
- School of Life Science, Hebei University, Hebei, Baoding, 071002, People's Republic of China.
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China.
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Baoding, 071002, People's Republic of China.
| |
Collapse
|
28
|
Yu Z, Streng C, Seibeld RF, Igbalajobi OA, Leister K, Ingelfinger J, Fischer R. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions. PLoS Genet 2021; 17:e1009845. [PMID: 34679095 PMCID: PMC8535378 DOI: 10.1371/journal.pgen.1009845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the “white-collar” proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light. Fungi are microorganisms with important roles in the environment, as symbionts, as pathogens, or as workhorses in biotechnology. They constantly need to adapt to changing environmental conditions, often far away from their optima. One important environmental factor, fungi respond to is ambient light. The presence of light tells them if they are exposed to a surface and thus potentially to heat, harmful irradiation, or desiccation or other stressful conditions, or whether they are growing inside soil or litter with more constant conditions. Interestingly, many fungi harbor photosensors for blue-, green- and red light. We show here that in the model fungus Aspergillus nidulans a large proportion of the genome is under light control, and many genes are regulated through phytochrome and thus by red light. However, phytochrome is also used for blue-light sensing. Many genes are controlled by blue- and by red light signaling systems, but many also respond only to specific wavelengths. The study provides important groundwork for future research to unravel how different genes are regulated at the molecular level and to decipher the biological meaning for the complex light-regulatory systems found in fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- Nanjing Agricultural University, Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
- * E-mail: (ZY); (RF)
| | - Christian Streng
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Ramon F. Seibeld
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Olumuyiwa A. Igbalajobi
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Kai Leister
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Julian Ingelfinger
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- * E-mail: (ZY); (RF)
| |
Collapse
|
29
|
Dias LP, Souza RKF, Pupin B, Rangel DEN. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biol 2021; 125:891-904. [PMID: 34649676 DOI: 10.1016/j.funbio.2021.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena da Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | | | - Breno Pupin
- Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, SP, 12227-010, Brazil
| | | |
Collapse
|
30
|
Pola-Sánchez E, Villalobos-Escobedo JM, Carreras-Villaseñor N, Martínez-Hernández P, Beltrán-Hernández EB, Esquivel-Naranjo EU, Herrera-Estrella A. A Global Analysis of Photoreceptor-Mediated Transcriptional Changes Reveals the Intricate Relationship Between Central Metabolism and DNA Repair in the Filamentous Fungus Trichoderma atroviride. Front Microbiol 2021; 12:724676. [PMID: 34566928 PMCID: PMC8456097 DOI: 10.3389/fmicb.2021.724676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
Collapse
Affiliation(s)
- Enrique Pola-Sánchez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Emma Beatriz Beltrán-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Laboratorio de Microbiología Molecular, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
31
|
Lin S, Qin H, Zhang X, Li W, Liu M. Inhibition of Aspergillus oryzae Mycelium Growth and Conidium Production by Irradiation with Light at Different Wavelengths and Intensities. Microbiol Spectr 2021; 9:e0021321. [PMID: 34346745 PMCID: PMC8552791 DOI: 10.1128/spectrum.00213-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Aspergillus oryzae is a safe filamentous fungus widely used in the food, medicine, and feed industries, but there is currently not enough research on the light response of A. oryzae. In this study, 12 different light conditions were set and A. oryzae GDMCC 3.31 was continuously irradiated for 72 h to investigate the effect of light on mycelial growth and conidium production. Specifically, each light condition was the combination of one light wavelength (475, 520, or 630 nm) and one light intensity (20, 40, 60, or 80 μmol photon m-2 s-1). The results show that mycelium growth was inhibited significantly by green light (wavelength of 520 nm and intensities of 20 and 60 μmol photon m-2 s-1) and blue light (wavelength of 475 nm and intensity of 80 μmol photon m-2 s-1). The production of conidia was suppressed only by blue light (wavelength of 475 nm and intensities of 40, 60, and 80 μmol photon m-2 s-1), and those levels of inhibition increased when the intensity of blue light increased. When the strain was irradiated by blue light (80 μmol photon m-2 s-1), the number of conidia was 57.4% less than that of the darkness group. However, within our set range of light intensities, A. oryzae GDMCC 3.31 was insensitive to red light (wavelength of 630 nm) in terms of mycelium growth and conidium production. Moreover, interaction effects between light wavelength and intensity were found to exist in terms of colony diameter and the number of conidia. This research investigated the light response of A. oryzae, which may provide a new method to regulate mixed strains in fermented foods by light. IMPORTANCE Studies on the monochromatic light response of Aspergillus nidulans and Neurospora crassa have gone deep into the molecular mechanism. However, research methods for the light response of A. oryzae remain in the use of white light sources. In this study, we first demonstrated that A. oryzae GDMCC 3.31 was sensitive to light wavelength and intensity. We have observed that blue light inhibited its growth and sporulation and the inhibitory effect increased with intensity. This research not only adds new content to the study of the photoreaction of Aspergillus but also brings new possibilities for the use of light to regulate mixed strains and ultimately improve the flavor quality of fermented foods.
Collapse
Affiliation(s)
- Shangfei Lin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
- Jihua Laboratory, Foshan City, Guangdong Province, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaolin Zhang
- Department of Light Sources and Illuminating Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Wenqi Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
- Jihua Laboratory, Foshan City, Guangdong Province, China
- Department of Light Sources and Illuminating Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Streng C, Hartmann J, Leister K, Krauß N, Lamparter T, Frankenberg-Dinkel N, Weth F, Bastmeyer M, Yu Z, Fischer R. Fungal phytochrome chromophore biosynthesis at mitochondria. EMBO J 2021; 40:e108083. [PMID: 34254350 PMCID: PMC8447599 DOI: 10.15252/embj.2021108083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome‐dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme‐derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C‐terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000‐fold higher than the affinity of the holoprotein, suggesting a “kiss‐and‐go” mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.
Collapse
Affiliation(s)
- Christian Streng
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Jana Hartmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kai Leister
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | | | - Franco Weth
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Zhenzhong Yu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
33
|
Brych A, Haas FB, Parzefall K, Panzer S, Schermuly J, Altmüller J, Engelsdorf T, Terpitz U, Rensing SA, Kiontke S, Batschauer A. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genet Biol 2021; 152:103570. [PMID: 34004340 DOI: 10.1016/j.fgb.2021.103570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.
Collapse
Affiliation(s)
- Annika Brych
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Fabian B Haas
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Katharina Parzefall
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Jeanette Schermuly
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Timo Engelsdorf
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Stefan A Rensing
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Stephan Kiontke
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany.
| |
Collapse
|
34
|
Structure prediction and function characterization of WC-2 proteins in Blakeslea trispora. Int Microbiol 2021; 24:427-439. [PMID: 33973112 DOI: 10.1007/s10123-021-00181-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Blakeslea trispora is known for its potential to produce an excess of carotenoids in mixed cultures of strains of opposite sex. The biosynthesis of β-carotene in B. trispora is activated not only by sex hormone trisporic acid but also by light, especially blue light. In fungi, the most intensively investigated blue-light reception proteins are WC-1 and WC-2, and the two proteins form a transcription factor complex which is called WCC by their PAS domains. Notably, multiple genes similar to wc-1 and wc-2 have been identified and characterized in Phycomyces, Mucor, and Rhizopus. Here we report that there are four members of wc-2-like gene family in B. trispora genome: Btwc-2a, Btwc-2b, Btwc-2c, and Btwc-2d. When the mycelia were exposed to blue light, their transcription levels are regulated differentially. Except for BtWC-2b, which only has a PAS domain, the other three proteins contain both a PAS domain and a ZnF domain. BtWC-2a interacts with either BtWC-1a or BtWC-1c to form different photoreceptor complexes in yeast two-hybrid assays, which is the unique situation not yet described in other fungi. In addition, the protein-protein docking analysis by the predicted 3D structures showed that the two complexes are structurally different. These results suggested that WC proteins of B. trispora are still involved in light regulation by forming WCC and the regulation mechanism of the photobiology appears to be more complex.
Collapse
|
35
|
Jiang C, Lv G, Ge J, He B, Zhang Z, Hu Z, Zeng B. Genome-wide identification of the GATA transcription factor family and their expression patterns under temperature and salt stress in Aspergillus oryzae. AMB Express 2021; 11:56. [PMID: 33876331 PMCID: PMC8055810 DOI: 10.1186/s13568-021-01212-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
GATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.
Collapse
|
36
|
Effects of Light on the Ochratoxigenic Fungi Aspergillus ochraceus and A. carbonarius. Toxins (Basel) 2021; 13:toxins13040251. [PMID: 33807312 PMCID: PMC8065527 DOI: 10.3390/toxins13040251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Ochratoxin A (OTA) usually contaminates agricultural products such as grapes, oatmeal, coffee and spices. Light was reported as an effective strategy to control spoilage fungi and mycotoxins. This research investigated the effects of light with different wavelengths on the growth and the production of OTA in Aspergillus ochraceus and Aspergillus carbonarius. The results showed that the growth of both fungi were extremely inhibited by UV-B. Short-wavelength (blue, violet) significantly inhibited the production of OTA in both fungi, while the inhibitory effect of white was only demonstrated on A. ochraceus. These results were supported by the expression profiles of OTA biosynthetic genes of A. ochraceus and A. carbonarius. To clarify, the decrease in OTA production is induced by inhibition or degradation; therefore, the degradation of OTA under different wavelengths of light was tested. Under UV-B, the degradation rate of 10 μg/mL OTA standard pure-solution samples could reach 96.50% in 15 days, and the degradation effect of blue light was relatively weak. Furthermore, infection experiments of pears showed that the pathogenicity of both fungi was significantly decreased under UV-B radiation. Thus, these results suggested that light could be used as a potential target for strategies in the prevention and control of ochratoxigenic fungi.
Collapse
|
37
|
Yu Z, Gao J, Igbalajobi O, Skoneczny M, Sieńko M, Maciejewska AM, Brzywczy J, Fischer R. The sulfur metabolism regulator MetR is a global regulator controlling phytochrome-dependent light responses in Aspergillus nidulans. Sci Bull (Beijing) 2021; 66:592-602. [PMID: 36654429 DOI: 10.1016/j.scib.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 01/20/2023]
Abstract
Phytochrome-dependent light signaling has been studied in several fungi. In Aspergillus nidulans light-stimulated phytochrome activates the high-osmolarity glycerol (HOG) signaling pathway and thereby controls the expression of a large number of genes, many of which are related to stress responses. In a genome-wide expression analysis in A. nidulans we found that phytochrome, fphA, is under strict expression control of the central regulator of the sulfur-starvation response, MetR. This transcriptional regulator is required for the expression of genes involved in inorganic sulfur assimilation. In the presence of organic sulfur, MetR is probably ubiquitinated and possibly degraded and the transcription of sulfur-assimilation genes, e.g., sulfate permease, is turned off. The expression analysis described here revealed, however, that MetR additionally controls the expression of hundreds of genes, many of which are required for secondary metabolite production. We also show that metR mutation phenocopies fphA deletion, and five other histidine-hybrid kinases are down-regulated in the metR1 mutant. Furthermore, we found that light and phytochrome regulate the expression of at least three carbon-sulfur hydrolases. This work is a further step towards understanding the interplay between light sensing and metabolic pathways.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany; Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jia Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany
| | - Olumuyiwa Igbalajobi
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany; Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia VGT 1Z4, Canada
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Marzena Sieńko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Agnieszka M Maciejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Jerzy Brzywczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02-106, Poland
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)-South Campus, Karlsruhe D-76131, Germany.
| |
Collapse
|
38
|
Xiong X, Liu Y, Zhang J, Wang S, Li L, Gao M. Mutational analysis of MpPhy reveals magnetoreception and photosensitivity involvement in secondary metabolites biosynthesis in Monascus purpureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112164. [PMID: 33676287 DOI: 10.1016/j.jphotobiol.2021.112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Light or low frequency magnetic field (LF-MF) as one of the cultivation environments affects secondary metabolites (SMs) production of M. purpureus. Phytochrome (Phy) is a hybrid histidine kinase possessing dual properties of photoreceptor and kinase to sense red and far-red light. The interaction effects of LF-MF and light on SMs of M. purpureus was investigated by knocking out the Phy-like gene in M. purpureus (MpPhy) by homologous recombination. A MpPhy-deletion (ΔMpPhy) strain produced less Monascus pigments (MPs) and monacolin K (mon K) than the wild-type (WT) strain and reduced citrinin production by 78.3% on 10th day but didn't affect the biomass. These results indicated that the MpPhy gene is involved in SMs biosynthesis of M. purpureus. MPs production in WT was decreased significantly when the inoculum was exposed to white/blue/green/red light (500 Lux). But it in ΔMpPhy was no significant difference when exposed to white/red light. The colony size of ΔMpPhy was smaller on potato dextrose agar media containing 0.01% SDS. These results indicated that the deletion of MpPhy gene affected the aerial hyphae and increased sensitivity to cell membrane stress but decreased sensitivity to red light. The inoculum of both WT and ΔMpPhy was exposure to the LF-MF (50 Hz). The accumulation of WT secondary metabolites was not changed, while SMs production of ΔMpPhy was significantly enhanced under exposed to 2.0 mT LF-MF. This indicated that the decrease of SMs caused by the deletion of MpPhy gene was restored by LF-MF. It revealed that there is a crosstalk between magnetoreception and photosensitivity.
Collapse
Affiliation(s)
- Xiaoqian Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Jialan Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| |
Collapse
|
39
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
40
|
Light-Photoreceptors and Proteins Related to Monilinia laxa Photoresponses. J Fungi (Basel) 2021; 7:jof7010032. [PMID: 33430380 PMCID: PMC7827745 DOI: 10.3390/jof7010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023] Open
Abstract
Light represents a ubiquitous source of information for organisms to evaluate their environment. The influence of light on colony growth and conidiation was determined for three Monilinia laxa isolates. The highest mycelial growth rate was observed under red light for the three M. laxa isolates, followed by green light, daylight or darkness. However, reduced sporulation levels were observed in darkness and red light, but conidiation enhancement was found under daylight, black and green light with more hours of exposure to light. Putative photoreceptors for blue (white-collar and cryptochromes), green (opsins), and red light (phytochromes) were identified, and the photoresponse-related regulatory family of velvet proteins. A unique ortholog for each photoreceptor was found, and their respective domain architecture was highly conserved. Transcriptional analyses of uncovered sets of genes were performed under daylight or specific color light, and both in time course illumination, finding light-dependent triggered gene expression of MlVEL2, MlPHY2, MlOPS2, and MlCRY2, and color light as a positive inductor of MlVEL3, MlVEL4, MlPHY1, and MlCRY1 expression. M. laxa has a highly conserved set of photoreceptors with other light-responsive fungi. Our phenotypic analyses and the existence of this light-sensing machinery suggest transcriptional regulatory systems dedicated to modulating the development and dispersion of this pathogen.
Collapse
|
41
|
Moreno-Ruiz D, Fuchs A, Missbach K, Schuhmacher R, Zeilinger S. Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-α-pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens 2020; 9:E860. [PMID: 33096850 PMCID: PMC7589932 DOI: 10.3390/pathogens9100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
The ascomycete Trichoderma atroviride is well known for its mycoparasitic lifestyle. Similar to other organisms, light is an important cue for T. atroviride. However, besides triggering of conidiation, little is known on the physiological responses of T. atroviride to light. In this study, we analyzed how cultivation under different light wavelengths and regimes impacted the behavior of two T. atroviride wild-type strains: IMI206040 and P1. While colony extension of both strains was slightly affected by light, massive differences in their photoconidation responses became evident. T. atroviride P1 colonies conidiated under all conditions tested including growth in complete darkness, while IMI206040 required white, blue or green light to trigger asexual reproduction. Interestingly, deletion of the stress-activated MAP kinase-encoding gene tmk3 abolished the ability of strain P1 to conidiate in red and yellow light as well as in darkness. Furthermore, light-dependent differences in the mycoparasitic activity and in the biosynthesis of the secondary metabolite 6-pentyl-α-pyrone (6-PP) became evident. 6-PP production was highest upon dark incubation, while light, especially exposure to white light as light/dark cycles, had an inhibitory effect on its biosynthesis. We conclude that the response of T. atroviride to light is strain-dependent and impacts differentiation, mycoparasitism, and 6-PP production; hence, this should be considered in experiments testing the mycoparasitic activity of these fungi.
Collapse
Affiliation(s)
- Dubraska Moreno-Ruiz
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| | - Alessandro Fuchs
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| | - Kristina Missbach
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Tulln, Austria; (K.M.); (R.S.)
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Tulln, Austria; (K.M.); (R.S.)
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria; (D.M.-R.); (A.F.)
| |
Collapse
|
42
|
The Photoreceptor Components FaWC1 and FaWC2 of Fusarium asiaticum Cooperatively Regulate Light Responses but Play Independent Roles in Virulence Expression. Microorganisms 2020; 8:microorganisms8030365. [PMID: 32150839 PMCID: PMC7143034 DOI: 10.3390/microorganisms8030365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Fusarium asiaticum belongs to one of the phylogenetical subgroups of the F. graminearum species complex and is epidemically predominant in the East Asia area. The life cycle of F. asiaticum is significantly regulated by light. In this study, the fungal blue light receptor white collar complex (WCC), including FaWC1 and FaWC2, were characterized in F. asiaticum. The knockout mutants ΔFawc1 and ΔFawc2 were generated by replacing the target genes via homologous recombination events. The two mutants showed similar defects in light-induced carotenoid biosynthesis, UV-C resistance, sexual fruiting body development, and the expression of the light-responsive marker genes, while in contrast, all these light responses were characteristics in wild-type (WT) and their complementation strains, indicating that FaWC1 and FaWC2 are involved in the light sensing of F. asiaticum. Unexpectedly, however, the functions of Fawc1 and Fawc2 diverged in regulating virulence, as the ΔFawc1 was avirulent to the tested host plant materials, but ΔFawc2 was equivalent to WT in virulence. Moreover, functional analysis of FaWC1 by partial disruption revealed that its light–oxygen–voltage (LOV) domain was required for light sensing but dispensable for virulence, and its Zinc-finger domain was required for virulence expression but not for light signal transduction. Collectively, these results suggest that the conserved fungal blue light receptor WCC not only endows F. asiaticum with light-sensing ability to achieve adaptation to environment, but it also regulates virulence expression by the individual component FaWC1 in a light-independent manner, and the latter function opens a way for investigating the pathogenicity mechanisms of this important crop disease agent.
Collapse
|
43
|
Frawley D, Greco C, Oakley B, Alhussain MM, Fleming AB, Keller NP, Bayram Ö. The tetrameric pheromone module SteC-MkkB-MpkB-SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus. Cell Microbiol 2020; 22:e13192. [PMID: 32068947 PMCID: PMC7202998 DOI: 10.1111/cmi.13192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen‐activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
44
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
45
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
46
|
Marcos AT, Ramos MS, Schinko T, Strauss J, Cánovas D. Nitric oxide homeostasis is required for light-dependent regulation of conidiation in Aspergillus. Fungal Genet Biol 2020; 137:103337. [PMID: 31991229 DOI: 10.1016/j.fgb.2020.103337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) can be biologically synthesized from nitrite or from arginine. Although NO is involved as a signal in many biological processes in bacteria, plants, and mammals, still little is known about the role of NO in fungi. Here we show that NO levels are regulated by light as an environmental signal in Aspergillus nidulans. The flavohaemoglobin-encoding fhbB gene involved in NO oxidation to nitrate, and the arginine-regulated arginase encoded by agaA, which controls the intracellular concentration of arginine, are both up-regulated by light. The phytochrome fphA is required for the light-dependent induction of fhbB and agaA, while the white-collar gene lreA acts as a repressor when arginine is present in the media. The intracellular arginine pools increase upon induction of both developmental programs (conidiation and sexual development), and the increase is higher under conditions promoting sexual development. The presence of low concentrations of arginine does not affect the light-dependent regulation of conidiation, but high concentrations of arginine overrun the light signal. Deletion of fhbB results in the partial loss of the light regulation of conidiation on arginine and on nitrate media, while deletion of fhbA only affects the light regulation of conidiation on nitrate media. Our working model considers a cross-talk between environmental cues and intracellular signals to regulate fungal reproduction.
Collapse
Affiliation(s)
- Ana T Marcos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - María S Ramos
- Department of Genetics, Faculty of Biology, University of Seville, Spain
| | - Thorsten Schinko
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Spain; Department of Applied Genetics and Cell Biology, BOKU University of Natural Resources and Life Science, University and Research Center - Campus Tulln, Tulln - Donau, Austria.
| |
Collapse
|
47
|
Yu Z, Hübner J, Herrero S, Gourain V, Fischer R. On the role of the global regulator RlcA in red-light sensing in Aspergillus nidulans. Fungal Biol 2020; 124:447-457. [PMID: 32389307 DOI: 10.1016/j.funbio.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 02/02/2023]
Abstract
A large proportion of fungal genomes are under the control of light. Most fungi employ complex light sensing systems, consisting of red-, blue-, and in some cases green-light photoreceptors. Here we studied the light response in Aspergillus nidulans. In a genetic screen, followed by whole-genome sequencing we identified a global regulator, which appears to be involved in chromatin structure modification. We therefore named the protein RlcA (regulator of light sensing and chromatin remodeling). The protein comprises a nuclear localization signal, a PHD (plant homeodomain) finger, a TFSII (found in the central region of the transcription elongation factor S-II), and a SPOC domain (Spen paralog and ortholog C-terminal domain). In the mutant, where light-controlled genes were constitutively active, the SPOC domain is missing. RlcA localized to the nucleus and interacted with the phytochrome FphA. The PHD-finger domain probably binds to trimethylated lysine 4 of histone H3, whereas the TFSII domain binds RNA polymerase II. The SPOC domain could mediate interaction with a global repressor protein. In the mutant, repressor recruitment would be hindered, whereas in the wild type repressor release would be induced after light stimulation. Our results add another layer of complexity to light sensing in filamentous fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany; Nanjing Agricultural University, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, College of Resources and Environmental Sciences, 210095, Nanjing, China.
| | - Jennifer Hübner
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
48
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
49
|
Shin JH, Gumilang A, Kim MJ, Han JH, Kim KS. A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae. MYCOBIOLOGY 2019; 47:473-482. [PMID: 32010469 PMCID: PMC6968698 DOI: 10.1080/12298093.2019.1689037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Adiyantara Gumilang
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Moon-Jong Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Joon-Hee Han
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| | - Kyoung Su Kim
- Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
50
|
Qi Y, Sun X, Ma L, Wen Q, Qiu L, Shen J. Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system. Fungal Biol 2019; 124:8-14. [PMID: 31892380 DOI: 10.1016/j.funbio.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
Blue light is necessary for initiation of mushroom formation of Pleurotus ostreatus. In this study, we isolated homologues of the blue light receptor genes wc-1 and wc-2 from P. ostreatus, PoWC-1 and PoWC-2. The PoWC-1 contained three typical PAS domains and one PAS domain exhibited significant similarity to the LOV domain of known blue light receptors. The PoWC-2 had one typical PAS domain and one ZnF domain. The qRT-PCR analysis showed that PoWC-1 and PoWC-2 expression increased in a short time, and the final level tended to be stable along with the light illumination. The PoWC-1 and PoWC-2 expression levels of the primordium period was higher than that of mature fruiting-body period; and in the pileus were the highest, followed by the stipe and the gills. The expression of PoWC-1 and PoWC-2 in pre-primordial mycelia was induced by light exposure. In vivo analysis through yeast two-hybrid experiment disclosed that PoWC-1 and PoWC-2 could form heterologous complex to activate the reporter genes and the complex perform the transcription factor function requiring the addition of FAD.
Collapse
Affiliation(s)
- Yuancheng Qi
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiankai Sun
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Lin Ma
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qing Wen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Liyou Qiu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jinwen Shen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|