1
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Guo Y, Zhang Q, Zhang B, Pan T, Ronan EA, Huffman A, He Y, Inoki K, Liu J, Xu XS. Dietary cinnamon promotes longevity and extends healthspan via mTORC1 and autophagy signaling. Aging Cell 2025; 24:e14448. [PMID: 39760475 PMCID: PMC11984692 DOI: 10.1111/acel.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Cinnamon, renowned for its aromatic flavor, represents one of the most widely used spices worldwide. Cinnamon is also considered beneficial to human health with therapeutic potential for treating various diseases, ranging from diabetes and cancer to neurodegenerative diseases. However, the mechanisms underlying cinnamon's health benefits remain elusive. It is also unclear whether cinnamon has any role in aging. Using C. elegans as a model, here we show that feeding worms cinnamaldehyde (CA), the active ingredient in cinnamon oil, prolongs longevity. CA also promotes stress resistance and reduces β-Amyloid toxicity in a C. elegans model of Alzheimer's disease. Mechanistically, CA exerts its beneficial effects through mTORC1 and autophagy signaling. Interestingly, CA promotes longevity by inducing a dietary restriction-like state without affecting food intake, suggesting CA as a dietary restriction mimetic. In human cells, CA exerts a similar effect on mTORC1 and autophagy signaling, suggesting a conserved mechanism. Our results demonstrate that dietary cinnamon promotes both lifespan and healthspan and does so by regulating mTORC1 and autophagy signaling.
Collapse
Affiliation(s)
- Yuling Guo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Qing Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tong Pan
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Ronan
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Anthony Huffman
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Yongqun He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Unit for Laboratory Animal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Ken Inoki
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
| | - X.Z. Shawn Xu
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Ding F, Zhao Y. Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy. Food Funct 2025; 16:617-627. [PMID: 39711123 DOI: 10.1039/d4fo03490b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) Caenorhabditis elegans (C. elegans). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility. Meanwhile, astaxanthin enhanced the oxidative stress resistance in C. elegans, preventing the elevation of the reactive oxygen species and alleviating juglone-induced toxicity. Further studies revealed that astaxanthin treatment induced the expression of the skn-1 gene; besides, the lifespan-extending effect of astaxanthin relied on SKN-1. Additionally, the expression of age-1, a PI3K homolog gene, and let-363, a target of the rapamycin (TOR) homolog gene, was decreased, while the expression of PHA-4, a transcription factor negatively regulated by TOR signaling, was increased by astaxanthin treatment. PHA-4 has been demonstrated to regulate the expression of genes playing critical roles in the autophagy-lysosome pathway (ALP). Consistently, several key genes related to ALP, including lgg-1, atg-5, vps-34, ncr-1 and asm-1 were upregulated in C. elegans treated with astaxanthin. Knockdown of pha-4 expression by siRNA prevented the elevation of the above ALP-related genes, while diminishing the lifespan-extension effect of astaxanthin. Overall, these results indicated that astaxanthin prolonged the lifespan of C. elegans via modulating the intracellular redox status and promoting PHA-4-mediated autophagy.
Collapse
Affiliation(s)
- Feng Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
- Department of Bioengineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| |
Collapse
|
4
|
Al-Refaie N, Padovani F, Hornung J, Pudelko L, Binando F, Del Carmen Fabregat A, Zhao Q, Towbin BD, Cenik ES, Stroustrup N, Padeken J, Schmoller KM, Cabianca DS. Fasting shapes chromatin architecture through an mTOR/RNA Pol I axis. Nat Cell Biol 2024; 26:1903-1917. [PMID: 39300311 PMCID: PMC11567895 DOI: 10.1038/s41556-024-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Chromatin architecture is a fundamental mediator of genome function. Fasting is a major environmental cue across the animal kingdom, yet how it impacts three-dimensional (3D) genome organization is unknown. Here we show that fasting induces an intestine-specific, reversible and large-scale spatial reorganization of chromatin in Caenorhabditis elegans. This fasting-induced 3D genome reorganization requires inhibition of the nutrient-sensing mTOR pathway, acting through the regulation of RNA Pol I, but not Pol II nor Pol III, and is accompanied by remodelling of the nucleolus. By uncoupling the 3D genome configuration from the animal's nutritional status, we find that the expression of metabolic and stress-related genes increases when the spatial reorganization of chromatin occurs, showing that the 3D genome might support the transcriptional response in fasted animals. Our work documents a large-scale chromatin reorganization triggered by fasting and reveals that mTOR and RNA Pol I shape genome architecture in response to nutrients.
Collapse
Affiliation(s)
- Nada Al-Refaie
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johanna Hornung
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenz Pudelko
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Francesca Binando
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrea Del Carmen Fabregat
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | | | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Nicholas Stroustrup
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jan Padeken
- Institute of Molecular Biology, Mainz, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daphne S Cabianca
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
5
|
Ruan M, Xu F, Li N, Yu J, Teng F, Tang J, Huang C, Zhu H. Free long-chain fatty acids trigger early postembryonic development in starved Caenorhabditis elegans by suppressing mTORC1. PLoS Biol 2024; 22:e3002841. [PMID: 39436954 PMCID: PMC11530034 DOI: 10.1371/journal.pbio.3002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/01/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.
Collapse
Affiliation(s)
- Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiawei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024; 14:1235. [PMID: 39456168 PMCID: PMC11505728 DOI: 10.3390/biom14101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) has emerged as an outstanding model organism for investigating the aging process due to its shortened lifespan, well-defined genome, and accessibility of potent genetic tools. This review presents the current findings on chronological aging and photoaging in C. elegans, exploring the elaborate molecular pathways that control these processes. The progression of chronological aging is characterized by a gradual deterioration of physiological functions and is influenced by an interaction of genetic and environmental factors, including the insulin/insulin-like signaling (IIS) pathway. In contrast, photoaging is characterized by increased oxidative stress, DNA damage, and activation of stress response pathways induced by UV exposure. Although the genetic mechanisms of chronological aging in C. elegans have been characterized by extensive research, the pathways regulating photoaging are comparatively less well-studied. Here, we provide an overview of the current understanding of aging research, including the crucial genes and genetic pathways involved in the aging and photoaging processes of C. elegans. Understanding the complex interactions between these factors will provide invaluable insights into the molecular mechanisms underlying chronological aging and photoaging and may lead to novel therapeutic approaches and further studies for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jirapan Thongsroy
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sirithip Chuaijit
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
8
|
Dawson ZD, Sundaramoorthi H, Regmi S, Zhang B, Morrison S, Fielder SM, Zhang JR, Hoang H, Perlmutter DH, Luke CJ, Silverman GA, Pak SC. A fluorescent reporter for rapid assessment of autophagic flux reveals unique autophagy signatures during C. elegans post-embryonic development and identifies compounds that modulate autophagy. AUTOPHAGY REPORTS 2024; 3:2371736. [PMID: 39070663 PMCID: PMC11271720 DOI: 10.1080/27694127.2024.2371736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is important for many physiological processes; and disordered autophagy can contribute to the pathogenesis of a broad range of systemic disorders. C. elegans is a useful model organism for studying the genetics of autophagy, however, current methods for studying autophagy are labor-intensive and not readily amenable to high-throughput procedures. Here we describe a fluorescent reporter, GFP::LGG-1::mKate2, which is useful for monitoring autophagic flux in live animals. In the intestine, the fusion protein is processed by endogenous ATG-4 to generate GFP::LGG-1 and mKate2 proteins. We provide data indicating that the GFP:mKate ratio is a suitable readout for measuring cellular autophagic flux. Using this reporter, we measured autophagic flux in L1 larvae to day 7 adult animals. We show that basal autophagic flux is relatively low during larval development but increases markedly in reproductive adults before decreasing with age. Furthermore, we show that wild-type, eat-2, and daf-2 mutant animals have distinct autophagic flux profiles through post-embryonic development. Finally, we demonstrate the utility of this reporter by performing a high-content small molecule screen to identify compounds that alter autophagic flux in C. elegans.
Collapse
Affiliation(s)
- Zachary D. Dawson
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Hemalatha Sundaramoorthi
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Suk Regmi
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Bo Zhang
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Stephanie Morrison
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Sara M. Fielder
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Jessie R. Zhang
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Hieu Hoang
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - David H. Perlmutter
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Cliff J. Luke
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Gary A. Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| | - Stephen C. Pak
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Washington63110, USA
| |
Collapse
|
9
|
Maruta H, He H. Rapamycin vs TORin-1 or Gleevec vs Nilotinib: Simple chemical evolution that converts PAK1-blockers to TOR-blockers or vice versa? Drug Discov Ther 2024; 18:134-139. [PMID: 38569833 DOI: 10.5582/ddt.2023.01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Both PAK1 (RAC/CDC42-activating kinase 1) and TOR (Target of Rapamycin) are among the major oncogenic/ageing kinases. However, they play the opposite role in our immune system, namely immune system is suppressed by PAK1, while it requires TOR. Thus, PAK1-blockers, would be more effective for therapy of cancers, than TOR-blockers. Since 2015 when we discovered genetically that PDGF-induced melanogenesis depends on "PAK1", we are able to screening a series of PAK1-blockers as melanogenesis-inhibitors which could eventually promote longevity. Interestingly, rapamycin, the first TOR-inhibitor, promotes melanogenesis, clearly indicating that TOR suppresses melanogenesis. However, a new TOR-inhibitor called TORin-1 no longer suppresses immune system, and blocks melanogenesis in cell culture. These observations strongly indicate that TORin-1 acts as PAK1-blockers, instead of TOR-blockers, in vivo. Thus, it is most likely that melanogenesis in cell culture could enable us to discriminate PAK1-blockers from TORblockers.
Collapse
Affiliation(s)
| | - Hong He
- Melbourne University Hospital (Austin Health), Melbourne, Australia
| |
Collapse
|
10
|
Govindhan T, Amirthalingam M, Govindan S, Duraisamy K, Cho JH, Tawata S, Periyakali SB, Palanisamy S. Diosgenin intervention: targeting lipophagy to counter high glucose diet-induced lipid accumulation and lifespan reduction. 3 Biotech 2024; 14:171. [PMID: 38828099 PMCID: PMC11143156 DOI: 10.1007/s13205-024-04017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected Caenorhabditis elegans from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described. In this context, the present study aims to elucidate how DG reduces molecular and cellular declines induced by high glucose, using the powerful genetics of the C. elegans model. Treatment with DG significantly (p < 0.01) prevented fat accumulation and extended lifespan under high-glucose conditions without affecting physiological functions. DG-induced lifespan extension was found to rely on longevity genes daf-2, daf-16, skn-1, glp-1, eat-2, let-363, and pha-4. Specifically, DG regulates lipophagy, the autophagy-mediated degradation of lipid droplets, in C. elegans, thereby inhibiting fat accumulation. Furthermore, DG treatment did not alter the triglyceride levels in the fat-6 and fat-7 single mutants and fat-6;fat-7 double mutants, indicating the significant role of stearoyl-CoA desaturase genes in mediating the reduction of fat deposition by DG. Our results provide new insight into the fat-reducing mechanisms of DG, which might develop into a multitarget drug for preventing obesity and associated health complications; however, preclinical studies are required to investigate the effect of DG on higher models. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04017-3.
Collapse
Affiliation(s)
| | - Mohankumar Amirthalingam
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112 USA
| | - Shanmugam Govindan
- Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 Republic of Korea
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
| | | | | |
Collapse
|
11
|
Zang X, Wang Q, Zhang H, Zhang Y, Wang Z, Wu Z, Chen D. Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans. J Genet Genomics 2024; 51:507-516. [PMID: 37951302 DOI: 10.1016/j.jgg.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The highly conserved target of rapamycin (TOR) pathway plays an important role in aging across species. Previous studies have established that inhibition of the TOR complex 1 (TORC1) significantly extends lifespan in Caenorhabditiselegans. However, it has not been clear whether TORC1 perturbation affects aging in a spatiotemporal manner. Here, we apply the auxin-inducible degradation tool to knock down endogenous DAF-15, the C. elegans ortholog of regulatory associated protein of TOR (Raptor), to characterize its roles in aging. Global or tissue-specific inhibition of DAF-15 during development results in various growth defects, whereas neuron-specific knockdown of DAF-15 during adulthood significantly extends lifespan and healthspan. The neuronal DAF-15 deficiency-induced longevity requires the intestinal activities of DAF-16/FOXO and PHA-4/FOXA transcription factors, as well as the AAK-2/AMP-activated protein kinase α catalytic subunit. Transcriptome profiling reveals that the neuronal DAF-15 knockdown promotes the expression of genes involved in protection. These findings define the tissue-specific roles of TORC1 in healthy aging and highlight the importance of neuronal modulation of aging.
Collapse
Affiliation(s)
- Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
14
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Al-Refaie N, Padovani F, Binando F, Hornung J, Zhao Q, Towbin BD, Cenik ES, Stroustrup N, Schmoller KM, Cabianca DS. An mTOR/RNA pol I axis shapes chromatin architecture in response to fasting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550032. [PMID: 37503059 PMCID: PMC10370172 DOI: 10.1101/2023.07.22.550032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Chromatin architecture is a fundamental mediator of genome function. Fasting is a major environmental cue across the animal kingdom. Yet, how it impacts on 3D genome organization is unknown. Here, we show that fasting induces a reversible and large-scale spatial reorganization of chromatin in C. elegans . This fasting-induced 3D genome reorganization requires inhibition of the nutrient-sensing mTOR pathway, a major regulator of ribosome biogenesis. Remarkably, loss of transcription by RNA Pol I, but not RNA Pol II nor Pol III, induces a similar 3D genome reorganization in fed animals, and prevents the restoration of the fed-state architecture upon restoring nutrients to fasted animals. Our work documents the first large-scale chromatin reorganization triggered by fasting and reveals that mTOR and RNA Pol I shape genome architecture in response to nutrients.
Collapse
|
16
|
Wang Y, Wu W, Gong J. Live or death in cells: from micronutrition metabolism to cell fate. Front Cell Dev Biol 2023; 11:1185989. [PMID: 37250891 PMCID: PMC10213646 DOI: 10.3389/fcell.2023.1185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Micronutrients and cell death have a strong relationship and both are essential for human to maintain good body health. Dysregulation of any micronutrients causes metabolic or chronic diseases, including obesity, cardiometabolic condition, neurodegeneration, and cancer. The nematode Caenorhabditis elegans is an ideal genetic organism for researching the mechanisms of micronutrients in metabolism, healthspan, and lifespan. For example, C. elegans is a haem auxotroph, and the research of this special haem trafficking pathway contributes important reference to mammal study. Also, C. elegans characteristics including anatomy simply, clear cell lineage, well-defined genetics, and easily differentiated cell forms make it a powerful tool for studying the mechanisms of cell death including apoptosis, necrosis, autophagy, and ferroptosis. Here, we describe the understanding of micronutrient metabolism currently and also sort out the fundamental mechanisms of different kinds of cell death. A thorough understanding of these physiological processes not only builds a foundation for developing better treatments for various micronutrient disorders but also provides key insights into human health and aging.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianke Gong
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Endogenous DAF-16 spatiotemporal activity quantitatively predicts lifespan extension induced by dietary restriction. Commun Biol 2023; 6:203. [PMID: 36807646 PMCID: PMC9941123 DOI: 10.1038/s42003-023-04562-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
In many organisms, dietary restriction (DR) leads to lifespan extension through the activation of cell protection and pro-longevity gene expression programs. In the nematode C. elegans, the DAF-16 transcription factor is a key aging regulator that governs the Insulin/IGF-1 signaling pathway and undergoes translocation from the cytoplasm to the nucleus of cells when animals are exposed to food limitation. However, how large is the influence of DR on DAF-16 activity, and its subsequent impact on lifespan has not been quantitatively determined. In this work, we assess the endogenous activity of DAF-16 under various DR regimes by coupling CRISPR/Cas9-enabled fluorescent tagging of DAF-16 with quantitative image analysis and machine learning. Our results indicate that DR regimes induce strong endogenous DAF-16 activity, although DAF-16 is less responsive in aged individuals. DAF-16 activity is in turn a robust predictor of mean lifespan in C. elegans, accounting for 78% of its variability under DR. Analysis of tissue-specific expression aided by a machine learning tissue classifier reveals that, under DR, the largest contribution to DAF-16 nuclear intensity originates from the intestine and neurons. DR also drives DAF-16 activity in unexpected locations such as the germline and intestinal nucleoli.
Collapse
|
18
|
Zhang G, Liu H, Xue T, Kong X, Tian D, Luo L, Yang Y, Xu K, Wei Y, Zhuang Z. Ribavirin extends the lifespan of Caenorhabditis elegans through AMPK-TOR Signaling. Eur J Pharmacol 2023; 946:175548. [PMID: 36706801 DOI: 10.1016/j.ejphar.2023.175548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Aging is a process accompanied by widespread degenerative changes which are a major cause of human disease and disability. One goal of aging research is to develop interventions or drugs that can extend organism lifespan and treat age-related diseases. Here, we report the identification of a broad spectrum anti-viral agent, ribavirin, as a potential pharmacological aging intervention. Ribavirin extended the lifespan and healthspan of Caenorhabditis elegans by inhibiting Target of Rapamycin (TOR) signaling and activating AMP-activated protein kinase (AMPK). Moreover, our data indicate that ribavirin activated AMPK by reducing the levels of adenosine triphosphate (ATP) and lysosomal v-ATPase-Ragulator-AXIN Complex. Thus, our studies successfully identify ribavirin as a potential anti-aging drug, and indicate that its anti-aging effect is mediated via AMPK-TOR signaling.
Collapse
Affiliation(s)
- Ganlan Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Hui Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Ting Xue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiangming Kong
- Changzhou Railway Higher Vocational and Technical School, Changzhou, 213011, China
| | - Dongmei Tian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Libo Luo
- Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China
| | - Yanhua Yang
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Keqing Xu
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ziheng Zhuang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China; Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China.
| |
Collapse
|
19
|
Hahm JH, Nirmala FS, Choi PG, Seo HD, Ha TY, Jung CH, Ahn J. The innate immune signaling component FBXC-58 mediates dietary restriction effects on healthy aging in Caenorhabditis elegans. Aging (Albany NY) 2023; 15:21-36. [PMID: 36622277 PMCID: PMC9876644 DOI: 10.18632/aging.204477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023]
Abstract
Dietary restriction (DR) is a highly effective and reproducible intervention that prolongs longevity in many organisms. The molecular mechanism of action of DR is tightly connected with the immune system; however, the detailed mechanisms and effective downstream factors of immunity that mediate the beneficial effects of DR on aging remain unknown. Here, to investigate the immune signaling that mediates DR effects, we used Caenorhabditis elegans, which has been widely used in research, to understand the underlying molecular mechanisms of aging and immunity. We found that the F-box gene, fbxc-58, a regulator of the innate immune response, is a novel mediator of DR effects on extending the health span of C. elegans. fbxc-58 is upregulated by DR and is necessary for DR-induced lifespan extension and physical health improvement in C. elegans. Furthermore, through DR, fbxc-58 prevents disintegration of the mitochondrial network in body wall muscle during aging. We found that fbxc-58 is a downstream target of the ZIP-2 and PHA-4 transcription factors, the well-known DR mediator, and fbxc-58 extends longevity in DR through an S6 kinase-dependent pathway. We propose that the novel DR effector, fbxc-58, could provide a new mechanistic understanding of the effects of DR on healthy aging and elucidate the signaling mechanisms that link immunity and DR effects with aging.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Farida S. Nirmala
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Pyeong Geun Choi
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Tae Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, South Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon-si 34113, South Korea
| |
Collapse
|
20
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
21
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
22
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
23
|
Zhu M, Teng F, Li N, Zhang L, Zhang S, Xu F, Shao J, Sun H, Zhu H. Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. Dev Cell 2021; 56:2692-2702.e5. [PMID: 34610328 DOI: 10.1016/j.devcel.2021.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Animals have developed various nutrient-sensing mechanisms for survival under fluctuating environmental conditions. Although extensive cell-culture-based analyses have identified diverse mediators of amino acid sensing upstream of mTOR, studies using animal models to examine intestine-initiated amino acid sensing mechanisms under specific physiological conditions are lacking. Here, we developed a Caenorhabditis elegans model to examine the impact of amino acid deficiency on development. We discovered a leucine-derived monomethyl branched-chain fatty acid and its downstream metabolite, glycosphingolipid, which critically mediates the overall amino acid sensing by intestinal and neuronal mTORC1, which in turn regulates postembryonic development at least partly by controlling protein translation and ribosomal biogenesis. Additional data suggest that a similar mechanism may operate in mammals. This study uncovers an amino-acid-sensing mechanism mediated by a lipid biosynthesis pathway.
Collapse
Affiliation(s)
- Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Shao
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
24
|
Ow MC, Nichitean AM, Hall SE. Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans. eLife 2021; 10:e61459. [PMID: 34236316 PMCID: PMC8291976 DOI: 10.7554/elife.61459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here, we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse UniversitySyracuseUnited States
| | | | - Sarah E Hall
- Department of Biology, Syracuse UniversitySyracuseUnited States
| |
Collapse
|
25
|
Jiang J, Zhou Z, Jiang L, Zheng Y, Zhao X, Chen G, Wang M, Huang J, An Y, Wu Z. Bacterial and Microfauna Mechanisms for Sludge Reduction in Carrier-Enhanced Anaerobic Side-Stream Reactors Revealed by Metagenomic Sequencing Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6257-6269. [PMID: 33856183 DOI: 10.1021/acs.est.0c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Packing carriers into the anaerobic side-stream reactor (ASSR) can enhance sludge reduction and save footprint by investigating ASSR-coupled membrane bioreactors (AP-MBRs) under different hydraulic residence times of the ASSR (HRTSR). Three AP-MBRs and an anoxic-aerobic MBR (AO-MBR) showed efficient chemical oxygen demand (>94.2%) and ammonium nitrogen removal (>99.3%). AP-MBRs have higher (p < 0.05) total nitrogen (61.4-67.7%) and total phosphorus (57.5-63.8%) removal than AO-MBRs (47.8 and 47.7%). AP-MBRs achieved sludge reduction efficiencies of 11.8, 31.8, and 36.2% at HRTSR values of 2.5, 5.0, and 6.7 h. Packing carriers greatly improved sludge reduction under low HRTSR and is promising for accelerating sludge reduction in compact space. Metagenomic sequencing analysis showed that genes responsible for metabolism were enriched in AO-MBRs, while genes related to cellular motility and cell signaling were more abundant in the AP-MBRs. A longevity-regulating pathway showed that long lifespan provided more opportunities for worms to prey bacteria. Microscopic examination revealed that some specific protozoa (Arcella, Clathrulina, Aspidisca, Litonotus, Chiloclonella, and Vorticella) and metazoa (Rotaria and Aeolosoma hemprichi) were enriched in ASSRs. Aeolosoma hemprichi was only detected in ASSRs, and unique Cylops appeared on carriers. These results contribute to growing understanding of micrometabolic mechanisms including functional genes and microfauna-driving sludge reduction.
Collapse
Affiliation(s)
- Jie Jiang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lingyan Jiang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Mengyu Wang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhichao Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
26
|
Network analysis in aged C. elegans reveals candidate regulatory genes of ageing. Biogerontology 2021; 22:345-367. [PMID: 33871732 DOI: 10.1007/s10522-021-09920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Ageing is a biological process guided by genetic and environmental factors that ultimately lead to adverse outcomes for organismal lifespan and healthspan. Determination of molecular pathways that are affected with age and increase disease susceptibility is crucial. The gene expression profile of the ideal ageing model, namely the nematode Caenorhabditis elegans mapped with the microarray technology initially led to the identification of age-dependent gene expression alterations that characterize the nematode's ageing process. The list of differentially expressed genes was then utilized to construct a network of molecular interactions with their first neighbors/interactors using the interactions listed in the WormBase database. The subsequent network analysis resulted in the unbiased selection of 110 candidate genes, among which well-known ageing regulators appeared. More importantly, our approach revealed candidates that have never been linked to ageing before, thus suggesting promising potential targets/ageing regulators.
Collapse
|
27
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
Yee Z, Lim SHY, Ng LF, Gruber J. Inhibition of mTOR decreases insoluble proteins burden by reducing translation in C. elegans. Biogerontology 2020; 22:101-118. [PMID: 33159806 DOI: 10.1007/s10522-020-09906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Aging animals accumulate insoluble proteins as a consequence of a decline of proteostatic maintenance with age. In Caenorhabditis elegans, for instance, levels of detergent-insoluble proteins increase with age. In longer-lived strains of C. elegans, this accumulation occurs more slowly, implying a link to lifespan determination. We further explored this link and found that detergent-insoluble proteins accumulate more rapidly at higher temperatures, a condition where lifespan is short. We employed a C. elegans strain carrying a GFP transcriptional reporter under the control of a heat shock (hsp-16.2) promoter to investigate the dynamics of proteostatic failure in individual nematodes. We found that early, sporadic activation of hsp-16.2 was predictive of shorter remaining lifespan in individual nematodes. Exposure to rapamycin, resulting in reduced mTOR signaling, delayed spurious expression, extended lifespan, and delayed accumulation of insoluble proteins, suggesting that targets downstream of the mTOR pathway regulate the accumulation of insoluble proteins. We specifically explored ribosomal S6 kinase (rsks-1) as one such candidate and found that RNAi against rsks-1 also resulted in less age-dependent accumulation of insoluble proteins and extended lifespan. Our results demonstrate that inhibition of protein translation via reduced mTOR signaling resulted in slower accumulation of insoluble proteins, delayed proteostatic crisis, and extended lifespan in C. elegans.
Collapse
Affiliation(s)
- Zhuangli Yee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaun Hsien Yang Lim
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Fang Ng
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
29
|
Zhang S, Li F, Zhou T, Wang G, Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne) 2020; 11:554994. [PMID: 33123086 PMCID: PMC7570440 DOI: 10.3389/fendo.2020.554994] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans genome possesses homologs of about two-thirds of all human disease genes. Based on its physiological aging characteristics and superiority, the use of C. elegans as a model system for studies on aging, age-related diseases, mechanisms of longevity, and drug screening has been widely acknowledged in recent decades. Lifespan increasing mutations in C. elegans were found to delay aging by impinging several signaling pathways and related epigenetic modifications, including the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been shown to increase the lifespan of numerous metazoans and protect them from multiple age-related pathologies. However, the underlying molecular mechanisms are unclear. In recent decades, C. elegans has been used as a unique model system for high-throughput drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan and age-dependent changes under DR, as well as the utility of C. elegans for drug screening. Thus, we provide evidence for the use of this model organism in research on the prevention of aging.
Collapse
Affiliation(s)
| | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Wu D, Chen Y, Wan X, Liu D, Wen Y, Chen X, Zhao C. Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Smita SS, Trivedi S, Pandey T, Trivedi M, Pandey R. A Bioactive compound Shatavarin IV-mediated longevity as revealed by dietary restriction-induced autophagy in Caenorhabditis elegans. Biogerontology 2020; 21:827-844. [PMID: 32888154 DOI: 10.1007/s10522-020-09897-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Plant-based dietary supplements that delay aging are of significant interest now a days because these naturally occurring bioactive molecules effectively provide pharmaceuticals/neutraceuticals to deal with diseases related to the advanced life expectancy. In this paper, we aimed to investigate the effect of Shatavarin IV (SIV), a steroidal saponin isolated from Asparagus racemosus Willd. on dietary restriction (DR) induced longevity in Caenorhabditis elegans. SIV significantly increased the lifespan to 18% which is independent of antimicrobial activity and reduced the aging by-product, lipofuscin along with increased locomotion, and chemotaxis behavior in wild type worms. The longevity effect has been dependent on eat-2, which was further validated via reduced pharyngeal pumping rate that established the effect similar to DR induced longevity. Moreover, like eat-2 mutant worms, SIV reduces the total progeny number of wild type worm along with a significant alleviation of stored fat, which reconfirms the involvement of eat-2 mediated longevity. Further, it was also observed that DR induced longevity mechanism by SIV requires mTOR which works in PHA-4/FOXA dependent manner. In addition to this, the role of autophagy mechanism concerning SIV mediated DR was confirmed via bec-1, unc-51, and lgg-1. The longevity effect achieved by SIV was also dependent on SKN-1/NRF-2 and partially dependent on DAF-16/FOXO. Furthermore, the DR-induced longevity by SIV was found to be independent of hsf-1 exhibiting non-significant alteration in the mRNA expression of downstream target genes hsp-16.2 and hsp-70. Altogether, this study provides first-hand information on the pro-longevity effect of SIV in worms that have been mediated by the DR-regulating gene induced autophagy.
Collapse
Affiliation(s)
- Shachi Shuchi Smita
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Shalini Trivedi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Taruna Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mashu Trivedi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
32
|
Lan J, Rollins JA, Zang X, Wu D, Zou L, Wang Z, Ye C, Wu Z, Kapahi P, Rogers AN, Chen D. Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep 2020; 28:1050-1062.e6. [PMID: 31340143 PMCID: PMC6684276 DOI: 10.1016/j.celrep.2019.06.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Reduced mRNA translation delays aging, but the underlying mechanisms remain underexplored. Mutations in both DAF-2 (IGF-1 receptor) and RSKS-1 (ribosomal S6 kinase/S6K) cause synergistic lifespan extension in C. elegans. To understand the roles of translational regulation in this process, we performed polysomal profiling and identified translationally regulated ribosomal and cytochrome c (CYC-2.1) genes as key mediators of longevity. cyc-2.1 knockdown significantly extends lifespan by activating the intestinal mitochondrial unfolded protein response (UPRmt), mitochondrial fission, and AMP-activated kinase (AMPK). The germline serves as the key tissue for cyc-2.1 to regulate lifespan, and germline-specific cyc-2.1 knockdown non-autonomously activates intestinal UPRmt and AMPK. Furthermore, the RNA-binding protein GLD-1-mediated translational repression of cyc-2.1 in the germline is important for the non-autonomous activation of UPRmt and synergistic longevity of the daf-2 rsks-1 mutant. Altogether, these results illustrate a translationally regulated non-autonomous mitochondrial stress response mechanism in the modulation of lifespan by insulin-like signaling and S6K. To understand how reduced translation delays aging, Lan et al. perform translational profiling in C. elegans and propose that, in the significantly long-lived daf-2 rsks-1 mutant, serial translational regulation leads to reduced cytochrome c in the germline, which non-autonomously activates UPRmt and AMPK in the metabolic tissue to ensure longevity.
Collapse
Affiliation(s)
- Jianfeng Lan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Jarod A Rollins
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Xiao Zang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Di Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Lina Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Aric N Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA.
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| |
Collapse
|
33
|
Li J, Ma J, Tian Y, Zhao P, Liu X, Dong H, Zheng W, Feng S, Zhang L, Wu M, Zhu L, Liu S, Zhao D. Effective-component compatibility of Bufei Yishen formula II inhibits mucus hypersecretion of chronic obstructive pulmonary disease rats by regulating EGFR/PI3K/mTOR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112796. [PMID: 32344236 DOI: 10.1016/j.jep.2020.112796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The effective-component compatibility of Bufei Yishen formula I (ECC-BYF I), a combination of 10 compounds, including total ginsenosides, astragaloside IV, icariin, and paeonol, etc., is derived from Bufei Yishen formula (BYF). The efficacy and safety of ECC-BYF I is equal to BYF. However, the composition of ECC-BYF I needs to be further optimized. Based on the beneficial effects of BYF and ECC-BYF I on chronic obstructive pulmonary disease (COPD), this study aimed to optimize the composition of ECC-BYF I and to explore the effects and mechanisms of optimized ECC-BYF I (ECC-BYF II) on mucus hypersecretion in COPD rats. MATERIALS AND METHODS ECC-BYF I was initially optimized to six groups: optimized ECC-BYF I (OECC-BYF I)-A~F. Based on a COPD rat model, the effects of OECC-BYF I-A~F on COPD rats were evaluated. R-value comprehensive evaluation was used to evaluate the optimal formula, which was named ECC-BYF II. The changes in goblet cells and expression of mucins and the mRNA and proteins involved in the epidermal growth factor receptor/phosphoinositide-3-kinase/mammalian target of rapamycin (EGFR/PI3K/mTOR) pathway were evaluated to explore the effects and mechanisms of ECC-BYF II on mucus hypersecretion. RESULTS ECC-BYF I and its six optimized groups, OECC-BYF I-A~F, had beneficial effects on COPD rats in improving pulmonary function and lung tissue pathology, reducing inflammation and oxidative stress, and improving the protease/anti-protease imbalance and collagen deposition. R-value comprehensive evaluation found that OECC-BYF I-E (paeonol, icariin, nobiletin, total ginsenoside, astragaloside IV) was the optimal formula for improving the comprehensive effects (lung function: VT, MV, PEF, EF50, FVC, FEV 0.1, FEV 0.1/FVC; histological changes: MLI, MAN; IL-1β, IL-6, TNF-α, MMP-9, TIMP-1, T-AOC, LPO, MUC5AC, Collagen I and Collagen III). OECC-BYF I-E was named ECC-BYF II. Importantly, the effect of ECC-BYF II showed no significant difference from BYF and ECC-BYF I. ECC-BYF II inhibited mucus hypersecretion in COPD rats, which manifested as reducing the expression of MUC5AC and MUC5B and the hyperplasia rate of goblet cells. The mRNA and protein expression levels of EGFR, PI3K, Akt, and mTOR were increased in COPD rats and were obviously downregulated after ECC-BYF II administration. CONCLUSION ECC-BYF II, which consists of paeonol, icariin, nobiletin, total ginsenoside and astragaloside IV, has beneficial effects equivalent to BYF and ECC-BYF I on COPD rats. ECC-BYF II significantly inhibited mucus hypersecretion, which may be related to the regulation of the EGFR/PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Jindi Ma
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yange Tian
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Peng Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Xuefang Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Haoran Dong
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Wanchun Zheng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lanxi Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Mingming Wu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lihua Zhu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Shuai Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Di Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
34
|
Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020; 12:nu12041194. [PMID: 32344591 PMCID: PMC7230387 DOI: 10.3390/nu12041194] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Genetic and pharmacological interventions have successfully extended healthspan and lifespan in animals, but their genetic interventions are not appropriate options for human applications and pharmacological intervention needs more solid clinical evidence. Consequently, dietary manipulations are the only practical and probable strategies to promote health and longevity in humans. Caloric restriction (CR), reduction of calorie intake to a level that does not compromise overall health, has been considered as being one of the most promising dietary interventions to extend lifespan in humans. Although it is straightforward, continuous reduction of calorie or food intake is not easy to practice in real lives of humans. Recently, fasting-related interventions such as intermittent fasting (IF) and time-restricted feeding (TRF) have emerged as alternatives of CR. Here, we review the history of CR and fasting-related strategies in animal models, discuss the molecular mechanisms underlying these interventions, and propose future directions that can fill the missing gaps in the current understanding of these dietary interventions. CR and fasting appear to extend lifespan by both partially overlapping common mechanisms such as the target of rapamycin (TOR) pathway and circadian clock, and distinct independent mechanisms that remain to be discovered. We propose that a systems approach combining global transcriptomic, metabolomic, and proteomic analyses followed by genetic perturbation studies targeting multiple candidate pathways will allow us to better understand how CR and fasting interact with each other to promote longevity.
Collapse
|
35
|
Penkov S, Raghuraman BK, Erkut C, Oertel J, Galli R, Ackerman EJM, Vorkel D, Verbavatz JM, Koch E, Fahmy K, Shevchenko A, Kurzchalia TV. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biol 2020; 18:31. [PMID: 32188449 PMCID: PMC7081555 DOI: 10.1186/s12915-020-0760-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabolic activity alternates between high and low states during different stages of an organism's life cycle. During the transition from growth to quiescence, a major metabolic shift often occurs from oxidative phosphorylation to glycolysis and gluconeogenesis. We use the entry of Caenorhabditis elegans into the dauer larval stage, a developmentally arrested stage formed in response to harsh environmental conditions, as a model to study the global metabolic changes and underlying molecular mechanisms associated with growth to quiescence transition. RESULTS Here, we show that the metabolic switch involves the concerted activity of several regulatory pathways. Whereas the steroid hormone receptor DAF-12 controls dauer morphogenesis, the insulin pathway maintains low energy expenditure through DAF-16/FoxO, which also requires AAK-2/AMPKα. DAF-12 and AAK-2 separately promote a shift in the molar ratios between competing enzymes at two key branch points within the central carbon metabolic pathway diverting carbon atoms from the TCA cycle and directing them to gluconeogenesis. When both AAK-2 and DAF-12 are suppressed, the TCA cycle is active and the developmental arrest is bypassed. CONCLUSIONS The metabolic status of each developmental stage is defined by stoichiometric ratios within the constellation of metabolic enzymes driving metabolic flux and controls the transition between growth and quiescence.
Collapse
Affiliation(s)
- Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. .,Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany. .,Institute for Clinical Chemistry and Laboratory Medicine, University Clinic and Medical Faculty, TU Dresden, Dresden, Germany.
| | | | - Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Present address: German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Oertel
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Roberta Galli
- Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, TU Dresden, Dresden, Germany
| | | | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France
| | - Edmund Koch
- Faculty of Medicine Carl Gustav Carus, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, TU Dresden, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
36
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
37
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
38
|
Hahm J, Jeong C, Nam HG. Diet restriction-induced healthy aging is mediated through the immune signaling component ZIP-2 in Caenorhabditis elegans. Aging Cell 2019; 18:e12982. [PMID: 31215146 PMCID: PMC6718572 DOI: 10.1111/acel.12982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 01/29/2023] Open
Abstract
Dietary restriction (DR) robustly delays the aging process in all animals tested so far. DR slows aging by negatively regulating the target of rapamycin (TOR) and S6 kinase (S6K) signaling pathway and thus inhibiting translation. Translation inhibition in C. elegans is known to activate the innate immune signal ZIP-2. Here, we show that ZIP-2 is activated in response to DR and in feeding-defective eat-2 mutants. Importantly, ZIP-2 contributes to the improvements in longevity and healthy aging, including mitochondrial integrity and physical ability, mediated by DR in C. elegans. We further show that ZIP-2 is activated upon inhibition of TOR/S6K signaling. However, DR-mediated activation of ZIP-2 does not require the TOR/S6K effector PHA-4/FOXA. Furthermore, zip-2 was not activated or required for longevity in daf-2 mutants, which mimic a low nutrition status. Thus, DR appears to activate ZIP-2 independently of PHA-4/FOXA and DAF-2. The link between DR, aging, and immune activation provides practical insight into the DR-induced benefits on health span and longevity.
Collapse
Affiliation(s)
- Jeong‐Hoon Hahm
- Center for Plant Aging Research Institute for Basic Science Daegu Korea
| | - ChoLong Jeong
- Center for Plant Aging Research Institute for Basic Science Daegu Korea
| | - Hong Gil Nam
- Center for Plant Aging Research Institute for Basic Science Daegu Korea
- Department of New Biology Daegu Gyeongbuk Institute of Science & Technology (DGIST) Daegu Korea
| |
Collapse
|
39
|
Dall KB, Færgeman NJ. Metabolic regulation of lifespan from a C. elegans perspective. GENES & NUTRITION 2019; 14:25. [PMID: 31428207 PMCID: PMC6694653 DOI: 10.1186/s12263-019-0650-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Decline of cellular functions especially cognitive is a major deficit that arises with age in humans. Harnessing the strengths of small and genetic tractable model systems has revealed key conserved regulatory biochemical and signaling pathways that control aging. Here, we review some of the key signaling and biochemical pathways that coordinate aging processes with special emphasis on Caenorhabditis elegans as a model system and discuss how nutrients and metabolites can regulate lifespan by coordinating signaling and epigenetic programs. We focus on central nutrient-sensing pathways such as mTOR and insulin/insulin-like growth factor signaling and key transcription factors including the conserved basic helix-loop-helix transcription factor HLH-30/TFEB.
Collapse
Affiliation(s)
- Kathrine B. Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
40
|
Henis-Korenblit S, Meléndez A. Methods to Determine the Role of Autophagy Proteins in C. elegans Aging. Methods Mol Biol 2019; 1880:561-586. [PMID: 30610723 DOI: 10.1007/978-1-4939-8873-0_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This chapter describes methods for the analysis of autophagy proteins in C. elegans aging. We discuss the strains to be considered, the methods for the delivery of double-stranded RNA, and the methods to measure autophagy levels, autophagic flux, and degradation by autophagy.
Collapse
Affiliation(s)
- Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Alicia Meléndez
- Department of Biology, Queens College, The City University of New York, Flushing, NY, USA.
- Biology and Biochemistry PhD Programs, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
41
|
Kishimoto S, Uno M, Nishida E. Molecular mechanisms regulating lifespan and environmental stress responses. Inflamm Regen 2018; 38:22. [PMID: 30555601 PMCID: PMC6287349 DOI: 10.1186/s41232-018-0080-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
Throughout life, organisms are subjected to a variety of environmental perturbations, including temperature, nutrient conditions, and chemical agents. Exposure to external signals induces diverse changes in the physiological conditions of organisms. Genetically identical individuals exhibit highly phenotypic variations, which suggest that environmental variations among individuals can affect their phenotypes in a cumulative and inhomogeneous manner. The organismal phenotypes mediated by environmental conditions involve development, metabolic pathways, fertility, pathological processes, and even lifespan. It is clear that genetic factors influence the lifespan of organisms. Likewise, it is now increasingly recognized that environmental factors also have a large impact on the regulation of aging. Multiple studies have reported on the contribution of epigenetic signatures to the long-lasting phenotypic effects induced by environmental signals. Nevertheless, the mechanism of how environmental stimuli induce epigenetic changes at specific loci, which ultimately elicit phenotypic variations, is still largely unknown. Intriguingly, in some cases, the altered phenotypes associated with epigenetic changes could be stably passed on to the next generations. In this review, we discuss the environmental regulation of organismal viability, that is, longevity and stress resistance, and the relationship between this regulation and epigenetic factors, focusing on studies in the nematode C. elegans.
Collapse
Affiliation(s)
- Saya Kishimoto
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masaharu Uno
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Eisuke Nishida
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
42
|
Chisnell P, Parenteau TR, Tank E, Ashrafi K, Kenyon C. The mTOR Target S6 Kinase Arrests Development in Caenorhabditis elegans When the Heat-Shock Transcription Factor Is Impaired. Genetics 2018; 210:999-1009. [PMID: 30228197 PMCID: PMC6218238 DOI: 10.1534/genetics.118.301533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
The widely conserved heat-shock response, regulated by heat-shock transcription factors, is not only essential for cellular stress resistance and adult longevity, but also for proper development. However, the genetic mechanisms by which heat-shock transcription factors regulate development are not well understood. In Caenorhabditis elegans, we conducted an unbiased genetic screen to identify mutations that could ameliorate the developmental-arrest phenotype of a heat-shock factor mutant. Here, we show that loss of the conserved translational activator rsks-1/S6 kinase, a downstream effector of mechanistic Target of Rapamycin (mTOR) kinase, can rescue the developmental-arrest phenotype of hsf-1 partial loss-of-function mutants. Unexpectedly, we show that the rescue is not likely caused by reduced translation, nor by activation of any of a variety of stress-protective genes and pathways. Our findings identify an as-yet unexplained regulatory relationship between the heat-shock transcription factor and the mTOR pathway during C. elegans development.
Collapse
Affiliation(s)
- Peter Chisnell
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
- Department of Physiology, University of California, San Francisco, California 94158
| | - T Richard Parenteau
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
43
|
Roy D, Kahler DJ, Yun C, Hubbard EJA. Functional Interactions Between rsks-1/S6K, glp-1/Notch, and Regulators of Caenorhabditis elegans Fertility and Germline Stem Cell Maintenance. G3 (BETHESDA, MD.) 2018; 8:3293-3309. [PMID: 30126834 PMCID: PMC6169383 DOI: 10.1534/g3.118.200511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
The proper accumulation and maintenance of stem cells is critical for organ development and homeostasis. The Notch signaling pathway maintains stem cells in diverse organisms and organ systems. In Caenorhabditis elegans, GLP-1/Notch activity prevents germline stem cell (GSC) differentiation. Other signaling mechanisms also influence the maintenance of GSCs, including the highly-conserved TOR substrate ribosomal protein S6 kinase (S6K). Although C. elegans bearing either a null mutation in rsks-1/S6K or a reduction-of-function (rf) mutation in glp-1/Notch produce half the normal number of adult germline progenitors, virtually all these single mutant animals are fertile. However, glp-1(rf) rsks-1(null) double mutant animals are all sterile, and in about half of their gonads, all GSCs differentiate, a distinctive phenotype associated with a significant reduction or loss of GLP-1 signaling. How rsks-1/S6K promotes GSC fate is unknown. Here, we determine that rsks-1/S6K acts germline-autonomously to maintain GSCs, and that it does not act through Cyclin-E or MAP kinase in this role. We found that interfering with translation also enhances glp-1(rf), but that regulation through rsks-1 cannot fully account for this effect. In a genome-scale RNAi screen for genes that act similarly to rsks-1/S6K, we identified 56 RNAi enhancers of glp-1(rf) sterility, many of which were previously not known to interact functionally with Notch. Further investigation revealed at least six candidates that, by genetic criteria, act linearly with rsks-1/S6K. These include genes encoding translation-related proteins, cacn-1/Cactin, an RNA exosome component, and a Hedgehog-related ligand. We found that additional Hedgehog-related ligands may share functional relationships with glp-1/Notch and rsks-1/S6K in maintaining germline progenitors.
Collapse
Affiliation(s)
- Debasmita Roy
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- NYU High Throughput Biology Laboratory, NYU Langone Health, New York, NY 10016
| | - Chi Yun
- NYU High Throughput Biology Laboratory, NYU Langone Health, New York, NY 10016
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
44
|
Zhou X, Sen I, Lin XX, Riedel CG. Regulation of Age-related Decline by Transcription Factors and Their Crosstalk with the Epigenome. Curr Genomics 2018; 19:464-482. [PMID: 30258277 PMCID: PMC6128382 DOI: 10.2174/1389202919666180503125850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Aging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.e. fertility, nutrient availability, or diverse stresses, and relay them via signaling cascades into gene regulatory events - mostly of genes that confer stress resistance and thus help protect from damage accumulation and homeostasis loss. Transcription factors have long been perceived as the pivotal nodes in this network. Yet, it is well known that the epigenome substantially influences eukaryotic gene regulation, too. A growing body of work has recently underscored the importance of the epigenome also during aging, where it not only undergoes drastic age-dependent changes but also actively influences the aging process. In this review, we introduce the major signaling pathways that regulate age-related decline and discuss the synergy between transcriptional regulation and the epigenetic landscape.
Collapse
Affiliation(s)
| | | | | | - Christian G. Riedel
- Address correspondence to this author at the Integrated Cardio Metabolic Centre (ICMC), Department of Biosciences and Nutrition, Karolinska Institutet, Blickagången 6, Novum, 7 floor Huddinge, Stockholm 14157, Sweden; Tel: +46-736707008; E-mail:
| |
Collapse
|
45
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
46
|
Tiku V, Antebi A. Nucleolar Function in Lifespan Regulation. Trends Cell Biol 2018; 28:662-672. [PMID: 29779866 DOI: 10.1016/j.tcb.2018.03.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus is a prominent membraneless organelle residing within the nucleus. The nucleolus has been regarded as a housekeeping structure mainly known for its role in ribosomal RNA (rRNA) production and ribosome assembly. However, accumulating evidence has revealed its functions in numerous cellular processes that control organismal physiology, thereby taking the nucleolus much beyond its conventional role in ribosome biogenesis. Perturbations in nucleolar functions have been associated with severe diseases such as cancer and progeria. Recent studies have also uncovered the role of the nucleolus in development and aging. In this review we discuss major nucleolar functions that impact organismal aging.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Present Address: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
47
|
Wu J, Jiang X, Li Y, Zhu T, Zhang J, Zhang Z, Zhang L, Zhang Y, Wang Y, Zou X, Liang B. PHA-4/FoxA senses nucleolar stress to regulate lipid accumulation in Caenorhabditis elegans. Nat Commun 2018; 9:1195. [PMID: 29567958 PMCID: PMC5864837 DOI: 10.1038/s41467-018-03531-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
The primary function of the nucleolus is ribosome biogenesis, which is an extremely energetically expensive process. Failures in ribosome biogenesis cause nucleolar stress with an altered energy status. However, little is known about the underlying mechanism linking nucleolar stress to energy metabolism. Here we show that nucleolar stress is triggered by inactivation of RSKS-1 (ribosomal protein S6 kinase), RRP-8 (ribosomal RNA processing 8), and PRO-2/3 (proximal proliferation), all of which are involved in ribosomal RNA processing or inhibition of rDNA transcription by actinomycin D (AD), leading to excessive lipid accumulation in Caenorhabditis elegans. The transcription factor PHA-4/FoxA acts as a sensor of nucleolar stress to bind to and transactivate the expression of the lipogenic genes pod-2 (acetyl-CoA carboxylase), fasn-1 (fatty acid synthase), and dgat-2 (diacylglycerol O-acyltransferase 2), consequently promoting lipid accumulation. Importantly, inactivation of pha-4 or dgat-2 is sufficient to abolish nucleolar stress-induced lipid accumulation and prolonged starvation survival. The results revealed a distinct PHA-4-mediated lipogenesis pathway that senses nucleolar stress and shifts excessive energy for storage as fat.
Collapse
Affiliation(s)
- Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science, University of Science and Technology of China, Hefei, 230027, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jingjing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yanli Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoju Zou
- Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Department of Life Science and Biotechnology, Kunming University, Kunming, 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
48
|
Nakamura S, Yoshimori T. Autophagy and Longevity. Mol Cells 2018; 41:65-72. [PMID: 29370695 PMCID: PMC5792715 DOI: 10.14348/molcells.2018.2333] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionally conserved cytoplasmic degradation system in which varieties of materials are sequestered by a double membrane structure, autophagosome, and delivered to the lysosomes for the degradation. Due to the wide varieties of targets, autophagic activity is essential for cellular homeostasis. Recent genetic evidence indicates that autophagy has a crucial role in the regulation of animal lifespan. Basal level of autophagic activity is elevated in many longevity paradigms and the activity is required for lifespan extension. In most cases, genes involved in autophagy and lysosomal function are induced by several transcription factors including HLH-30/TFEB, PHA-4/FOXA and MML-1/Mondo in long-lived animals. Pharmacological treatments have been shown to extend lifespan through activation of autophagy, indicating autophagy could be a potential and promising target to modulate animal lifespan. Here we summarize recent progress regarding the role of autophagy in lifespan regulation.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka,
Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka,
Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka,
Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka,
Japan
| |
Collapse
|
49
|
Abstract
It is now widely recognised that ageing and its associated functional decline are regulated by a wide range of molecules that fit into specific cellular pathways. Here, we describe several of the evolutionary conserved cellular signalling pathways that govern organismal ageing and discuss how their identification, and work on the individual molecules that contribute to them, has aided in the design of therapeutic strategies to alleviate the adverse effects of ageing and age-related disease.
Collapse
|
50
|
Antikainen H, Driscoll M, Haspel G, Dobrowolski R. TOR-mediated regulation of metabolism in aging. Aging Cell 2017; 16:1219-1233. [PMID: 28971552 PMCID: PMC5676073 DOI: 10.1111/acel.12689] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient‐sensing pathway is regulated at the lysosomal membrane by a number of proteins for which deficiency triggers widespread aging phenotypes in tested animal models. In response to environmental cues, this recently discovered lysosomal nutrient‐sensing complex regulates autophagy transcriptionally through conserved factors, such as the transcription factors TFEB and FOXO, associated with lifespan extension. This key metabolic pathway strongly depends on nucleocytoplasmic compartmentalization, a cellular phenomenon gradually lost during aging. In this review, we discuss the current progress in understanding the contribution of mTOR‐regulating factors to autophagy and longevity. Furthermore, we review research on the regulation of metabolism conducted in multiple aging models, including Caenorhabditis elegans, Drosophila and mouse, and human iPSCs. We suggest that conserved molecular pathways have the strongest potential for the development of new avenues for treatment of age‐related diseases.
Collapse
Affiliation(s)
- Henri Antikainen
- Federated Department of Biological Sciences New Jersey Institute of Technology Rutgers University Newark NJ 07102 USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry Rutgers University Piscataway NJ 08854 USA
| | - Gal Haspel
- Federated Department of Biological Sciences New Jersey Institute of Technology Rutgers University Newark NJ 07102 USA
| | - Radek Dobrowolski
- Federated Department of Biological Sciences New Jersey Institute of Technology Rutgers University Newark NJ 07102 USA
| |
Collapse
|