1
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Mackintosh C, Scott MF, Reuter M, Pomiankowski A. Locally adaptive inversions in structured populations. Genetics 2024; 227:iyae073. [PMID: 38709495 PMCID: PMC11979745 DOI: 10.1093/genetics/iyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection (i) more effectively purges maladaptive alleles and (ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favoring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbor larger effect alleles that experience relatively strong selection.
Collapse
Affiliation(s)
- Carl Mackintosh
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff 29680, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff 29680, France
| | - Michael F Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Max Reuter
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Bascón-Cardozo K, Bours A, Manthey G, Durieux G, Dutheil JY, Pruisscher P, Odenthal-Hesse L, Liedvogel M. Fine-Scale Map Reveals Highly Variable Recombination Rates Associated with Genomic Features in the Eurasian Blackcap. Genome Biol Evol 2024; 16:evad233. [PMID: 38198800 PMCID: PMC10781513 DOI: 10.1093/gbe/evad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.
Collapse
Affiliation(s)
- Karen Bascón-Cardozo
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Andrea Bours
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Georg Manthey
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
| | - Gillian Durieux
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Julien Y Dutheil
- Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Peter Pruisscher
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Miriam Liedvogel
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
4
|
Bartolomé C, Buendía-Abad M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae. MICROBIAL ECOLOGY 2022; 84:856-867. [PMID: 34609533 PMCID: PMC9622509 DOI: 10.1007/s00248-021-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
5
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Ponnikas S, Sigeman H, Lundberg M, Hansson B. Extreme variation in recombination rate and genetic diversity along the Sylvioidea neo-sex chromosome. Mol Ecol 2022; 31:3566-3583. [PMID: 35578784 PMCID: PMC9327509 DOI: 10.1111/mec.16532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 12/03/2022]
Abstract
Recombination strongly impacts sequence evolution by affecting the extent of linkage and the efficiency of selection. Here, we study recombination over the Z chromosome in great reed warblers (Acrocephalus arundinaceus) using pedigree-based linkage mapping. This species has extended Z and W chromosomes ("neo-sex chromosomes") formed by a fusion between a part of chromosome 4A and the ancestral sex chromosomes, which provides a unique opportunity to assess recombination and sequence evolution in sex-linked regions of different ages. We assembled an 87.54 Mbp and 90.19 cM large Z with a small pseudoautosomal region (0.89 Mbp) at one end and the fused Chr4A-part at the other end of the chromosome. A prominent feature in our data was an extreme variation in male recombination rate along Z with high values at both chromosome ends, but an apparent lack of recombination over a substantial central section, covering 78% of the chromosome. The nonrecombining region showed a drastic loss of genetic diversity and accumulation of repeats compared to the recombining parts. Thus, our data emphasize a key role of recombination in affecting local levels of polymorphism. Nonetheless, the evolutionary rate of genes (dN/dS) did not differ between high and low recombining regions, suggesting that the efficiency of selection on protein-coding sequences can be maintained also at very low levels of recombination. Finally, the Chr4A-derived part showed a similar recombination rate as the part of the ancestral Z that did recombine, but its sequence characteristics reflected both its previous autosomal, and current Z-linked, recombination patterns.
Collapse
Affiliation(s)
- Suvi Ponnikas
- Department of BiologyLund UniversityLundSweden
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | | | | | | |
Collapse
|
7
|
Carpentier F, Rodríguez de la Vega RC, Jay P, Duhamel M, Shykoff JA, Perlin MH, Wallen RM, Hood ME, Giraud T. Tempo of degeneration across independently evolved non-recombining regions. Mol Biol Evol 2022; 39:6553583. [PMID: 35325190 PMCID: PMC9004411 DOI: 10.1093/molbev/msac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.
Collapse
Affiliation(s)
- Fantin Carpentier
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Université de Lille, CNRS, UMR 8198-Evo-Eco-Paleo F-59000, Lille, France
| | - Ricardo C. Rodríguez de la Vega
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Corresponding authors: E-mails: ;
| | - Paul Jay
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Marine Duhamel
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Jacqui A. Shykoff
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Michael H. Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | - R. Margaret Wallen
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | | | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
- Corresponding authors: E-mails: ;
| |
Collapse
|
8
|
Soni V, Eyre-Walker A. OUP accepted manuscript. Genome Biol Evol 2022; 14:6528851. [PMID: 35166775 PMCID: PMC8882387 DOI: 10.1093/gbe/evac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
The rate of amino acid substitution has been shown to be correlated to a number of factors including the rate of recombination, the age of the gene, the length of the protein, mean expression level, and gene function. However, the extent to which these correlations are due to adaptive and nonadaptive evolution has not been studied in detail, at least not in hominids. We find that the rate of adaptive evolution is significantly positively correlated to the rate of recombination, protein length and gene expression level, and negatively correlated to gene age. These correlations remain significant when each factor is controlled for in turn, except when controlling for expression in an analysis of protein length; and they also generally remain significant when biased gene conversion is taken into account. However, the positive correlations could be an artifact of population size contraction. We also find that the rate of nonadaptive evolution is negatively correlated to each factor, and all these correlations survive controlling for each other and biased gene conversion. Finally, we examine the effect of gene function on rates of adaptive and nonadaptive evolution; we confirm that virus-interacting proteins (VIPs) have higher rates of adaptive and lower rates of nonadaptive evolution, but we also demonstrate that there is significant variation in the rate of adaptive and nonadaptive evolution between GO categories when removing VIPs. We estimate that the VIP/non-VIP axis explains about 5–8 fold more of the variance in evolutionary rate than GO categories.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
9
|
Abstract
It is known that methods to estimate the rate of adaptive evolution, which are based on the McDonald–Kreitman test, can be biased by changes in effective population size. Here, we demonstrate theoretically that changes in population size can also generate an artifactual correlation between the rate of adaptive evolution and any factor that is correlated to the strength of selection acting against deleterious mutations. In this context, we have investigated whether several site-level factors influence the rate of adaptive evolution in the divergence of humans and chimpanzees, two species that have been inferred to have undergone population size contraction since they diverged. We find that the rate of adaptive evolution, relative to the rate of mutation, is higher for more exposed amino acids, lower for amino acid pairs that are more dissimilar in terms of their polarity, volume, and lower for amino acid pairs that are subject to stronger purifying selection, as measured by the ratio of the numbers of nonsynonymous to synonymous polymorphisms (pN/pS). All of these correlations are opposite to the artifactual correlations expected under contracting population size. We therefore conclude that these correlations are genuine.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ana Filipa Moutinho
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
10
|
Cavassim MIA, Andersen SU, Bataillon T, Schierup MH. Recombination facilitates adaptive evolution in rhizobial soil bacteria. Mol Biol Evol 2021; 38:5480-5490. [PMID: 34410427 PMCID: PMC8662638 DOI: 10.1093/molbev/msab247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Homologous recombination is expected to increase natural selection efficacy by decoupling the fate of beneficial and deleterious mutations and by readily creating new combinations of beneficial alleles. Here, we investigate how the proportion of amino acid substitutions fixed by adaptive evolution (α) depends on the recombination rate in bacteria. We analyze 3,086 core protein-coding sequences from 196 genomes belonging to five closely related species of the genus Rhizobium. These genes are found in all species and do not display any signs of introgression between species. We estimate α using the site frequency spectrum (SFS) and divergence data for all pairs of species. We evaluate the impact of recombination within each species by dividing genes into three equally sized recombination classes based on their average level of intragenic linkage disequilibrium. We find that α varies from 0.07 to 0.39 across species and is positively correlated with the level of recombination. This is both due to a higher estimated rate of adaptive evolution and a lower estimated rate of nonadaptive evolution, suggesting that recombination both increases the fixation probability of advantageous variants and decreases the probability of fixation of deleterious variants. Our results demonstrate that homologous recombination facilitates adaptive evolution measured by α in the core genome of prokaryote species in agreement with studies in eukaryotes.
Collapse
Affiliation(s)
- Maria Izabel A Cavassim
- Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark
| | | |
Collapse
|
11
|
Abstract
Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland;
| |
Collapse
|
12
|
Berdan EL, Blanckaert A, Butlin RK, Bank C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet 2021; 17:e1009411. [PMID: 33661924 PMCID: PMC7963061 DOI: 10.1371/journal.pgen.1009411] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/16/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Chromosomal inversions contribute widely to adaptation and speciation, yet they present a unique evolutionary puzzle as both their allelic content and frequency evolve in a feedback loop. In this simulation study, we quantified the role of the allelic content in determining the long-term fate of the inversion. Recessive deleterious mutations accumulated on both arrangements with most of them being private to a given arrangement. This led to increasing overdominance, allowing for the maintenance of the inversion polymorphism and generating strong non-adaptive divergence between arrangements. The accumulation of mutations was mitigated by gene conversion but nevertheless led to the fitness decline of at least one homokaryotype under all considered conditions. Surprisingly, this fitness degradation could be permanently halted by the branching of an arrangement into multiple highly divergent haplotypes. Our results highlight the dynamic features of inversions by showing how the non-adaptive evolution of allelic content can play a major role in the fate of the inversion.
Collapse
Affiliation(s)
- Emma L. Berdan
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | - Roger K. Butlin
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute of Ecology and Evolution, University of Bern, Switzerland
| |
Collapse
|
13
|
MacPherson B, Scott R, Gras R. Sex and recombination purge the genome of deleterious alleles: An Individual Based Modeling Approach. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Held T, Klemmer D, Lässig M. Survival of the simplest in microbial evolution. Nat Commun 2019; 10:2472. [PMID: 31171781 PMCID: PMC6554311 DOI: 10.1038/s41467-019-10413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/10/2019] [Indexed: 01/09/2023] Open
Abstract
The evolution of microbial and viral organisms often generates clonal interference, a mode of competition between genetic clades within a population. Here we show how interference impacts systems biology by constraining genetic and phenotypic complexity. Our analysis uses biophysically grounded evolutionary models for molecular phenotypes, such as fold stability and enzymatic activity of genes. We find a generic mode of phenotypic interference that couples the function of individual genes and the population’s global evolutionary dynamics. Biological implications of phenotypic interference include rapid collateral system degradation in adaptation experiments and long-term selection against genome complexity: each additional gene carries a cost proportional to the total number of genes. Recombination above a threshold rate can eliminate this cost, which establishes a universal, biophysically grounded scenario for the evolution of sex. In a broader context, our analysis suggests that the systems biology of microbes is strongly intertwined with their mode of evolution. In asexual populations selection at different genomic loci can interfere with each other. Here, using a biophysical model of molecular evolution the authors show that interference results in long-term degradation of molecular function, an effect that strongly depends on genome size.
Collapse
Affiliation(s)
- Torsten Held
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany
| | - Daniel Klemmer
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany
| | - Michael Lässig
- Institut für Biologische Physik, Universität zu Köln, Zülpicherstr. 77, 50937, Köln, Germany.
| |
Collapse
|
15
|
Mignerot L, Avia K, Luthringer R, Lipinska AP, Peters AF, Cock JM, Coelho SM. A key role for sex chromosomes in the regulation of parthenogenesis in the brown alga Ectocarpus. PLoS Genet 2019; 15:e1008211. [PMID: 31194744 PMCID: PMC6592573 DOI: 10.1371/journal.pgen.1008211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/25/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of these shifts remain largely elusive. Here, we used classic quantitative trait analysis, combined with genomic and transcriptomic information to dissect the genetic basis of asexual, parthenogenetic reproduction in the brown alga Ectocarpus. We found that parthenogenesis is controlled by the sex locus, together with two additional autosomal loci, highlighting the key role of the sex chromosome as a major regulator of asexual reproduction. We identify several negative effects of parthenogenesis on male fitness, and different fitness effects of parthenogenetic capacity depending on the life cycle generation. Although allele frequencies in natural populations are currently unknown, we discuss the possibility that parthenogenesis may be under both sex-specific selection and generation/ploidally-antagonistic selection, and/or that the action of fluctuating selection on this trait may contribute to the maintenance of polymorphisms in populations. Importantly, our data provide the first empirical illustration, to our knowledge, of a trade-off between the haploid and diploid stages of the life cycle, where distinct parthenogenesis alleles have opposing effects on sexual and asexual reproduction and may help maintain genetic variation. These types of fitness trade-offs have profound evolutionary implications in natural populations and may structure life history evolution in organisms with haploid-diploid life cycles.
Collapse
Affiliation(s)
- Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Komlan Avia
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Remy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P. Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J. Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M. Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
16
|
Dillon MM, Almeida RN, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. Molecular Evolution of Pseudomonas syringae Type III Secreted Effector Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:418. [PMID: 31024592 PMCID: PMC6460904 DOI: 10.3389/fpls.2019.00418] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 05/02/2023]
Abstract
Diverse Gram-negative pathogens like Pseudomonas syringae employ type III secreted effector (T3SE) proteins as primary virulence factors that combat host immunity and promote disease. T3SEs can also be recognized by plant hosts and activate an effector triggered immune (ETI) response that shifts the interaction back toward plant immunity. Consequently, T3SEs are pivotal in determining the virulence potential of individual P. syringae strains, and ultimately help to restrict P. syringae pathogens to a subset of potential hosts that are unable to recognize their repertoires of T3SEs. While a number of effector families are known to be present in the P. syringae species complex, one of the most persistent challenges has been documenting the complex variation in T3SE contents across a diverse collection of strains. Using the entire pan-genome of 494 P. syringae strains isolated from more than 100 hosts, we conducted a global analysis of all known and putative T3SEs. We identified a total of 14,613 putative T3SEs, 4,636 of which were unique at the amino acid level, and show that T3SE repertoires of different P. syringae strains vary dramatically, even among strains isolated from the same hosts. We also find substantial diversification within many T3SE families, and in many cases find strong signatures of positive selection. Furthermore, we identify multiple gene gain and loss events for several families, demonstrating an important role of horizontal gene transfer (HGT) in the evolution of P. syringae T3SEs. These analyses provide insight into the evolutionary history of P. syringae T3SEs as they co-evolve with the host immune system, and dramatically expand the database of P. syringae T3SEs alleles.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Renan N.D. Almeida
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Support for the Dominance Theory in Drosophila Transcriptomes. Genetics 2018; 210:703-718. [PMID: 30131345 PMCID: PMC6216581 DOI: 10.1534/genetics.118.301229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in the sex toward which the expression is biased (e.g., genes with female-biased expression when analyzed in females). In the opposite sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes (e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher incidence of positively selected regulatory mutations than their autosomal counterparts.
Collapse
|
18
|
Stukenbrock EH, Dutheil JY. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots. Genetics 2018; 208:1209-1229. [PMID: 29263029 PMCID: PMC5844332 DOI: 10.1534/genetics.117.300502] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Germany
| | - Julien Y Dutheil
- Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Institut des Sciences de L'Évolution de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, 34095, France
| |
Collapse
|
19
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Escudero M, Balao F, Martín-Bravo S, Valente L, Valcárcel V. Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:166-175. [PMID: 28295874 DOI: 10.1111/plb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The Mediterranean Basin region, home to 25,000 plant species, is included in the worldwide list of hotspots of biodiversity. Despite the indisputably important role of chromosome transitions in plant evolution and diversification, no reference study to date has dealt with the possible relationship between chromosome evolution and lineage diversification in the Mediterranean Basin. Here we study patterns of diversification, patterns of chromosome number transition (either polyploidy or dysploidy) and the relationship between the two for 14 Mediterranean Basin angiosperm lineages using previously published phylogenies. We found a mixed pattern, with half of the lineages displaying a change in chromosome transition rates after the onset of the Mediterranean climate (six increases, one decrease) and the other half (six) experiencing constant rates of chromosome transitions through time. We have also found a heterogeneous pattern regarding diversification rates, with lineages exhibiting moderate (five phylogenies) or low (six) initial diversification rates that either increased (six) or declined (five) through time. Our results reveal no clear link between diversification rates and chromosome number transition rates. By promoting the formation of new habitats and driving the extinction of many species, the Mediterranean onset and the posterior Quaternary climatic oscillations could have been key for the establishment of new chromosomal variants in some plant phylogenies but not in others. While the biodiversity of the Mediterranean Basin may be partly influenced by the chromosomal diversity of its lineages, this study concludes that lineage diversification in the region is largely decoupled from karyotypic evolution.
Collapse
Affiliation(s)
- M Escudero
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - F Balao
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - S Martín-Bravo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - L Valente
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - V Valcárcel
- Department of Biology (Botany), Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A 2017; 114:E9026-E9035. [PMID: 29073099 DOI: 10.1073/pnas.1705887114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the extreme variation among bacterial genomes remains an unsolved challenge in evolutionary biology, despite long-standing debate about the relative importance of natural selection, mutation, and random drift. A potentially important confounding factor is the variation in mutation rates between lineages and over evolutionary history, which has been documented in several species. Mutation accumulation experiments have shown that hypermutability can erode genomes over short timescales. These results, however, were obtained under conditions of extremely weak selection, casting doubt on their general relevance. Here, we circumvent this limitation by analyzing genomes from mutator populations that arose during a long-term experiment with Escherichia coli, in which populations have been adaptively evolving for >50,000 generations. We develop an analytical framework to quantify the relative contributions of mutation and selection in shaping genomic characteristics, and we validate it using genomes evolved under regimes of high mutation rates with weak selection (mutation accumulation experiments) and low mutation rates with strong selection (natural isolates). Our results show that, despite sustained adaptive evolution in the long-term experiment, the signature of selection is much weaker than that of mutational biases in mutator genomes. This finding suggests that relatively brief periods of hypermutability can play an outsized role in shaping extant bacterial genomes. Overall, these results highlight the importance of genomic draft, in which strong linkage limits the ability of selection to purge deleterious mutations. These insights are also relevant to other biological systems evolving under strong linkage and high mutation rates, including viruses and cancer cells.
Collapse
|
22
|
Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. Mutation and recombination in pathogen evolution: Relevance, methods and controversies. INFECTION GENETICS AND EVOLUTION 2017; 63:295-306. [PMID: 28951202 DOI: 10.1016/j.meegid.2017.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Mutation and recombination drive the evolution of most pathogens by generating the genetic variants upon which selection operates. Those variants can, for example, confer resistance to host immune systems and drug therapies or lead to epidemic outbreaks. Given their importance, diverse evolutionary studies have investigated the abundance and consequences of mutation and recombination in pathogen populations. However, some controversies persist regarding the contribution of each evolutionary force to the development of particular phenotypic observations (e.g., drug resistance). In this study, we revise the importance of mutation and recombination in the evolution of pathogens at both intra-host and inter-host levels. We also describe state-of-the-art analytical methodologies to detect and quantify these two evolutionary forces, including biases that are often ignored in evolutionary studies. Finally, we present some of our former studies involving pathogenic taxa where mutation and recombination played crucial roles in the recovery of pathogenic fitness, the generation of interspecific genetic diversity, or the design of centralized vaccines. This review also illustrates several common controversies and pitfalls in the analysis and in the evaluation and interpretation of mutation and recombination outcomes.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Catarina Branco
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, Washington, DC, United States; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
23
|
Calvo-Martín JM, Papaceit M, Segarra C. Molecular population genetics of the Polycomb genes in Drosophila subobscura. PLoS One 2017; 12:e0185005. [PMID: 28910411 PMCID: PMC5599051 DOI: 10.1371/journal.pone.0185005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster.
Collapse
Affiliation(s)
- Juan M. Calvo-Martín
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Papaceit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Carmen Segarra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
24
|
Leung W, Shaffer CD, Chen EJ, Quisenberry TJ, Ko K, Braverman JM, Giarla TC, Mortimer NT, Reed LK, Smith ST, Robic S, McCartha SR, Perry DR, Prescod LM, Sheppard ZA, Saville KJ, McClish A, Morlock EA, Sochor VR, Stanton B, Veysey-White IC, Revie D, Jimenez LA, Palomino JJ, Patao MD, Patao SM, Himelblau ET, Campbell JD, Hertz AL, McEvilly MF, Wagner AR, Youngblom J, Bedi B, Bettincourt J, Duso E, Her M, Hilton W, House S, Karimi M, Kumimoto K, Lee R, Lopez D, Odisho G, Prasad R, Robbins HL, Sandhu T, Selfridge T, Tsukashima K, Yosif H, Kokan NP, Britt L, Zoellner A, Spana EP, Chlebina BT, Chong I, Friedman H, Mammo DA, Ng CL, Nikam VS, Schwartz NU, Xu TQ, Burg MG, Batten SM, Corbeill LM, Enoch E, Ensign JJ, Franks ME, Haiker B, Ingles JA, Kirkland LD, Lorenz-Guertin JM, Matthews J, Mittig CM, Monsma N, Olson KJ, Perez-Aragon G, Ramic A, Ramirez JR, Scheiber C, Schneider PA, Schultz DE, Simon M, Spencer E, Wernette AC, Wykle ME, Zavala-Arellano E, McDonald MJ, Ostby K, Wendland P, DiAngelo JR, Ceasrine AM, Cox AH, Docherty JEB, Gingras RM, Grieb SM, Pavia MJ, Personius CL, Polak GL, Beach DL, Cerritos HL, et alLeung W, Shaffer CD, Chen EJ, Quisenberry TJ, Ko K, Braverman JM, Giarla TC, Mortimer NT, Reed LK, Smith ST, Robic S, McCartha SR, Perry DR, Prescod LM, Sheppard ZA, Saville KJ, McClish A, Morlock EA, Sochor VR, Stanton B, Veysey-White IC, Revie D, Jimenez LA, Palomino JJ, Patao MD, Patao SM, Himelblau ET, Campbell JD, Hertz AL, McEvilly MF, Wagner AR, Youngblom J, Bedi B, Bettincourt J, Duso E, Her M, Hilton W, House S, Karimi M, Kumimoto K, Lee R, Lopez D, Odisho G, Prasad R, Robbins HL, Sandhu T, Selfridge T, Tsukashima K, Yosif H, Kokan NP, Britt L, Zoellner A, Spana EP, Chlebina BT, Chong I, Friedman H, Mammo DA, Ng CL, Nikam VS, Schwartz NU, Xu TQ, Burg MG, Batten SM, Corbeill LM, Enoch E, Ensign JJ, Franks ME, Haiker B, Ingles JA, Kirkland LD, Lorenz-Guertin JM, Matthews J, Mittig CM, Monsma N, Olson KJ, Perez-Aragon G, Ramic A, Ramirez JR, Scheiber C, Schneider PA, Schultz DE, Simon M, Spencer E, Wernette AC, Wykle ME, Zavala-Arellano E, McDonald MJ, Ostby K, Wendland P, DiAngelo JR, Ceasrine AM, Cox AH, Docherty JEB, Gingras RM, Grieb SM, Pavia MJ, Personius CL, Polak GL, Beach DL, Cerritos HL, Horansky EA, Sharif KA, Moran R, Parrish S, Bickford K, Bland J, Broussard J, Campbell K, Deibel KE, Forka R, Lemke MC, Nelson MB, O'Keeffe C, Ramey SM, Schmidt L, Villegas P, Jones CJ, Christ SL, Mamari S, Rinaldi AS, Stity G, Hark AT, Scheuerman M, Silver Key SC, McRae BD, Haberman AS, Asinof S, Carrington H, Drumm K, Embry T, McGuire R, Miller-Foreman D, Rosen S, Safa N, Schultz D, Segal M, Shevin Y, Svoronos P, Vuong T, Skuse G, Paetkau DW, Bridgman RK, Brown CM, Carroll AR, Gifford FM, Gillespie JB, Herman SE, Holtcamp KL, Host MA, Hussey G, Kramer DM, Lawrence JQ, Martin MM, Niemiec EN, O'Reilly AP, Pahl OA, Quintana G, Rettie EAS, Richardson TL, Rodriguez AE, Rodriguez MO, Schiraldi L, Smith JJ, Sugrue KF, Suriano LJ, Takach KE, Vasquez AM, Velez X, Villafuerte EJ, Vives LT, Zellmer VR, Hauke J, Hauser CR, Barker K, Cannon L, Parsamian P, Parsons S, Wichman Z, Bazinet CW, Johnson DE, Bangura A, Black JA, Chevee V, Einsteen SA, Hilton SK, Kollmer M, Nadendla R, Stamm J, Fafara-Thompson AE, Gygi AM, Ogawa EE, Van Camp M, Kocsisova Z, Leatherman JL, Modahl CM, Rubin MR, Apiz-Saab SS, Arias-Mejias SM, Carrion-Ortiz CF, Claudio-Vazquez PN, Espada-Green DM, Feliciano-Camacho M, Gonzalez-Bonilla KM, Taboas-Arroyo M, Vargas-Franco D, Montañez-Gonzalez R, Perez-Otero J, Rivera-Burgos M, Rivera-Rosario FJ, Eisler HL, Alexander J, Begley SK, Gabbard D, Allen RJ, Aung WY, Barshop WD, Boozalis A, Chu VP, Davis JS, Duggal RN, Franklin R, Gavinski K, Gebreyesus H, Gong HZ, Greenstein RA, Guo AD, Hanson C, Homa KE, Hsu SC, Huang Y, Huo L, Jacobs S, Jia S, Jung KL, Wai-Chee Kong S, Kroll MR, Lee BM, Lee PF, Levine KM, Li AS, Liu C, Liu MM, Lousararian AP, Lowery PB, Mallya AP, Marcus JE, Ng PC, Nguyen HP, Patel R, Precht H, Rastogi S, Sarezky JM, Schefkind A, Schultz MB, Shen D, Skorupa T, Spies NC, Stancu G, Vivian Tsang HM, Turski AL, Venkat R, Waldman LE, Wang K, Wang T, Wei JW, Wu DY, Xiong DD, Yu J, Zhou K, McNeil GP, Fernandez RW, Menzies PG, Gu T, Buhler J, Mardis ER, Elgin SCR. Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element. G3 (BETHESDA, MD.) 2017; 7:2439-2460. [PMID: 28667019 PMCID: PMC5555453 DOI: 10.1534/g3.117.040907] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5' ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains.
Collapse
Affiliation(s)
- Wilson Leung
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | - Elizabeth J Chen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | - Kevin Ko
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - John M Braverman
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131
| | | | - Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401
| | - Sheryl T Smith
- Department of Biology, Arcadia University, Glenside, PA 19038
| | - Srebrenka Robic
- Department of Biology, Agnes Scott College, Decatur, GA 30030
| | | | | | | | | | - Ken J Saville
- Department of Biology, Albion College, Albion, MI 49224
| | | | | | | | | | | | - Dennis Revie
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360
| | - Luis A Jimenez
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360
| | - Jennifer J Palomino
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360
| | - Melissa D Patao
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360
| | - Shane M Patao
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360
| | - Edward T Himelblau
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93405
| | - Jaclyn D Campbell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93405
| | - Alexandra L Hertz
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93405
| | - Maddison F McEvilly
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93405
| | - Allison R Wagner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93405
| | - James Youngblom
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Baljit Bedi
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Jeffery Bettincourt
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Erin Duso
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Maiye Her
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - William Hilton
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Samantha House
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Masud Karimi
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Kevin Kumimoto
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Rebekah Lee
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Darryl Lopez
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - George Odisho
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Ricky Prasad
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Holly Lyn Robbins
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Tanveer Sandhu
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Tracy Selfridge
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Kara Tsukashima
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Hani Yosif
- Department of Biology, California State University, Stanislaus, Turlock, CA 95382
| | - Nighat P Kokan
- Department of Natural Sciences, Cardinal Stritch University, Milwaukee, WI 53217
| | - Latia Britt
- Department of Natural Sciences, Cardinal Stritch University, Milwaukee, WI 53217
| | - Alycia Zoellner
- Department of Natural Sciences, Cardinal Stritch University, Milwaukee, WI 53217
| | - Eric P Spana
- Department of Biology, Duke University, Durham, NC 27708
| | - Ben T Chlebina
- Department of Biology, Duke University, Durham, NC 27708
| | - Insun Chong
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Danny A Mammo
- Department of Biology, Duke University, Durham, NC 27708
| | - Chun L Ng
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | - Thomas Q Xu
- Department of Biology, Duke University, Durham, NC 27708
| | - Martin G Burg
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Spencer M Batten
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Lindsay M Corbeill
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Erica Enoch
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Jesse J Ensign
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Mary E Franks
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Breanna Haiker
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Judith A Ingles
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Lyndsay D Kirkland
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Joshua M Lorenz-Guertin
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Jordan Matthews
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Cody M Mittig
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Nicholaus Monsma
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Katherine J Olson
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Guillermo Perez-Aragon
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Alen Ramic
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Jordan R Ramirez
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Christopher Scheiber
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Patrick A Schneider
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Devon E Schultz
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Matthew Simon
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Eric Spencer
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Adam C Wernette
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Maxine E Wykle
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Elizabeth Zavala-Arellano
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Mitchell J McDonald
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Kristine Ostby
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | - Peter Wendland
- Departments of Biomedical Sciences and Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401
| | | | | | - Amanda H Cox
- Department of Biology, Hofstra University, Hempstead, NY 11549
| | | | | | | | - Michael J Pavia
- Department of Biology, Hofstra University, Hempstead, NY 11549
| | | | | | - Dale L Beach
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909
| | - Heaven L Cerritos
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909
| | - Edward A Horansky
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA 23909
| | - Karim A Sharif
- Department of Biology, Massasoit Community College, Brockton, MA 02302
| | - Ryan Moran
- Department of Biology, Massasoit Community College, Brockton, MA 02302
| | - Susan Parrish
- Department of Biology, McDaniel College, Westminster, MD 21157
| | | | - Jennifer Bland
- Department of Biology, McDaniel College, Westminster, MD 21157
| | | | - Kerry Campbell
- Department of Biology, McDaniel College, Westminster, MD 21157
| | | | - Richard Forka
- Department of Biology, McDaniel College, Westminster, MD 21157
| | - Monika C Lemke
- Department of Biology, McDaniel College, Westminster, MD 21157
| | - Marlee B Nelson
- Department of Biology, McDaniel College, Westminster, MD 21157
| | | | - S Mariel Ramey
- Department of Biology, McDaniel College, Westminster, MD 21157
| | - Luke Schmidt
- Department of Biology, McDaniel College, Westminster, MD 21157
| | - Paola Villegas
- Department of Biology, McDaniel College, Westminster, MD 21157
| | | | - Stephanie L Christ
- Department of Biological Sciences, Moravian College, Bethlehem, PA 18018
| | - Sami Mamari
- Department of Biological Sciences, Moravian College, Bethlehem, PA 18018
| | - Adam S Rinaldi
- Department of Biological Sciences, Moravian College, Bethlehem, PA 18018
| | - Ghazal Stity
- Department of Biological Sciences, Moravian College, Bethlehem, PA 18018
| | - Amy T Hark
- Department of Biology, Muhlenberg College, Allentown, PA 18104
| | - Mark Scheuerman
- Department of Biology, Muhlenberg College, Allentown, PA 18104
| | - S Catherine Silver Key
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707
| | - Briana D McRae
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707
| | | | - Sam Asinof
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | | | - Kelly Drumm
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Terrance Embry
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | | | | | - Stella Rosen
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Nadia Safa
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Darrin Schultz
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Matt Segal
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Yakov Shevin
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | | | - Tam Vuong
- Department of Biology, Oberlin College, Oberlin, OH 44074
| | - Gary Skuse
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623
| | - Don W Paetkau
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | | | - Alicia R Carroll
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | | | - Susan E Herman
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Misha A Host
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | - Gabrielle Hussey
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Joan Q Lawrence
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Ellen N Niemiec
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Olivia A Pahl
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | | | | | | | - Mona O Rodriguez
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | - Laura Schiraldi
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | - Joanna J Smith
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | - Kelsey F Sugrue
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Kaitlyn E Takach
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Ximena Velez
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Laura T Vives
- Department of Biology, Saint Mary's College, Notre Dame, IN 46556
| | | | - Jeanette Hauke
- Department of Biology, Simmons College, Boston, MA 02115
| | - Charles R Hauser
- Bioinformatics Program, St. Edward's University, Austin, TX 78704
| | - Karolyn Barker
- Bioinformatics Program, St. Edward's University, Austin, TX 78704
| | - Laurie Cannon
- Bioinformatics Program, St. Edward's University, Austin, TX 78704
| | | | - Samantha Parsons
- Bioinformatics Program, St. Edward's University, Austin, TX 78704
| | | | | | - Diana E Johnson
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Abubakarr Bangura
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Jordan A Black
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Victoria Chevee
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Sarah A Einsteen
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Sarah K Hilton
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Max Kollmer
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Rahul Nadendla
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Joyce Stamm
- Department of Biology, University of Evansville, Evansville, IN 47722
| | | | - Amber M Gygi
- Department of Biology, University of Evansville, Evansville, IN 47722
| | - Emmy E Ogawa
- Department of Biology, University of Evansville, Evansville, IN 47722
| | - Matt Van Camp
- Department of Biology, University of Evansville, Evansville, IN 47722
| | - Zuzana Kocsisova
- Department of Biology, University of Evansville, Evansville, IN 47722
| | - Judith L Leatherman
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639
| | - Cassie M Modahl
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639
| | - Michael R Rubin
- Department of Biology, University of Puerto Rico at Cayey, Cayey, PR 00736
| | - Susana S Apiz-Saab
- Department of Biology, University of Puerto Rico at Cayey, Cayey, PR 00736
| | | | | | | | | | | | | | | | | | | | - Joseph Perez-Otero
- Department of Biology, University of Puerto Rico at Cayey, Cayey, PR 00736
| | | | | | - Heather L Eisler
- Department of Biology, University of the Cumberlands, Williamsburg, KY 40769
| | - Jackie Alexander
- Department of Biology, University of the Cumberlands, Williamsburg, KY 40769
| | - Samatha K Begley
- Department of Biology, University of the Cumberlands, Williamsburg, KY 40769
| | - Deana Gabbard
- Department of Biology, University of the Cumberlands, Williamsburg, KY 40769
| | - Robert J Allen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Wint Yan Aung
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - William D Barshop
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Amanda Boozalis
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Vanessa P Chu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jeremy S Davis
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ryan N Duggal
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Robert Franklin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Katherine Gavinski
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Heran Gebreyesus
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Henry Z Gong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Rachel A Greenstein
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Averill D Guo
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Casey Hanson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kaitlin E Homa
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Simon C Hsu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Yi Huang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Lucy Huo
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Sarah Jacobs
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Sasha Jia
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kyle L Jung
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Sarah Wai-Chee Kong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R Kroll
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Brandon M Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Paul F Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kevin M Levine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Amy S Li
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Chengyu Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Max Mian Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Adam P Lousararian
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Peter B Lowery
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Allyson P Mallya
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Joseph E Marcus
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Patrick C Ng
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Hien P Nguyen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ruchik Patel
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Hashini Precht
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Suchita Rastogi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jonathan M Sarezky
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Adam Schefkind
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael B Schultz
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Delia Shen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Tara Skorupa
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Nicholas C Spies
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Gabriel Stancu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | - Alice L Turski
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit Venkat
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Leah E Waldman
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kaidi Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Tracy Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jeffrey W Wei
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Dennis Y Wu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - David D Xiong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jack Yu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Karen Zhou
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Gerard P McNeil
- Department of Biology, York College / CUNY, Jamaica, NY 11451
| | | | | | - Tingting Gu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jeremy Buhler
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Sarah C R Elgin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
25
|
Bobay LM, Ochman H. The Evolution of Bacterial Genome Architecture. Front Genet 2017; 8:72. [PMID: 28611826 PMCID: PMC5447742 DOI: 10.3389/fgene.2017.00072] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/12/2017] [Indexed: 11/15/2022] Open
Abstract
The genome architecture of bacteria and eukaryotes evolves in opposite directions when subject to genetic drift, a difference that can be ascribed to the fact that bacteria exhibit a mutational bias that deletes superfluous sequences, whereas eukaryotes are biased toward large insertions. Expansion of eukaryotic genomes occurs through the addition of non-functional sequences, such as repetitive sequences and transposable elements, whereas variation in bacterial genome size is largely due to the acquisition and loss of functional accessory genes. These properties create the situation in which eukaryotes with very similar numbers of genes can have vastly different genome sizes, while in bacteria, gene number scales linearly with genome size. Some bacterial genomes, however, particularly those of species that undergo bottlenecks due to recent association with hosts, accumulate pseudogenes and mobile elements, conferring them a low gene content relative to their genome size. These non-functional sequences are gradually eroded and eliminated after long-term association with hosts, with the result that obligate symbionts have the smallest genomes of any cellular organism. The architecture of bacterial genomes is shaped by complex and diverse processes, but for most bacterial species, genome size is governed by a non-adaptive process, i.e., genetic drift coupled with a mutational bias toward deletions. Thus, bacteria with small effective population sizes typically have the smallest genomes. Some marine bacteria counter this near-universal trend: despite having immense population sizes, selection, not drift, acts to reduce genome size in response to metabolic constraints in their nutrient-limited environment.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas, AustinTX, United States
| | - Howard Ochman
- Department of Integrative Biology, University of Texas, AustinTX, United States
| |
Collapse
|
26
|
Chang CH, Larracuente AM. Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura. Evolution 2017; 71:1285-1296. [PMID: 28322435 PMCID: PMC5485016 DOI: 10.1111/evo.13229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 01/10/2023]
Abstract
Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome‐Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real‐time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y‐to‐dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ∼78 Kb and is not repeat‐dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y‐to‐dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y‐to‐dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y‐to‐dot translocation.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | | |
Collapse
|
27
|
Mohlhenrich ER, Mueller RL. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution 2016; 70:2865-2878. [DOI: 10.1111/evo.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022]
|
28
|
Zhang M, Zhou L, Bawa R, Suren H, Holliday J. Recombination Rate Variation, Hitchhiking, and Demographic History Shape Deleterious Load in Poplar. Mol Biol Evol 2016; 33:2899-2910. [DOI: 10.1093/molbev/msw169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Collet JM, Fuentes S, Hesketh J, Hill MS, Innocenti P, Morrow EH, Fowler K, Reuter M. Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster. Evolution 2016; 70:781-95. [PMID: 27077679 PMCID: PMC5069644 DOI: 10.1111/evo.12892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution.
Collapse
Affiliation(s)
- Julie M Collet
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Current Address: School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sara Fuentes
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jack Hesketh
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Mark S Hill
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Paolo Innocenti
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Edward H Morrow
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,Current Address: School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.
| |
Collapse
|
30
|
Corcoran P, Anderson JL, Jacobson DJ, Sun Y, Ni P, Lascoux M, Johannesson H. Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma. Genome Res 2016; 26:486-98. [PMID: 26893460 PMCID: PMC4817772 DOI: 10.1101/gr.197244.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes.We found that suppressed recombination extends across at least 6 Mbp (∼ 63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jennifer L Anderson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - David J Jacobson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Yu Sun
- Department of Cell and Molecular Biology, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
31
|
James JE, Piganeau G, Eyre‐Walker A. The rate of adaptive evolution in animal mitochondria. Mol Ecol 2016; 25:67-78. [PMID: 26578312 PMCID: PMC4737298 DOI: 10.1111/mec.13475] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
Abstract
We have investigated whether there is adaptive evolution in mitochondrial DNA, using an extensive data set containing over 500 animal species from a wide range of taxonomic groups. We apply a variety of McDonald-Kreitman style methods to the data. We find that the evolution of mitochondrial DNA is dominated by slightly deleterious mutations, a finding which is supported by a number of previous studies. However, when we control for the presence of deleterious mutations using a new method, we find that mitochondria undergo a significant amount of adaptive evolution, with an estimated 26% (95% confidence intervals: 5.7-45%) of nonsynonymous substitutions fixed by adaptive evolution. We further find some weak evidence that the rate of adaptive evolution is correlated to synonymous diversity. We interpret this as evidence that at least some adaptive evolution is limited by the supply of mutations.
Collapse
Affiliation(s)
| | - Gwenael Piganeau
- UPMC Univ Paris 06UMR 7232Observatoire OceanologiqueAvenue de FontauléBP 44, 66651 Banyuls‐sur‐MerFrance
- CNRSUMR 7232Observatoire OceanologiqueAvenue de FontauléBP 44, 66651 Banyuls‐sur‐MerFrance
| | | |
Collapse
|
32
|
Aggarwal DD, Rashkovetsky E, Michalak P, Cohen I, Ronin Y, Zhou D, Haddad GG, Korol AB. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits. BMC Biol 2015; 13:101. [PMID: 26614097 PMCID: PMC4661966 DOI: 10.1186/s12915-015-0206-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). RESULTS For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. CONCLUSIONS Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.
Collapse
Affiliation(s)
| | | | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC 0477, Blacksburg, VA, 24061-0477, USA
| | - Irit Cohen
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Yefim Ronin
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Dan Zhou
- University of California, San Diego, USA
| | - Gabriel G Haddad
- University of California, San Diego, USA
- Rady Children's Hospital, San Diego, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
33
|
Castellano D, Coronado-Zamora M, Campos JL, Barbadilla A, Eyre-Walker A. Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila. Mol Biol Evol 2015; 33:442-55. [PMID: 26494843 PMCID: PMC4794616 DOI: 10.1093/molbev/msv236] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.
Collapse
Affiliation(s)
- David Castellano
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Adam Eyre-Walker
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
34
|
Bolívar P, Mugal CF, Nater A, Ellegren H. Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill-Robertson Interference, in an Avian System. Mol Biol Evol 2015; 33:216-27. [PMID: 26446902 PMCID: PMC4693978 DOI: 10.1093/molbev/msv214] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ratio of nonsynonymous to synonymous substitution rates (ω) is often used to measure the strength of natural selection. However, ω may be influenced by linkage among different targets of selection, that is, Hill–Robertson interference (HRI), which reduces the efficacy of selection. Recombination modulates the extent of HRI but may also affect ω by means of GC-biased gene conversion (gBGC), a process leading to a preferential fixation of G:C (“strong,” S) over A:T (“weak,” W) alleles. As HRI and gBGC can have opposing effects on ω, it is essential to understand their relative impact to make proper inferences of ω. We used a model that separately estimated S-to-S, S-to-W, W-to-S, and W-to-W substitution rates in 8,423 avian genes in the Ficedula flycatcher lineage. We found that the W-to-S substitution rate was positively, and the S-to-W rate negatively, correlated with recombination rate, in accordance with gBGC but not predicted by HRI. The W-to-S rate further showed the strongest impact on both dN and dS. However, since the effects were stronger at 4-fold than at 0-fold degenerated sites, likely because the GC content of these sites is farther away from its equilibrium, ω slightly decreases with increasing recombination rate, which could falsely be interpreted as a consequence of HRI. We corroborated this hypothesis analytically and demonstrate that under particular conditions, ω can decrease with increasing recombination rate. Analyses of the site-frequency spectrum showed that W-to-S mutations were skewed toward high, and S-to-W mutations toward low, frequencies, consistent with a prevalent gBGC-driven fixation bias.
Collapse
Affiliation(s)
- Paulina Bolívar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Alexander Nater
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Wu M, Moore RC. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya. J Mol Evol 2015; 80:265-77. [PMID: 25987354 DOI: 10.1007/s00239-015-9680-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.
Collapse
Affiliation(s)
- Meng Wu
- Botany Graduate Program, Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | |
Collapse
|
36
|
Shin SH, Choi SS. Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0265-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Evidence for stabilizing selection on codon usage in chromosomal rearrangements of Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2014; 4:2433-49. [PMID: 25326424 PMCID: PMC4267939 DOI: 10.1534/g3.114.014860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura.
Collapse
|
38
|
Bock DG, Andrew RL, Rieseberg LH. On the adaptive value of cytoplasmic genomes in plants. Mol Ecol 2014; 23:4899-911. [PMID: 25223488 DOI: 10.1111/mec.12920] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 01/30/2023]
Abstract
Is DNA variation maintained in organelle genomes selectively neutral? The answer to this question has important implications for many aspects of ecology and evolution. While traditionally the answer has been 'yes', recent studies in animals have shown that, on the contrary, mitochondrial DNA polymorphism is frequently adaptive. In plants, however, the neutrality assumption has not been strongly challenged. Here, we begin with a critical evaluation of arguments in favour of this long-held view. We then discuss the latest empirical evidence for the opposing prediction that sequence variation in plant cytoplasmic genomes is frequently adaptive. While outstanding research progress is being made towards understanding this fundamental topic, we highlight the need for studies that combine information ranging from field experiments to physiology to molecular evolutionary biology. Such an interdisciplinary approach provides a means for determining the frequency, drivers and evolutionary significance of adaptive organelle DNA variation.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany, Biodiversity Research Centre, University of British Columbia, 3529-6270 University Blvd., Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
39
|
Jackson BC, Campos JL, Zeng K. The effects of purifying selection on patterns of genetic differentiation between Drosophila melanogaster populations. Heredity (Edinb) 2014; 114:163-74. [PMID: 25227256 PMCID: PMC4270736 DOI: 10.1038/hdy.2014.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023] Open
Abstract
Using the data provided by the Drosophila Population Genomics Project, we investigate factors that affect the genetic differentiation between Rwandan and French populations of D. melanogaster. By examining within-population polymorphisms, we show that sites in long introns (especially those >2000 bp) have significantly lower π (nucleotide diversity) and more low-frequency variants (as measured by Tajima's D, minor allele frequencies, and prevalence of variants that are private to one of the two populations) than short introns, suggesting a positive relationship between intron length and selective constraint. A similar analysis of protein-coding polymorphisms shows that 0-fold (degenerate) sites in more conserved genes are under stronger purifying selection than those in less conserved genes. There is limited evidence that selection on codon bias has an effect on differentiation (as measured by FST) at 4-fold (degenerate) sites, and 4-fold sites and sites in 8–30 bp of short introns ⩽65 bp have comparable FST values. Consistent with the expected effect of purifying selection, sites in long introns and 0-fold sites in conserved genes are less differentiated than those in short introns and less conserved genes, respectively. Genes in non-crossover regions (for example, the fourth chromosome) have very high FST values at both 0-fold and 4-fold degenerate sites, which is probably because of the large reduction in within-population diversity caused by tight linkage between many selected sites. Our analyses also reveal subtle statistical properties of FST, which arise when information from multiple single nucleotide polymorphisms is combined and can lead to the masking of important signals of selection.
Collapse
Affiliation(s)
- B C Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - K Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Charlesworth B, Campos JL. The relations between recombination rate and patterns of molecular variation and evolution in Drosophila. Annu Rev Genet 2014; 48:383-403. [PMID: 25251853 DOI: 10.1146/annurev-genet-120213-092525] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the Drosophila genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of Drosophila genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; , ,
| | | |
Collapse
|
41
|
Background selection as baseline for nucleotide variation across the Drosophila genome. PLoS Genet 2014; 10:e1004434. [PMID: 24968283 PMCID: PMC4072542 DOI: 10.1371/journal.pgen.1004434] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/28/2014] [Indexed: 11/21/2022] Open
Abstract
The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS). Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and selective events, future analyses should incorporate BGS predictions and capture local recombination variation across genomes and along lineages. The removal of deleterious mutations from natural populations has potential consequences on patterns of variation across genomes. Population genetic analyses, however, often assume that such effects are negligible across recombining regions of species like Drosophila. We use simple models of purifying selection and current knowledge of recombination rates and gene distribution across the genome to obtain a baseline of variation predicted by the constant input and removal of deleterious mutations. We find that purifying selection alone can explain a major fraction of the observed variance in nucleotide diversity across the genome. The use of a baseline of variation predicted by linkage to deleterious mutations as null expectation exposes genomic regions under other selective regimes, including more regions showing the signature of balancing selection than would be evident when using traditional approaches. Our study also indicates that most, if not all, nucleotides across the D. melanogaster genome are significantly influenced by the removal of deleterious mutations, even when located in the middle of highly recombining regions and distant from genes. Additionally, the study of rates of protein evolution confirms previous analyses suggesting that the recombination landscape across the genome has changed in the recent history of D. melanogaster. All these reported factors can skew current analyses designed to capture demographic events or estimate the strength and frequency of adaptive mutations, and illustrate the need for new and more realistic theoretical and modeling approaches to study naturally occurring genetic variation.
Collapse
|
42
|
Good BH, Walczak AM, Neher RA, Desai MM. Genetic diversity in the interference selection limit. PLoS Genet 2014; 10:e1004222. [PMID: 24675740 PMCID: PMC3967937 DOI: 10.1371/journal.pgen.1004222] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/22/2014] [Indexed: 01/23/2023] Open
Abstract
Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a "linkage block"). We exploit this insensitivity in a new "coarse-grained" coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability.
Collapse
Affiliation(s)
- Benjamin H. Good
- Departments of Organismic and Evolutionary Biology and of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael M. Desai
- Departments of Organismic and Evolutionary Biology and of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
43
|
Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol Biol Evol 2014; 31:1010-28. [PMID: 24489114 PMCID: PMC3969569 DOI: 10.1093/molbev/msu056] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill–Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect.
Collapse
Affiliation(s)
- José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
44
|
Larracuente AM, Clark AG. Recent selection on the Y-to-dot translocation in Drosophila pseudoobscura. Mol Biol Evol 2014; 31:846-56. [PMID: 24390701 DOI: 10.1093/molbev/msu002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Drosophila pseudoobscura dot chromosome acquired genes from the ancestral Drosophila Y chromosome in a Y-to-dot translocation event that occurred between 12.7 and 20.8 Ma. The formerly Y-linked genes mostly retained their testis-specific expression but shrank drastically in size, mostly through intron reduction, since becoming part of the dot chromosome in this species. We investigated the impact of this translocation on the evolution of the both the Y-to-dot translocated region and the original segments of the dot chromosome in D. pseudoobscura. Our survey of polymorphism and divergence across the chromosome reveals a reduction in variation, a deletion polymorphism segregating at high frequency, and a shift in the frequency spectra, all consistent with a history of recent selective sweeps in the Y-to-dot translocated region but not on the rest of the dot chromosome. We do find evidence for recombination primarily as gene conversion on the dot chromosome; however, predicted recombination events are restricted to the part of the dot chromosome outside the translocation. It therefore appears that recombination has resulted in a degree of decoupling between the ancestral Y region and the conserved region of the dot chromosome.
Collapse
|
45
|
Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:211-22. [PMID: 23869625 DOI: 10.1111/tpj.12291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 05/23/2023]
Abstract
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution.
Collapse
Affiliation(s)
- Meixia Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Department of Agronomy, Purdue University, West Lafayette, 47907, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fonseca NA, Morales-Hojas R, Reis M, Rocha H, Vieira CP, Nolte V, Schlötterer C, Vieira J. Drosophila americana as a model species for comparative studies on the molecular basis of phenotypic variation. Genome Biol Evol 2013; 5:661-79. [PMID: 23493635 PMCID: PMC3641629 DOI: 10.1093/gbe/evt037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the molecular basis of within and between species phenotypic variation is one of the main goals of Biology. In Drosophila, most of the work regarding this issue has been performed in D. melanogaster, but other distantly related species must also be studied to verify the generality of the findings obtained for this species. Here, we make the case for D. americana, a species of the virilis group of Drosophila that has been diverging from the model species, D. melanogaster, for approximately 40 Myr. To determine the suitability of this species for such studies, polymorphism and recombination estimates are presented for D. americana based on the largest nucleotide sequence polymorphism data set so far analyzed (more than 100 data sets) for this species. The polymorphism estimates are also compared with those obtained from the comparison of the genome assembly of two D. americana strains (H5 and W11) here reported. As an example of the general utility of these resources, we perform a preliminary study on the molecular basis of lifespan differences in D. americana. First, we show that there are lifespan differences between D. americana populations from different regions of the distribution range. Then, we perform five F2 association experiments using markers for 21 candidate genes previously identified in D. melanogaster. Significant associations are found between polymorphism at two genes (hep and Lim3) and lifespan. For the F2 association study involving the two sequenced strains (H5 and W11), we identify amino acid differences at Lim3 and Hep that could be responsible for the observed changes in lifespan. For both genes, no large gene expression differences were observed between the two strains.
Collapse
Affiliation(s)
- Nuno A Fonseca
- EMBL - European Bioinformatics Institute, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pease JB, Hahn MW. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution 2013; 67:2376-84. [PMID: 23888858 DOI: 10.1111/evo.12118] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne ), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low-recombination regions of the genome, as well as sex chromosomes and nonrecombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the Drosophila simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low-recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole-genome phylogeny appears to be an unresolvable polytomy.
Collapse
Affiliation(s)
- James B Pease
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
48
|
Choi SS, Hannenhalli S. Three independent determinants of protein evolutionary rate. J Mol Evol 2013; 76:98-111. [PMID: 23400388 DOI: 10.1007/s00239-013-9543-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/16/2013] [Indexed: 12/15/2022]
Abstract
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein-protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors-functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.
Collapse
Affiliation(s)
- Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, South Korea.
| | | |
Collapse
|
49
|
Mugal CF, Nabholz B, Ellegren H. Genome-wide analysis in chicken reveals that local levels of genetic diversity are mainly governed by the rate of recombination. BMC Genomics 2013; 14:86. [PMID: 23394684 PMCID: PMC3600008 DOI: 10.1186/1471-2164-14-86] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 02/04/2013] [Indexed: 12/31/2022] Open
Abstract
Background Polymorphism is key to the evolutionary potential of populations. Understanding which factors shape levels of genetic diversity within genomes forms a central question in evolutionary genomics and is of importance for the possibility to infer episodes of adaptive evolution from signs of reduced diversity. There is an on-going debate on the relative role of mutation and selection in governing diversity levels. This question is also related to the role of recombination because recombination is expected to indirectly affect polymorphism via the efficacy of selection. Moreover, recombination might itself be mutagenic and thereby assert a direct effect on diversity levels. Results We used whole-genome re-sequencing data from domestic chicken (broiler and layer breeds) and its wild ancestor (the red jungle fowl) to study the relationship between genetic diversity and several genomic parameters. We found that recombination rate had the largest effect on local levels of nucleotide diversity. The fact that divergence (a proxy for mutation rate) and recombination rate were negatively correlated argues against a mutagenic role of recombination. Furthermore, divergence had limited influence on polymorphism. Conclusions Overall, our results are consistent with a selection model, in which regions within a short distance from loci under selection show reduced polymorphism levels. This conclusion lends further support from the observations of strong correlations between intergenic levels of diversity and diversity at synonymous as well as non-synonymous sites. Our results also demonstrate differences between the two domestic breeds and red jungle fowl, where the domestic breeds show a stronger relationship between intergenic diversity levels and diversity at synonymous and non-synonymous sites. This finding, together with overall lower diversity levels in domesticates compared to red jungle fowl, seem attributable to artificial selection during domestication.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, SE-752 36, Uppsala, Sweden
| | | | | |
Collapse
|
50
|
|