1
|
Tsai FY, Lin CY, Su YH, Yu JK, Kuo DH. Evolutionary History of Bilaterian FoxP Genes: Complex Ancestral Functions and Evolutionary Changes Spanning 2R-WGD in the Vertebrate Lineage. Mol Biol Evol 2025; 42:msaf072. [PMID: 40155202 PMCID: PMC11998571 DOI: 10.1093/molbev/msaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Human and fly FoxP homologs are well-known for their roles in the development of cognitive abilities. These findings have led to the hypothesis that the ancestral function of FoxP was in the development of cognitive neural circuits. However, complex brains in human and fly evolved independently, and the similar cognitive function of FoxP in human and fly may thus be interpreted as a result of convergent evolution. In addition, the 4 gnathostome FoxP paralogs also possess diverse developmental functions unrelated to neurodevelopment, which might have been overlooked in comparative studies of invertebrate FoxP homologs. To resolve these uncertainties, we set out to improve the phylogenetic reconstruction of vertebrate FoxP homologs and broaden the taxonomic sampling of gene expression profiling to include an invertebrate chordate, ambulacrarian deuterostomes, and a spiralian protostome. Using phylogenetic analysis combined with synteny mapping, we elaborated the hypothesis that the 4 FoxP paralogs arose through the 2R-WGD events shared by all gnathostome species. Based on this evolutionary scenario, we examined the FoxP expression pattern in amphioxus development and concluded that FoxP already had complex developmental functions across all germ layers in the chordate ancestor. Moreover, in sea urchin, hemichordate, and catenulid flatworm, FoxP was expressed in the gut prominently, in addition to the anterior neurogenic ectoderm. This surprising similarity shared among these distantly related species implies that FoxP may have a significant function in gut development in addition to the neural development function in the last common ancestor of bilaterians.
Collapse
Affiliation(s)
- Fu-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Pérez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, Gómez-Skarmeta JL, Yu JK, Su YH, Tena JJ. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat Ecol Evol 2024; 8:2213-2227. [PMID: 39424956 PMCID: PMC11618098 DOI: 10.1038/s41559-024-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
3
|
Hehmeyer J, Plessier F, Marlow H. Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Annu Rev Cell Dev Biol 2024; 40:407-425. [PMID: 39052757 DOI: 10.1146/annurev-cellbio-111822-124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Integrative Biology Program, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Flora Plessier
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
4
|
Andrade López JM, Pani AM, Wu M, Gerhart J, Lowe CJ. Molecular characterization of nervous system organization in the hemichordate acorn worm Saccoglossus kowalevskii. PLoS Biol 2023; 21:e3002242. [PMID: 37725784 PMCID: PMC10508912 DOI: 10.1371/journal.pbio.3002242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023] Open
Abstract
Hemichordates are an important group for investigating the evolution of bilaterian nervous systems. As the closest chordate outgroup with a bilaterally symmetric adult body plan, hemichordates are particularly informative for exploring the origins of chordates. Despite the importance of hemichordate neuroanatomy for testing hypotheses on deuterostome and chordate evolution, adult hemichordate nervous systems have not been comprehensively described using molecular techniques, and classic histological descriptions disagree on basic aspects of nervous system organization. A molecular description of hemichordate nervous system organization is important for both anatomical comparisons across phyla and for attempts to understand how conserved gene regulatory programs for ectodermal patterning relate to morphological evolution in deep time. Here, we describe the basic organization of the adult hemichordate Saccoglossus kowalevskii nervous system using immunofluorescence, in situ hybridization, and transgenic reporters to visualize neurons, neuropil, and key neuronal cell types. Consistent with previous descriptions, we found the S. kowalevskii nervous system consists of a pervasive nerve plexus concentrated in the anterior, along with nerve cords on both the dorsal and ventral side. Neuronal cell types exhibited clear anteroposterior and dorsoventral regionalization in multiple areas of the body. We observed spatially demarcated expression patterns for many genes involved in synthesis or transport of neurotransmitters and neuropeptides but did not observe clear distinctions between putatively centralized and decentralized portions of the nervous system. The plexus shows regionalized structure and is consistent with the proboscis base as a major site for information processing rather than the dorsal nerve cord. In the trunk, there is a clear division of cell types between the dorsal and ventral cords, suggesting differences in function. The absence of neural processes crossing the basement membrane into muscle and extensive axonal varicosities suggest that volume transmission may play an important role in neural function. These data now facilitate more informed neural comparisons between hemichordates and other groups, contributing to broader debates on the origins and evolution of bilaterian nervous systems.
Collapse
Affiliation(s)
- José M. Andrade López
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ariel M. Pani
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Mike Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, Unites States of America
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley, California, Unites States of America
| | - Christopher J. Lowe
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
5
|
Abstract
Hemichordates are close relatives of chordates. Their nervous system patterning is chordate-like, but their neural architecture remains unexplored. A new study in PLOS Biology reveals an unexpected neuroanatomical complexity in these animals, also informing chordate origins.
Collapse
Affiliation(s)
- Alexandra Kerbl
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gáspár Jékely
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Abstract
The central nervous system (CNS) of chordates, including humans, develops as a hollow tube with ciliated walls containing cerebrospinal fluid. However, most of the animals inhabiting our planet do not use this design and rather build their centralized brains from non-epithelialized condensations of neurons called ganglia, with no traces of epithelialized tubes or liquid-containing cavities. The evolutionary origin of tube-type CNSs stays enigmatic, especially as non-epithelialized ganglionic-type nervous systems dominate the animal kingdom. Here, I discuss recent findings relevant to understanding the potential homologies and scenarios of the origin, histology and anatomy of the chordate neural tube. The nerve cords of other deuterostomes might relate to the chordate neural tube at histological, developmental and cellular levels, including the presence of radial glia, layered stratification, retained epithelial features, morphogenesis via folding and formation of a lumen filled with liquid. Recent findings inspire a new view of hypothetical evolutionary scenarios explaining the tubular epithelialized structure of the CNS. One such idea suggests that early neural tubes were key for improved directional olfaction, which was facilitated by the liquid-containing internal cavity. The later separation of the olfactory portion of the tube led to the formation of the independent olfactory and posterior tubular CNS systems in vertebrates. According to an alternative hypothesis, the thick basiepithelial nerve cords could provide deuterostome ancestors with additional biomechanical support, which later improved by turning the basiepithelial cord into a tube filled with liquid - a hydraulic skeleton.
Collapse
Affiliation(s)
- Igor Adameyko
- Center for Brain Research, Medical University of Vienna, Vienna, 1090, Austria; Department of Physiology and Pharmacology, Karolinska Institutet, Solna, 17165, Sweden.
| |
Collapse
|
7
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
8
|
Napoli FR, Daly CM, Neal S, McCulloch KJ, Zaloga AR, Liu A, Koenig KM. Cephalopod retinal development shows vertebrate-like mechanisms of neurogenesis. Curr Biol 2022; 32:5045-5056.e3. [PMID: 36356573 PMCID: PMC9729453 DOI: 10.1016/j.cub.2022.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development. Changes in the process of development during evolution that result in a diversity of neural cell types and variable nervous system size are not well understood. Here, we have pioneered live-imaging techniques and performed functional interrogation to show that the squid Doryteuthis pealeii utilizes mechanisms during retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo nuclear migration until they exit the cell cycle. We identify retinal organization corresponding to progenitor, post-mitotic, and differentiated cells. Finally, we find that Notch signaling may regulate both retinal cell cycle and cell fate. Given the convergent evolution of elaborate visual systems in cephalopods and vertebrates, these results reveal common mechanisms that underlie the growth of highly proliferative neurogenic primordia. This work highlights mechanisms that may alter ontogenetic allometry and contribute to the evolution of complexity and growth in animal nervous systems.
Collapse
Affiliation(s)
- Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alexandra R Zaloga
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Alicia Liu
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Arendt D, Urzainqui IQ, Vergara HM. The conserved core of the nereid brain: Circular CNS, apical nervous system and lhx6-arx-dlx neurons. Curr Opin Neurobiol 2021; 71:178-187. [PMID: 34861534 DOI: 10.1016/j.conb.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
When bilaterian animals first emerged, an enhanced perception of the Precambrian environment was key to their stunning success. This occurred through the acquisition of an anterior brain, as found in most extant bilaterians. What were the core circuits of the first brain, and how do they relate to today's diversity? With two landmark resources - the full connectome and a multimodal cellular atlas combining gene expression and ultrastructure - the young worm of the marine annelid Platynereis dumerilii takes center stage in comparative bilaterian neuroanatomy. The new data suggest a composite structure of the ancestral bilaterian brain, with the anterior end of a circular CNS fused to a sensory-neurosecretory apical system, and with lhx6-arx-dlx chemosensory circuits giving rise to associative centers in the descending bilaterian lineages.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany.
| | - Idoia Quintana Urzainqui
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | | |
Collapse
|
10
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
11
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
12
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
13
|
Formery L, Orange F, Formery A, Yaguchi S, Lowe CJ, Schubert M, Croce JC. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol 2020; 529:1135-1156. [PMID: 32841380 DOI: 10.1002/cne.25012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The echinoderms are a phylum of marine deuterostomes characterized by the pentaradial (five fold) symmetry of their adult bodies. Due to this unusual body plan, adult echinoderms have long been excluded from comparative analyses aimed at understanding the origin and evolution of deuterostome nervous systems. Here, we investigated the neural anatomy of early juveniles of representatives of three of the five echinoderm classes: the echinoid Paracentrotus lividus, the asteroid Patiria miniata, and the holothuroid Parastichopus parvimensis. Using whole mount immunohistochemistry and confocal microscopy, we found that the nervous system of echinoid early juveniles is composed of three main structures: a basiepidermal nerve plexus, five radial nerve cords connected by a circumoral nerve ring, and peripheral nerves innervating the appendages. Our whole mount preparations further allowed us to obtain thorough descriptions of these structures and of several innervation patterns, in particular at the level of the appendages. Detailed comparisons of the echinoid juvenile nervous system with those of asteroid and holothuroid juveniles moreover supported a general conservation of the main neural structures in all three species, including at the level of the appendages. Our results support the previously proposed hypotheses for the existence of two neural units in echinoderms: one consisting of the basiepidermal nerve plexus to process sensory stimuli locally and one composed of the radial nerve cords and the peripheral nerves constituting a centralized control system. This study provides the basis for more in-depth comparisons of the echinoderm adult nervous system with those of other animals, in particular hemichordates and chordates, to address the long-standing controversies about deuterostome nervous system evolution.
Collapse
Affiliation(s)
- Laurent Formery
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, Nice, France
| | | | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
14
|
Ortega A, Olivares-Bañuelos TN. Neurons and Glia Cells in Marine Invertebrates: An Update. Front Neurosci 2020; 14:121. [PMID: 32132895 PMCID: PMC7040184 DOI: 10.3389/fnins.2020.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The nervous system (NS) of invertebrates and vertebrates is composed of two main types of cells: neurons and glia. In both types of organisms, nerve cells have similarities in biochemistry and functionality. The neurons are in charge of the synapse, and the glial cells are in charge of important functions of neuronal and homeostatic modulation. Knowing the mechanisms by which NS cells work is important in the biomedical area for the diagnosis and treatment of neurological disorders. For this reason, cellular and animal models to study the properties and characteristics of the NS are always sought. Marine invertebrates are strategic study models for the biological sciences. The sea slug Aplysia californica and the squid Loligo pealei are two examples of marine key organisms in the neurosciences field. The principal characteristic of marine invertebrates is that they have a simpler NS that consists of few and larger cells, which are well organized and have accessible structures. As well, the close phylogenetic relationship between Chordata and Echinodermata constitutes an additional advantage to use these organisms as a model for the functionality of neuronal cells and their cellular plasticity. Currently, there is great interest in analyzing the signaling processes between neurons and glial cells, both in vertebrates and in invertebrates. However, only few types of glial cells of invertebrates, mostly insects, have been studied, and it is important to consider marine organisms' research. For this reason, the objective of the review is to present an update of the most relevant information that exists around the physiology of marine invertebrate neuronal and glial cells.
Collapse
Affiliation(s)
- Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
15
|
Carrillo-Baltodano AM, Boyle MJ, Rice ME, Meyer NP. Developmental architecture of the nervous system in Themiste lageniformis (Sipuncula): New evidence from confocal laser scanning microscopy and gene expression. J Morphol 2019; 280:1628-1650. [PMID: 31487090 DOI: 10.1002/jmor.21054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
Abstract
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.
Collapse
Affiliation(s)
| | - Michael J Boyle
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Mary E Rice
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Néva P Meyer
- Biology Department, Clark University, Worcester, Massachusetts
| |
Collapse
|
16
|
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A 2019; 116:12925-12932. [PMID: 31189599 DOI: 10.1073/pnas.1901919116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.
Collapse
|
17
|
Formery L, Schubert M, Croce JC. Ambulacrarians and the Ancestry of Deuterostome Nervous Systems. Results Probl Cell Differ 2019; 68:31-59. [PMID: 31598852 DOI: 10.1007/978-3-030-23459-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary origin and history of metazoan nervous systems has been at the heart of numerous scientific debates for well over a century. This has been a particularly difficult issue to resolve within the deuterostomes, chiefly due to the distinct neural architectures observed within this group of animals. Indeed, deuterosomes feature central nervous systems, apical organs, nerve cords, and basiepidermal nerve nets. Comparative analyses investigating the anatomy and molecular composition of deuterostome nervous systems have nonetheless succeeded in identifying a number of shared and derived features. These analyses have led to the elaboration of diverse theories about the origin and evolutionary history of deuterostome nervous systems. Here, we provide an overview of these distinct theories. Further, we argue that deciphering the adult nervous systems of representatives of all deuterostome phyla, including echinoderms, which have long been neglected in this type of surveys, will ultimately provide answers to the questions concerning the ancestry and evolution of deuterostome nervous systems.
Collapse
Affiliation(s)
- Laurent Formery
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France.
| |
Collapse
|
18
|
Yoshimura K, Morino Y, Wada H. Regeneration of the acorn worm pygochord with the implication for its convergent evolution with the notochord. Dev Growth Differ 2018; 61:158-165. [PMID: 30561008 DOI: 10.1111/dgd.12581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The origin of the notochord is a central issue in chordate evolution. This study examined the development of the acorn worm pygochord, a putative homologue of the notochord. Because the pygochord differentiates only after metamorphosis, the developmental was followed process by inducing regeneration after artificial amputation in Ptychodera flava. It was found that although the regeneration of the posterior part of the body did not proceed via formation of an obvious regeneration bud, pygochord regeneration was observed within a few weeks, possibly via trans-differentiation of endoderm cells. The expression of the fibrillary collagen gene (Fcol) and elav in the pygochord during regeneration was detected. This indicates that pygochord cells are not part of gut epithelial cells, but that they differentiated as a distinct cell type. Our gene expression analyses do not provide supporting evidence for the homology between the pygochord and notochord, but rather favored the convergent evolution between them.
Collapse
Affiliation(s)
- Koji Yoshimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
20
|
Abstract
Every cell within living organisms actively maintains an intracellular Na+ concentration that is 10-12 times lower than the extracellular concentration. The cells then utilize this transmembrane Na+ concentration gradient as a driving force to produce electrical signals, sometimes in the form of action potentials. The protein family comprising voltage-gated sodium channels (NaVs) is essential for such signaling and enables cells to change their status in a regenerative manner and to rapidly communicate with one another. NaVs were first predicted in squid and were later identified through molecular biology in the electric eel. Since then, these proteins have been discovered in organisms ranging from bacteria to humans. Recent research has succeeded in decoding the amino acid sequences of a wide variety of NaV family members, as well as the three-dimensional structures of some. These studies and others have uncovered several of the major steps in the functional and structural transition of NaV proteins that has occurred along the course of the evolutionary history of organisms. Here we present an overview of the molecular evolutionary innovations that established present-day NaV α subunits and discuss their contribution to the evolutionary changes in animal bodies.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Louryan S, Vanmuylder N. [The dorsoventral inversion: An attempt of synthesis]. Morphologie 2017; 102:122-131. [PMID: 28964656 DOI: 10.1016/j.morpho.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/20/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022]
Abstract
The invertebrates, with known exception of echinoderms, are hyponeurian and protostomian. By contrast, echinoderms, chordates and vertebrate are epineurian and deuterostomian. Convinced of the uniqueness origin of all species, Etienne Geoffroy Saint Hilaire (1772-1844), had postulated a complete inversion of body plan to explain this difference. He had to face up to the hostility of the fixist Georges Cuvier (1763-1832). Much later, famous embryologists such as Maurice Caullery still believed that this idea was erroneous. However, the progress of comparative embryology and of developmental biology gradually contributed to validate this idea. Based upon ancient and recent literature review, and re-examination of arthropods (Acanthoscelides obtectus Say), amphibians (Discoglossus), echinoderms (sea urchin) and mammals (rodents) embryos, we can raise up difference and common points of the gastrulation processes. The dorsoventral gradient is ensured by the couple Dpp (dorsal in arthropods)/SOG/chordin (ventral in arthropods), which appears as "inverted" in epineurians. Blastopore invagination occurs in arthopods in the ventral region, opposite to the vitellus mass (initially diffuse, then predominant on the dorsal side), whereas it occurs at the vegetative side in other hyponeurians and epineurians. It has been accepted that the BMP inhibits oral development in protostomian, whereas it activates it in Chordates. Therefore we assume, as Lowe does, that the oral cavity of deuterostomians might constitute a new structure related to the branchial system. The comparative analysis of the blastopore' orientation, the sperm penetration site, and the polarity axes of various embryos species allows to follow the different modifications and to hypothesize their relative chronology during evolution.
Collapse
Affiliation(s)
- S Louryan
- Laboratoire d'anatomie, biomécanique et organogenèse, université Libre de Bruxelles (ULB), faculté de médecine, route de Lennik, 808, B1070 Bruxelles, Belgique.
| | - N Vanmuylder
- Laboratoire d'anatomie, biomécanique et organogenèse, université Libre de Bruxelles (ULB), faculté de médecine, route de Lennik, 808, B1070 Bruxelles, Belgique
| |
Collapse
|
22
|
Temereva EN. Ground plan of the larval nervous system in phoronids: Evidence from larvae of viviparous phoronid. Evol Dev 2017; 19:171-189. [DOI: 10.1111/ede.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena N. Temereva
- Department of Invertebrate Zoology; Biological Faculty; Moscow State University; Moscow Russia
| |
Collapse
|
23
|
Kaul-Strehlow S, Urata M, Praher D, Wanninger A. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Sci Rep 2017; 7:7003. [PMID: 28765531 PMCID: PMC5539250 DOI: 10.1038/s41598-017-07052-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/23/2017] [Indexed: 11/09/2022] Open
Abstract
A tubular nervous system is present in the deuterostome groups Chordata (cephalochordates, tunicates, vertebrates) and in the non-chordate Enteropneusta. However, the worm-shaped enteropneusts possess a less complex nervous system featuring only a short hollow neural tube, whereby homology to its chordate counterpart remains elusive. Since the majority of data on enteropneusts stem from the harrimaniid Saccoglossus kowalevskii, putative interspecific variations remain undetected resulting in an unreliable ground pattern that impedes homology assessments. In order to complement the missing data from another enteropneust family, we investigated expression of key neuronal patterning genes in the ptychoderid Balanoglossus misakiensis. The collar cord of B. misakiensis shows anterior Six3/6 and posterior Otx + Engrailed expression, in a region corresponding to the chordate brain. Neuronal Nk2.1/Nk2.2 expression is absent. Interestingly, we found median Dlx and lateral Pax6 expression domains, i.e., a condition that is reversed compared to chordates. Comparative analyses reveal that adult nervous system patterning is highly conserved among the enteropneust families Harrimaniidae, Spengelidae and Ptychoderidae. BmiDlx and BmiPax6 have no corresponding expression domains in the chordate brain, which may be indicative of independent acquisition of a tubular nervous system in Enteropneusta and Chordata.
Collapse
Affiliation(s)
- Sabrina Kaul-Strehlow
- Department for Integrative Zoology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria. .,Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori, 039-3501, Japan. .,Department for Molecular Evolution and Development, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| | - Makoto Urata
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa, 927-0553, Japan
| | - Daniela Praher
- Department for Molecular Evolution and Development, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department for Integrative Zoology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| |
Collapse
|
24
|
Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Abstract
Phylum Hemichordata, composed of worm-like Enteropneusta and colonial Pterobranchia, has been reported to only contain about 100 species. However, recent studies of hemichordate phylogeny and taxonomy suggest the species number has been largely underestimated. One issue is that species must be described by experts, and historically few taxonomists have studied this group of marine invertebrates. Despite this previous lack of coverage, interest in hemichordates has piqued in the past couple of decades, as they are critical to understanding the evolution of chordates–as acorn worms likely resemble the deuterostome ancestor more closely than any other extant animal. This review provides an overview of our current knowledge of hemichordates, focusing specifically on their global biodiversity, geographic distribution, and taxonomy. Using information available in the World Register of Marine Species and published literature, we assembled a list of 130 described, extant species. The majority (83%) of these species are enteropneusts, and more taxonomic descriptions are forthcoming. Ptychoderidae contained the greatest number of species (41 species), closely followed by Harrimaniidae (40 species), of the recognized hemichordate families. Hemichordates are found throughout the world’s oceans, with the highest reported numbers by regions with marine labs and diligent taxonomic efforts (e.g. North Pacific and North Atlantic). Pterobranchs are abundant in Antarctica, but have also been found at lower latitudes. We consider this a baseline report and expect new species of Hemichordata will continue to be discovered and described as new marine habitats are characterized and explored.
Collapse
Affiliation(s)
- Michael G. Tassia
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Johanna T. Cannon
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, SE-104 05, Sweden
| | - Charlotte E. Konikoff
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Noa Shenkar
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Zoology, George S. Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Kenneth M. Halanych
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Billie J. Swalla
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Holland LZ. The origin and evolution of chordate nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0048. [PMID: 26554041 DOI: 10.1098/rstb.2015.0048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| |
Collapse
|
28
|
Hemichordate models. Curr Opin Genet Dev 2016; 39:71-78. [DOI: 10.1016/j.gde.2016.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 05/30/2016] [Indexed: 11/23/2022]
|
29
|
Holland ND. Nervous systems and scenarios for the invertebrate-to-vertebrate transition. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150047. [PMID: 26598728 PMCID: PMC4685584 DOI: 10.1098/rstb.2015.0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 01/09/2023] Open
Abstract
Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0202, USA
| |
Collapse
|
30
|
Hejnol A, Lowe CJ. Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150045. [PMID: 26554039 PMCID: PMC4650123 DOI: 10.1098/rstb.2015.0045] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
Molecular biology has provided a rich dataset to develop hypotheses of nervous system evolution. The startling patterning similarities between distantly related animals during the development of their central nervous system (CNS) have resulted in the hypothesis that a CNS with a single centralized medullary cord and a partitioned brain is homologous across bilaterians. However, the ability to precisely reconstruct ancestral neural architectures from molecular genetic information requires that these gene networks specifically map with particular neural anatomies. A growing body of literature representing the development of a wider range of metazoan neural architectures demonstrates that patterning gene network complexity is maintained in animals with more modest levels of neural complexity. Furthermore, a robust phylogenetic framework that provides the basis for testing the congruence of these homology hypotheses has been lacking since the advent of the field of 'evo-devo'. Recent progress in molecular phylogenetics is refining the necessary framework to test previous homology statements that span large evolutionary distances. In this review, we describe recent advances in animal phylogeny and exemplify for two neural characters-the partitioned brain of arthropods and the ventral centralized nerve cords of annelids-a test for congruence using this framework. The sequential sister taxa at the base of Ecdysozoa and Spiralia comprise small, interstitial groups. This topology is not consistent with the hypothesis of homology of tripartitioned brain of arthropods and vertebrates as well as the ventral arthropod and rope-like ladder nervous system of annelids. There can be exquisite conservation of gene regulatory networks between distantly related groups with contrasting levels of nervous system centralization and complexity. Consequently, the utility of molecular characters to reconstruct ancestral neural organization in deep time is limited.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5008, Norway
| | - Christopher J Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950, USA
| |
Collapse
|
31
|
Lin CY, Tung CH, Yu JK, Su YH. Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 326:47-60. [PMID: 26663879 DOI: 10.1002/jez.b.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023]
Abstract
The indirect-developing enteropneust acorn worm Ptychodera flava has been used as a hemichordate model system for studying the developmental evolution of deuterostome body plans and the origins of chordate characteristics. However, research progress has been hindered by the limited accessibility of its embryonic materials and metamorphosing larvae. In this study, we identified an abundant population of P. flava in Penghu, Taiwan, and examined the feasibility of using this animal for developmental studies. Through histological examination, we established that the reproductive season of this population is between September and December, with a peak breeding period in October and November. In addition, we have developed new procedures that can induce P. flava spawning at any time of the day during the breeding season, with a higher successful rate than that achieved using a previously published method. Moreover, the culturing system we developed enables rearing of P. flava larvae through various planktonic stages and eventual metamorphosis into benthic juveniles, all under laboratory conditions. We anticipate that the animal resources and new technical procedures reported here will further facilitate the use of P. flava as a model organism for evolutionary and developmental biology research.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Department of Aquatic Biosciences, National Chiayi University, Chiayi, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan.,Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
32
|
Nielsen C. Evolution of deuterostomy - and origin of the chordates. Biol Rev Camb Philos Soc 2015; 92:316-325. [PMID: 26486096 DOI: 10.1111/brv.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022]
Abstract
The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the 'new' mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the 'ventral' side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| |
Collapse
|
33
|
Abstract
A notochord is characteristic of developing chordates (which comprise amphioxus, tunicates and vertebrates), and, more arguably, is also found in some other animals. Although notochords have been well reviewed from a developmental genetic point of view, there has heretofore been no adequate survey of the dozen or so scenarios accounting for their evolutionary origin. Advances in molecular phylogenetics and developmental genetics have, on the one hand, failed to support many of these ideas (although, it is not impossible that some of these rejects may yet, at least in part, return to favor). On the other hand, current molecular approaches have actually stimulated the revival of two of the old proposals: first that the notochord is a novelty that arose in the chordates, and second that it is derived from a homologous structure, the axochord, that was present in annelid-like ancestors. In the long term, choosing whether the notochord is a chordate novelty or a legacy from an ancient annelid (or perhaps an evolutionary derivative from precursors yet to be proposed) will probably require descriptions of gene regulatory networks involved in the development of notochords and notochord-like structures in a wide spectrum of animals. For now, one-way forward will be studies of all aspects of the biology of enteropneust hemichordates, a group widely thought to be the key to understanding the evolutionary origin of the chordates.
Collapse
Affiliation(s)
- Giovanni Annona
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 USA
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
34
|
Shigeno S, Parnaik R, Albertin CB, Ragsdale CW. Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis. ZOOLOGICAL LETTERS 2015; 1:26. [PMID: 26605071 PMCID: PMC4657373 DOI: 10.1186/s40851-015-0026-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/22/2015] [Indexed: 06/03/2023]
Abstract
INTRODUCTION From the large-brained cephalopods to the acephalic bivalves, molluscs show a vast range of nervous system centralization patterns. Despite this diversity, molluscan nervous systems, broadly considered, are organized either as medullary cords, as seen in chitons, or as ganglia, which are typical of gastropods and bivalves. The cephalopod brain is exceptional not just in terms of its size; its relationship to a molluscan cordal or ganglionic plan has not been resolved from the study of its compacted adult structure. One approach to clarifying this puzzle is to investigate the patterns of early cephalopod brain neurogenesis, where molecular markers for cephalopod neural development may be informative. RESULTS We report here on early brain pattern formation in the California two-spot octopus, Octopus bimaculoides. Employing gene expression analysis with the pan-bilaterian neuronal marker ELAV and the atonal-related neuronal differentiation genes NEUROGENIN and NEUROD, as well as immunostaining using a Distalless-like homeoprotein antibody, we found that the octopus central brain forms from concentric cords rather than bilaterally distributed pairs of ganglia. CONCLUSION We conclude that the cephalopod brain, despite its great size and elaborate specializations, retains in its development the hypothesized ancestral molluscan nervous system plan of medullary cords, as described for chitons and other aculiferan molluscs.
Collapse
Affiliation(s)
- Shuichi Shigeno
- />Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 237-0061 Japan
| | - Rahul Parnaik
- />Department of Neurobiology, The University of Chicago, 947 E 58th Street, Chicago, IL 60637 USA
| | - Caroline B. Albertin
- />Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637 USA
| | - Clifton W. Ragsdale
- />Department of Neurobiology, The University of Chicago, 947 E 58th Street, Chicago, IL 60637 USA
- />Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637 USA
| |
Collapse
|
35
|
Meyer NP, Carrillo-Baltodano A, Moore RE, Seaver EC. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta. Front Zool 2015; 12:15. [PMID: 26167198 PMCID: PMC4498530 DOI: 10.1186/s12983-015-0108-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. Results We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25–53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95–8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Conclusions Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development. Electronic supplementary material The online version of this article (doi:10.1186/s12983-015-0108-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | | | - Richard E Moore
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-west Road, Honolulu, HI 96822 USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080 USA
| |
Collapse
|
36
|
The deuterostome context of chordate origins. Nature 2015; 520:456-65. [PMID: 25903627 DOI: 10.1038/nature14434] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.
Collapse
|
37
|
Scenarios for the making of vertebrates. Nature 2015; 520:450-5. [PMID: 25903626 DOI: 10.1038/nature14433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/24/2014] [Indexed: 01/17/2023]
Abstract
Over the past 200 years, almost every invertebrate phylum has been proposed as a starting point for evolving vertebrates. Most of these scenarios are outdated, but several are still seriously considered. The short-range transition from ancestral invertebrate chordates (similar to amphioxus and tunicates) to vertebrates is well accepted. However, longer-range transitions leading up to the invertebrate chordates themselves are more controversial. Opinion is divided between the annelid and the enteropneust scenarios, predicting, respectively, a complex or a simple ancestor for bilaterian animals. Deciding between these ideas will be facilitated by further comparative studies of multicellular animals, including enigmatic taxa such as xenacoelomorphs.
Collapse
|
38
|
Abstract
Evolutionary modifications in nervous systems enabled organisms to adapt to their specific environments and underlie the remarkable diversity of behaviors expressed by animals. Resolving the pathways that shaped and modified neural circuits during evolution remains a significant challenge. Comparative studies have revealed a surprising conservation in the intrinsic signaling systems involved in early patterning of bilaterian nervous systems but also raise the question of how neural circuit compositions and architectures evolved within specific animal lineages. In this review, we discuss the mechanisms that contributed to the emergence and diversity of animal nervous systems, focusing on the circuits governing vertebrate locomotion.
Collapse
Affiliation(s)
- Heekyung Jung
- Howard Hughes Medical Institute (HHMI), NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jeremy S Dasen
- Howard Hughes Medical Institute (HHMI), NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
39
|
Abstract
The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
40
|
Abstract
The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence of 'deuterostomian' blastopore fates both in an annelid and in a mollusk, which are both placed in families with the 'normal' spiralian gastrulation type, and in the chaetognaths demonstrates that the chordate type of gastrulation could easily have evolved from the spiralian type. This indicates that the latest common ancestor of the deuterostomes was very similar to the latest common pelago-benthic ancestor of the protostomes as described by the trochaea theory, and that the neural tube of the chordates is morphologically ventral.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
Understanding the evolution of deuterostome nervous systems has been complicated by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.
Collapse
Affiliation(s)
- Linda Z. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| |
Collapse
|
42
|
Kaul-Strehlow S, Urata M, Minokawa T, Stach T, Wanninger A. Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. ORG DIVERS EVOL 2015. [PMID: 26225120 PMCID: PMC4514687 DOI: 10.1007/s13127-015-0201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concerning the evolution of deuterostomes, enteropneusts (acorn worms) occupy a pivotal role as they share some characteristics with chordates (e.g., tunicates and vertebrates) but are also closely related to echinoderms (e.g., sea urchin). The nervous system in particular can be a highly informative organ system for evolutionary inferences, and advances in fluorescent microscopy have revealed overwhelming data sets on neurogenesis in various clades. However, immunocytochemical descriptions of neurogenesis of juvenile enteropneusts are particularly scarce, impeding the reconstruction of nervous system evolution in this group. We followed morphogenesis of the nervous system in two enteropneust species, one with direct (Saccoglossus kowalevskii) and the other with indirect development (Balanoglossus misakiensis), using an antibody against serotonin and electron microscopy. We found that all serotonin-like immunoreactive (LIR) neurons in both species are bipolar ciliary neurons that are intercalated between other epidermal cells. Unlike the tornaria larva of B. misakiensis, the embryonic nervous system of S. kowalevskii lacks serotonin-LIR neurons in the apical region as well as an opisthotroch neurite ring. Comparative analysis of both species shows that the projections of the serotonin-LIR somata initially form a basiepidermal plexus throughout the body that disappears within the trunk region soon after settlement before the concentrated dorsal and ventral neurite bundles emerge. Our data reveal a highly conserved mode of neurogenesis in enteropneusts that is independent of the developing mode and is inferred to be a common feature for Enteropneusta. Moreover, all detected serotonin-LIR neurons are presumably receptor cells, and the absence of serotonin-LIR interneurons from the enteropneust nervous system, which are otherwise common in various bilaterian central nervous systems, is interpreted as a loss that might have occurred already in the last common ancestor of Ambulacraria.
Collapse
Affiliation(s)
- Sabrina Kaul-Strehlow
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Makoto Urata
- Takehara Marine Science Station, Setouchi Field Science Center, Graduate School of Biosphere Science, Hiroshima University, 5-8-1 Minato-machi, Takehara, Hiroshima 725-0024 Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
| | - Thomas Stach
- Institute for Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
43
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
44
|
Satoh N, Tagawa K, Lowe CJ, Yu JK, Kawashima T, Takahashi H, Ogasawara M, Kirschner M, Hisata K, Su YH, Gerhart J. On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis 2014; 52:925-34. [PMID: 25303744 PMCID: PMC5673098 DOI: 10.1002/dvg.22831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/24/2023]
Abstract
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan
| | - Christopher J. Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Hiroki Takahashi
- Division of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Michio Ogasawara
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| |
Collapse
|
45
|
Šestak MS, Domazet-Lošo T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol Biol Evol 2014; 32:299-312. [PMID: 25415965 PMCID: PMC4298178 DOI: 10.1093/molbev/msu319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.
Collapse
Affiliation(s)
- Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
46
|
Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, Santos SR, Halanych KM. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol 2014; 24:2827-32. [PMID: 25454590 DOI: 10.1016/j.cub.2014.10.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/01/2023]
Abstract
Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g., the acorn worms Saccoglossus kowalevskii and Ptychodera flava and the sea urchin Strongylocentrotus purpuratus). To resolve long-standing phylogenetic issues within Ambulacraria, we sequenced transcriptomes for 14 hemichordates as well as 8 echinoderms and complemented these with existing data for a total of 33 ambulacrarian operational taxonomic units (OTUs). Examination of leaf stability values revealed rhabdopleurid pterobranchs and the enteropneust Stereobalanus canadensis were unstable in placement; therefore, analyses were also run without these taxa. Analyses of 185 genes resulted in reciprocal monophyly of Enteropneusta and Pterobranchia, placed the deep-sea family Torquaratoridae within Ptychoderidae, and confirmed the position of ophiuroid brittle stars as sister to asteroid sea stars (the Asterozoa hypothesis). These results are consistent with earlier perspectives concerning plesiomorphies of Ambulacraria, including pharyngeal gill slits, a single axocoel, and paired hydrocoels and somatocoels. The resolved ambulacrarian phylogeny will help clarify the early evolution of chordate characteristics and has implications for our understanding of major fossil groups, including graptolites and somasteroideans.
Collapse
Affiliation(s)
- Johanna T Cannon
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA; Department of Zoology, Naturhistoriska Riksmuseet, 104 05 Stockholm, Sweden; Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| | - Kevin M Kocot
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA; School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - Damien S Waits
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA
| | - David A Weese
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA; Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA
| | - Billie J Swalla
- Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| | - Scott R Santos
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA
| | - Kenneth M Halanych
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL 36849, USA; Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
47
|
Tagawa K, Arimoto A, Arimito A, Sasaki A, Izumi M, Fujita S, Humphreys T, Fujiyama A, Kagoshima H, Shin-I T, Kohara Y, Satoh N, Kawashima T. A cDNA resource for gene expression studies of a hemichordate, Ptychodera flava. Zoolog Sci 2014; 31:414-20. [PMID: 25001912 DOI: 10.2108/zs130262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent investigations into the evolution of deuterostomes and the origin of chordates have paid considerable attention to hemichordates (acorn worms), as hemichordates and echinoderms are the closest chordate relatives. The present study prepared cDNA libraries from Ptychodera flava, to study expression and function of genes involved in development of the hemichordate body plan. Expressed sequence tag (EST) analyses of nine cDNA libraries yielded 18,832 cloned genes expressed in eggs, 18,739 in blastulae, 18,539 in gastrulae, 18,811 in larvae, 18,978 in juveniles, 11,802 in adult proboscis, 17,259 in stomochord, 11,886 in gills, and 11,580 in liver, respectively. A set of 34,159 uni-gene clones of P. flava was obtained. This cDNA resource will be valuable for studying temporal and spatial expression of acorn worm genes during development.
Collapse
Affiliation(s)
- Kuni Tagawa
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hemichordate neurulation and the origin of the neural tube. Nat Commun 2014; 4:2713. [PMID: 24177053 DOI: 10.1038/ncomms3713] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/04/2013] [Indexed: 11/08/2022] Open
Abstract
The origin of the body plan of our own phylum, Chordata, is one of the most fascinating questions in evolutionary biology. Yet, after more than a century of debate, the evolutionary origins of the neural tube and notochord remain unclear. Here we examine the development of the collar nerve cord in the hemichordate Balanoglossus simodensis and find shared gene expression patterns between hemichordate and chordate neurulation. Moreover, we show that the dorsal endoderm of the buccal tube and the stomochord expresses Hedgehog RNA, and it seems likely that collar cord cells can receive the signal. Our data suggest that the endoderm functions as an organizer to pattern the overlying collar cord, similar to the relationship between the notochord and neural tube in chordates. We propose that the origin of the core genetic mechanisms for the development of the notochord and the neural tube date back to the last common deuterostome ancestor.
Collapse
|
49
|
Chen SH, Li KL, Lu IH, Wang YB, Tung CH, Ting HC, Lin CY, Lin CY, Su YH, Yu JK. Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Mar Genomics 2014; 15:35-43. [PMID: 24823299 DOI: 10.1016/j.margen.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022]
Abstract
Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a reference transcriptome for future studies using this species.
Collapse
Affiliation(s)
- Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kun-Lin Li
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Lu
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Bin Wang
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
50
|
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 2014; 5:17. [PMID: 24987514 PMCID: PMC4077281 DOI: 10.1186/2041-9139-5-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, 142 Life Sciences Addition #3200, Berkeley, CA 94720, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Christopher J Lowe
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|