1
|
Harrell MA, Liu Z, Campbell BF, Chinsen O, Hong T, Das M. Arp2/3-dependent endocytosis ensures Cdc42 oscillations by removing Pak1-mediated negative feedback. J Cell Biol 2024; 223:e202311139. [PMID: 39012625 PMCID: PMC11259211 DOI: 10.1083/jcb.202311139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The GTPase Cdc42 regulates polarized growth in most eukaryotes. In the bipolar yeast Schizosaccharomyces pombe, Cdc42 activation cycles periodically at sites of polarized growth. These periodic cycles are caused by alternating positive feedback and time-delayed negative feedback loops. At each polarized end, negative feedback is established when active Cdc42 recruits the Pak1 kinase to prevent further Cdc42 activation. It is unclear how Cdc42 activation returns to each end after Pak1-dependent negative feedback. We find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. Using experimental and mathematical approaches, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Ziyi Liu
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | - Olivia Chinsen
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Tian Hong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Maitreyi Das
- Biology Department, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
2
|
Harrell M, Liu Z, Campbell BF, Chinsen O, Hong T, Das M. The Arp2/3 complex promotes periodic removal of Pak1-mediated negative feedback to facilitate anticorrelated Cdc42 oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566261. [PMID: 38106068 PMCID: PMC10723479 DOI: 10.1101/2023.11.08.566261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The conserved GTPase Cdc42 is a major regulator of polarized growth in most eukaryotes. Cdc42 periodically cycles between active and inactive states at sites of polarized growth. These periodic cycles are caused by positive feedback and time-delayed negative feedback loops. In the bipolar yeast S. pombe, both growing ends must regulate Cdc42 activity. At each cell end, Cdc42 activity recruits the Pak1 kinase which prevents further Cdc42 activation thus establishing negative feedback. It is unclear how Cdc42 activation returns to the end after Pak1-dependent negative feedback. Using genetic and chemical perturbations, we find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. With our experimental data and mathematical models, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. In agreement with these observations, our model and experimental data show that in each oscillatory cycle, Cdc42 activation increases followed by an increase in Pak1 recruitment at that end. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.
Collapse
Affiliation(s)
- Marcus Harrell
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| | - Ziyi Liu
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, TN, 37916
| | | | - Olivia Chinsen
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| | - Tian Hong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, TN, 37916
| | - Maitreyi Das
- Biology Department, Boston College, Chestnut Hill, MA, 02467
| |
Collapse
|
3
|
Alder-Rangel A, Bailão AM, Herrera-Estrella A, Rangel AEA, Gácser A, Gasch AP, Campos CBL, Peters C, Camelim F, Verde F, Gadd GM, Braus G, Eisermann I, Quinn J, Latgé JP, Aguirre J, Bennett JW, Heitman J, Nosanchuk JD, Partida-Martínez LP, Bassilana M, Acheampong MA, Riquelme M, Feldbrügge M, Keller NP, Keyhani NO, Gunde-Cimerman N, Nascimento R, Arkowitz RA, Mouriño-Pérez RR, Naz SA, Avery SV, Basso TO, Terpitz U, Lin X, Rangel DEN. The IV International Symposium on Fungal Stress and the XIII International Fungal Biology Conference. Fungal Biol 2023; 127:1157-1179. [PMID: 37495306 PMCID: PMC11668258 DOI: 10.1016/j.funbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023]
Abstract
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.
Collapse
Affiliation(s)
| | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alfredo Herrera-Estrella
- Unidad de Genómica Avanzada-Langebio, Centro de Investigación y de Estudios Avanzados Del IPN, Irapuato, Guanajuato, Mexico
| | | | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, WI, USA
| | - Claudia B L Campos
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, SP, Brazil
| | - Christina Peters
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Francine Camelim
- German Academic Exchange Service (DAAD), DWIH, Sao Paulo, SP, Brazil
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich, England, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete Heraklion, Greece
| | - Jesus Aguirre
- Departamento de Biología Celular y Del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | | | - Martine Bassilana
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nancy P Keller
- Department of Medical Microbiology, Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Raquel Nascimento
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Robert A Arkowitz
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | - Rosa Reyna Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, Pakistan
| | - Simon V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham, England, UK
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
4
|
Salat-Canela C, Pérez P, Ayté J, Hidalgo E. Stress-induced cell depolarization through the MAP kinase-Cdc42 axis. Trends Cell Biol 2023; 33:124-137. [PMID: 35773059 DOI: 10.1016/j.tcb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
5
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
6
|
Rich-Robinson J, Russell A, Mancini E, Das M. Cdc42 reactivation at growth sites is regulated by local cell-cycle-dependent loss of its GTPase-activating protein Rga4 in fission yeast. J Cell Sci 2021; 134:272049. [PMID: 34523683 DOI: 10.1242/jcs.259291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
In fission yeast, polarized cell growth stops during division and resumes after cytokinesis completes and cells separate. It is unclear how growth reactivation is timed to occur immediately after cell separation. We uncoupled these sequential events by delaying cytokinesis with a temporary Latrunculin A treatment. Mitotic cells recovering from treatment initiate end growth during septation, displaying a polar elongation simultaneous with septation (PrESS) phenotype. PrESS cell ends reactivate Cdc42, a major regulator of polarized growth, during septation, but at a fixed time after anaphase B. A candidate screen implicates Rga4, a negative regulator of Cdc42, in this process. We show that Rga4 appears punctate at the cell sides during G2, but is diffuse during mitosis, extending to the ends. Although the Morphogenesis Orb6 (MOR) pathway is known to promote cell separation and growth by activating protein synthesis, we find that, for polarized growth, removal of Rga4 from the ends is also necessary. Therefore, we propose that growth resumes after division once the MOR pathway is activated and the ends lose Rga4 in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Julie Rich-Robinson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Afton Russell
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eleanor Mancini
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Magliozzi JO, Moseley JB. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021; 10:67648. [PMID: 34282727 PMCID: PMC8318594 DOI: 10.7554/elife.67648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR). Pak1 and the cell polarity kinase Orb6 both phosphorylate the Sts5 IDR but at distinct residues. Mutations preventing phosphorylation in the Sts5 IDR cause increased P body formation and defects in cell shape and polarity. Unexpectedly, when cells encounter glucose starvation, PKA signaling triggers Pak1 recruitment to stress granules with Sts5. Through retargeting experiments, we reveal that Pak1 localizes to stress granules to promote rapid dissolution of Sts5 upon glucose addition. Our work reveals a new role for Pak1 in regulating cell shape through ribonucleoprotein granules during normal and stressed growth conditions.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
8
|
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M. The Multiple Functions of Rho GTPases in Fission Yeasts. Cells 2021; 10:1422. [PMID: 34200466 PMCID: PMC8228308 DOI: 10.3390/cells10061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Rho family of GTPases represents highly conserved molecular switches involved in a plethora of physiological processes. Fission yeast Schizosaccharomyces pombe has become a fundamental model organism to study the functions of Rho GTPases over the past few decades. In recent years, another fission yeast species, Schizosaccharomyces japonicus, has come into focus offering insight into evolutionary changes within the genus. Both fission yeasts contain only six Rho-type GTPases that are spatiotemporally controlled by multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and whose intricate regulation in response to external cues is starting to be uncovered. In the present review, we will outline and discuss the current knowledge and recent advances on how the fission yeasts Rho family GTPases regulate essential physiological processes such as morphogenesis and polarity, cellular integrity, cytokinesis and cellular differentiation.
Collapse
Affiliation(s)
| | | | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (J.V.-S.); (T.S.); (A.F.)
| |
Collapse
|
9
|
Plasma Membrane Furrows Control Plasticity of ER-PM Contacts. Cell Rep 2021; 30:1434-1446.e7. [PMID: 32023460 DOI: 10.1016/j.celrep.2019.12.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/14/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane (PM) forms extensive close junctions with the cortical endoplasmic reticulum (cER) in many cell types, ranging from yeast to mammals. How cells modulate structural plasticity of ER-PM contacts to accommodate space-demanding cortical events is largely unknown. Here, we report a role for eisosome-driven PM furrows in regulating ER-PM contact plasticity in fission yeast. We demonstrate that eisosome-coated PM invaginations function to stabilize local ER-PM contacts and attenuate cER remodeling dynamics through electrostatic Scs2-Pil1 interactions. We also identify divergent roles of ER-shaping proteins in controlling cER remodeling capacity and ER-PM contact plasticity. Furthermore, we show that eisosome organization is responsive to PM tension variations during active PM remodeling, which may enable adaptive control of ER-PM contact plasticity to potentially coordinate with space-demanding PM events. We thus propose a cellular strategy of modulating membrane contact plasticity by deploying sensory elements at contact sites.
Collapse
|
10
|
Požgajová M, Navrátilová A, Šebová E, Kovár M, Kačániová M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int J Mol Sci 2020; 21:ijms21217847. [PMID: 33105893 PMCID: PMC7660220 DOI: 10.3390/ijms21217847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cadmium has no known physiological function in the body; however, its adverse effects are associated with cancer and many types of organ system damage. Although much has been shown about Cd toxicity, the underlying mechanisms of its responses to the organism remain unclear. In this study, the role of Tor1, a catalytic subunit of the target of rapamycin complex 2 (TORC2), in Cd-mediated effects on cell proliferation, the antioxidant system, morphology, and ionome balance was investigated in the eukaryotic model organism Schizosaccharomyces pombe. Surprisingly, spectrophotometric and biochemical analyses revealed that the growth rate conditions and antioxidant defense mechanisms are considerably better in cells lacking the Tor1 signaling. The malondialdehyde (MDA) content of Tor1-deficient cells upon Cd treatment represents approximately half of the wild-type content. The microscopic determination of the cell morphological parameters indicates the role for Tor1 in cell shape maintenance. The ion content, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed that the Cd uptake potency was markedly lower in Tor1-depleted compared to wild-type cells. Conclusively, we show that the cadmium-mediated cell impairments in the fission yeast significantly depend on the Tor1 signaling. Additionally, the data presented here suggest the yet-undefined role of Tor1 in the transport of ions.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| | - Alica Navrátilová
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Eva Šebová
- Institute of Experimental Medicine, Czech Academy of Science, 14220 Prague, Czech Republic;
| | - Marek Kovár
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
11
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
12
|
Khalili B, Lovelace HD, Rutkowski DM, Holz D, Vavylonis D. Fission Yeast Polarization: Modeling Cdc42 Oscillations, Symmetry Breaking, and Zones of Activation and Inhibition. Cells 2020; 9:E1769. [PMID: 32722101 PMCID: PMC7464287 DOI: 10.3390/cells9081769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cells polarize for growth, motion, or mating through regulation of membrane-bound small GTPases between active GTP-bound and inactive GDP-bound forms. Activators (GEFs, GTP exchange factors) and inhibitors (GAPs, GTPase activating proteins) provide positive and negative feedbacks. We show that a reaction-diffusion model on a curved surface accounts for key features of polarization of model organism fission yeast. The model implements Cdc42 membrane diffusion using measured values for diffusion coefficients and dissociation rates and assumes a limiting GEF pool (proteins Gef1 and Scd1), as in prior models for budding yeast. The model includes two types of GAPs, one representing tip-localized GAPs, such as Rga3; and one representing side-localized GAPs, such as Rga4 and Rga6, that we assume switch between fast and slow diffusing states. After adjustment of unknown rate constants, the model reproduces active Cdc42 zones at cell tips and the pattern of GEF and GAP localization at cell tips and sides. The model reproduces observed tip-to-tip oscillations with periods of the order of several minutes, as well as asymmetric to symmetric oscillations transitions (corresponding to NETO "new end take off"), assuming the limiting GEF amount increases with cell size.
Collapse
Affiliation(s)
- Bita Khalili
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Hailey D. Lovelace
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - David M. Rutkowski
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (B.K.); (H.D.L.); (D.M.R.); (D.H.)
| |
Collapse
|
13
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.229252/video-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
14
|
Hercyk BS, Rich-Robinson J, Mitoubsi AS, Harrell MA, Das ME. A novel interplay between GEFs orchestrates Cdc42 activity during cell polarity and cytokinesis in fission yeast. J Cell Sci 2019; 132:jcs.236018. [PMID: 31719163 DOI: 10.1242/jcs.236018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cdc42, a conserved regulator of cell polarity, is activated by two GEFs, Gef1 and Scd1, in fission yeast. Why the cell needs two GEFs is unclear, given that they are partially redundant and activate the same GTPase. Using the GEF localization pattern during cytokinesis as a paradigm, we report a novel interplay between Gef1 and Scd1 that spatially modulates Cdc42. We find that Gef1 promotes Scd1 localization to the division site during cytokinesis through recruitment of the scaffold protein Scd2, via a Cdc42 feedforward pathway. Similarly, during interphase Gef1 promotes Scd1 recruitment at the new end to enable the transition from monopolar to bipolar growth. Reciprocally, Scd1 restricts Gef1 localization to prevent ectopic Cdc42 activation during cytokinesis to promote cell separation, and to maintain cell shape during interphase. Our findings reveal an elegant regulatory pattern in which Gef1 primes Cdc42 activation at new sites to initiate Scd1-dependent polarized growth, while Scd1 restricts Gef1 to sites of polarization. We propose that crosstalk between GEFs is a conserved mechanism that orchestrates Cdc42 activation during complex cellular processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Julie Rich-Robinson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Ahmad S Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Marcus A Harrell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 7996-1939, USA
| |
Collapse
|
15
|
Hercyk BS, Das ME. F-BAR Cdc15 Promotes Cdc42 Activation During Cytokinesis and Cell Polarization in Schizosaccharomyces pombe. Genetics 2019; 213:1341-1356. [PMID: 31591131 PMCID: PMC6893373 DOI: 10.1534/genetics.119.302649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
Cdc42, a Rho-family GTPase, is a master regulator of cell polarity. Recently, it has been shown that Cdc42 also facilitates proper cytokinesis in the fission yeast Schizosaccharomyces pombe Cdc42 is activated by two partially redundant GEFs, Gef1 and Scd1. Although both GEFs activate Cdc42, their deletion mutants display distinct phenotypes, indicating that they are differentially regulated by an unknown mechanism. During cytokinesis, Gef1 localizes to the division site and activates Cdc42 to initiate ring constriction and septum ingression. Here, we report that the F-BAR protein Cdc15 promotes Gef1 localization to its functional sites. We show that cdc15 promotes Gef1 association with cortical puncta at the incipient division site to activate Cdc42 during ring assembly. Moreover, cdc15 phospho-mutants phenocopy the polarity phenotypes of gef1 mutants. In a hypermorphic cdc15 mutant, Gef1 localizes precociously to the division site and is readily detected at the cortical patches and the cell cortex. Correspondingly, the hypermorphic cdc15 mutant shows increased bipolarity during interphase and precocious Cdc42 activation at the division site during cytokinesis. Finally, loss of gef1 in hypermorphic cdc15 mutants abrogates the increased bipolarity and precocious Cdc42 activation phenotype. We did not see any change in the localization of the other GEF Scd1 in a Cdc15-dependent manner. Our data indicate that Cdc15 facilitates Cdc42 activation at the division site during cytokinesis at the cell cortex to promote bipolarity and this is mediated by promoting Gef1 localization to these sites.
Collapse
Affiliation(s)
- Brian S Hercyk
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
16
|
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. Quantitative Phosphoproteomics Reveals the Signaling Dynamics of Cell-Cycle Kinases in the Fission Yeast Schizosaccharomyces pombe. Cell Rep 2019; 24:503-514. [PMID: 29996109 PMCID: PMC6057490 DOI: 10.1016/j.celrep.2018.06.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple protein kinases regulate cell-cycle progression, of which the cyclin-dependent kinases (CDKs) are thought to act as upstream master regulators. We have used quantitative phosphoproteomics to analyze the fission yeast cell cycle at sufficiently high temporal resolution to distinguish fine-grain differences in substrate phosphorylation dynamics on a proteome-wide scale. This dataset provides a useful resource for investigating the regulatory dynamics of cell-cycle kinases and their substrates. For example, our analysis indicates that the substrates of different mitotic kinases (CDK, NIMA-related, Polo-like, and Aurora) are phosphorylated in sequential, kinase-specific waves during mitosis. Phosphoproteomics analysis after chemical-genetic manipulation of CDK activity suggests that the timing of these waves is established by the differential dependency of the downstream kinases on upstream CDK. We have also examined the temporal organization of phosphorylation during G1/S, as well as the coordination between the NDR-related kinase Orb6, which controls polarized growth, and other cell-cycle kinases. Global analysis of phosphorylation dynamics during the fission yeast cell cycle Reveals kinase-specific waves of phosphorylation throughout interphase and mitosis Mitotic kinases show significantly different dependencies on upstream CDK activity Kinases directly downstream of CDK mediate earlier waves of mitotic phosphorylation
Collapse
Affiliation(s)
- Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
17
|
Lee H, Kang J, Ahn S, Lee J. The Hippo Pathway Is Essential for Maintenance of Apicobasal Polarity in the Growing Intestine of Caenorhabditis elegans. Genetics 2019; 213:501-515. [PMID: 31358532 PMCID: PMC6781910 DOI: 10.1534/genetics.119.302477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Although multiple determinants for establishing polarity in membranes of epithelial cells have been identified, the mechanism for maintaining apicobasal polarity is not fully understood. Here, we show that the conserved Hippo kinase pathway plays a role in the maintenance of apicobasal polarity in the developing intestine of Caenorhabditis elegans We screened suppressors of the mutation in wts-1-the gene that encodes the LATS kinase homolog, deficiency of which leads to disturbance of the apicobasal polarity of the intestinal cells and to eventual death of the organism. We identified several alleles of yap-1 and egl-44 that suppress the effects of this mutation. yap-1 encodes a homolog of YAP/Yki, and egl-44 encodes a homolog of TEAD/Sd. WTS-1 bound directly to YAP-1 and inhibited its nuclear accumulation in intestinal cells. We also found that NFM-1, which is a homolog of NF2/Merlin, functioned in the same genetic pathway as WTS-1 to regulate YAP-1 to maintain cellular polarity. Transcriptome analysis identified several target candidates of the YAP-1-EGL-44 complex including TAT-2, which encodes a putative P-type ATPase. In summary, we have delineated the conserved Hippo pathway in C. elegans consisting of NFM-1-WTS-1-YAP-1-EGL-44 and proved that the proper regulation of YAP-1 by upstream NFM-1 and WTS-1 is essential for maintenance of apicobasal membrane identities of the growing intestine.
Collapse
Affiliation(s)
- Hanee Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junsu Kang
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| |
Collapse
|
18
|
Chen C, Rodriguez Pino M, Haller PR, Verde F. Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Mol Biol Cell 2019; 30:2598-2616. [PMID: 31390298 PMCID: PMC6740195 DOI: 10.1091/mbc.e19-03-0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptation to the nutritional environment is critical for all cells. RAS GTPase is a highly conserved GTP-binding protein with crucial functions for cell growth and differentiation in response to environmental conditions. Here, we describe a novel mechanism connecting RAS GTPase to nutrient availability in fission yeast. We report that the conserved NDR/LATS kinase Orb6 responds to nutritional cues and regulates Ras1 GTPase activity. Orb6 increases the protein levels of an Ras1 GTPase activator, the guanine nucleotide exchange factor Efc25, by phosphorylating Sts5, a protein bound to efc25 mRNA. By manipulating the extent of Orb6-mediated Sts5 assembly into RNP granules, we can modulate Efc25 protein levels, Ras1 GTPase activity, and, as a result, cell growth and cell survival. Thus, we conclude that the Orb6-Sts5-Ras1 regulatory axis plays a crucial role in promoting cell adaptation, balancing the opposing demands of promoting cell growth and extending chronological lifespan.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marbelys Rodriguez Pino
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Patrick Roman Haller
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
19
|
Liu G, Dong F, Fu C, Smith ZJ. Automated morphometry toolbox for analysis of microscopic model organisms using simple bright-field imaging. Biol Open 2019; 8:bio.037788. [PMID: 30814065 PMCID: PMC6451328 DOI: 10.1242/bio.037788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Model organisms with compact genomes, such as yeast and C aenorhabditis elegans, are particularly useful for understanding organism growth and life/cell cycle. Organism morphology is a critical parameter to measure in monitoring growth and stage in the life cycle. However, manual measurements are both time consuming and potentially inaccurate, due to variations among users and user fatigue. In this paper we present an automated method to segment bright-field images of fission yeast, budding yeast, and C. elegans roundworm, reporting a wide range of morphometric parameters, such as length, width, eccentricity, and others. Comparisons between automated and manual methods on fission yeast reveal good correlation in size values, with the 95% confidence interval lying between -0.8 and +0.6 μm in cell length, similar to the 95% confidence interval between two manual users. In a head-to-head comparison with other published algorithms on multiple datasets, our method achieves more accurate and robust results with substantially less computation time. We demonstrate the method's versatility on several model organisms, and demonstrate its utility through automated analysis of changes in fission yeast growth due to single kinase deletions. The algorithm has additionally been implemented as a stand-alone executable program to aid dissemination to other researchers.
Collapse
Affiliation(s)
- Guanghui Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fenfen Dong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chuanhai Fu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
20
|
Plante S, Labbé S. Spore Germination Requires Ferrichrome Biosynthesis and the Siderophore Transporter Str1 in Schizosaccharomyces pombe. Genetics 2019; 211:893-911. [PMID: 30647069 PMCID: PMC6404258 DOI: 10.1534/genetics.118.301843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 01/29/2023] Open
Abstract
Spore germination is a process whereby spores exit dormancy to become competent for mitotic cell division. In Schizosaccharomyces pombe, one critical step of germination is the formation of a germ tube that hatches out the spore wall in a stage called outgrowth. Here, we show that iron deficiency blocks the outgrowth of germinating spores. The siderophore synthetase Sib1 and the ornithine N5-oxygenase Sib2 participate in ferrichrome biosynthesis, whereas Str1 functions as a ferrichrome transporter. Expression profiles of sib1+ , sib2+ , and str1+ transcripts reveal that they are induced shortly after induction of germination and their expression remains upregulated throughout the germination program under low-iron conditions. sib1Δ sib2Δ mutant spores are unable to form a germ tube under iron-poor conditions. Supplementation with exogenous ferrichrome suppresses this phenotype when str1+ is present. Str1 localizes at the contour of swollen spores 4 hr after induction of germination. At the onset of outgrowth, localization of Str1 changes and it moves away from the mother spore to primarily localize at the periphery of the new daughter cell. Two conserved Tyr residues (Tyr553 and Tyr567) are predicted to be located in the last extracellular loop region of Str1. Results show that these amino acid residues are critical to ensure timely completion of the outgrowth phase of spores in response to exogenous ferrichrome. Taken together, the results reveal the essential requirement of ferrichrome biosynthesis to promote outgrowth, as well as the necessity to take up ferrichrome from an external source via Str1 when ferrichrome biosynthesis is blocked.
Collapse
Affiliation(s)
- Samuel Plante
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|
21
|
Onwubiko UN, Mlynarczyk PJ, Wei B, Habiyaremye J, Clack A, Abel SM, Das ME. A Cdc42 GEF, Gef1, through endocytosis organizes F-BAR Cdc15 along the actomyosin ring and promotes concentric furrowing. J Cell Sci 2019; 132:jcs223776. [PMID: 30709916 PMCID: PMC6432710 DOI: 10.1242/jcs.223776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023] Open
Abstract
During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that Schizosaccharomyces pombe cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that, after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that, after assembly, Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches shows increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and the patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.
Collapse
Affiliation(s)
- Udo N Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul J Mlynarczyk
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bin Wei
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Julius Habiyaremye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amanda Clack
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
22
|
Tay YD, Leda M, Spanos C, Rappsilber J, Goryachev AB, Sawin KE. Fission Yeast NDR/LATS Kinase Orb6 Regulates Exocytosis via Phosphorylation of the Exocyst Complex. Cell Rep 2019; 26:1654-1667.e7. [PMID: 30726745 PMCID: PMC6367570 DOI: 10.1016/j.celrep.2019.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/03/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022] Open
Abstract
NDR/LATS kinases regulate multiple aspects of cell polarity and morphogenesis from yeast to mammals. Fission yeast NDR/LATS kinase Orb6 has been proposed to control cell polarity by regulating the Cdc42 guanine nucleotide exchange factor Gef1. Here, we show that Orb6 regulates polarity largely independently of Gef1 and that Orb6 positively regulates exocytosis. Through Orb6 inhibition in vivo and quantitative global phosphoproteomics, we identify Orb6 targets, including proteins involved in membrane trafficking. We confirm Sec3 and Sec5, conserved components of the exocyst complex, as substrates of Orb6 both in vivo and in vitro, and we show that Orb6 kinase activity is important for exocyst localization to cell tips and for exocyst activity during septum dissolution after cytokinesis. We further find that Orb6 phosphorylation of Sec3 contributes to exocyst function in concert with exocyst protein Exo70. We propose that Orb6 contributes to polarized growth by regulating membrane trafficking at multiple levels.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Andrew B Goryachev
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
23
|
Li E, Cui Y, Ge FR, Chai S, Zhang WT, Feng QN, Jiang L, Li S, Zhang Y. AGC1.5 Kinase Phosphorylates RopGEFs to Control Pollen Tube Growth. MOLECULAR PLANT 2018; 11:1198-1209. [PMID: 30055264 DOI: 10.1016/j.molp.2018.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/22/2023]
Abstract
Double fertilization in angiosperms requires the targeted delivery of immotile sperm to the eggs through pollen tubes. The polarity of tip-growing pollen tubes is maintained through dynamic association of active Rho GTPases of plants (ROP-GTP) with the apical plasma membrane. Guanine nucleotide exchange factors for ROPs (RopGEFs) catalyze the activation of ROPs and thereby affect spatiotemporal ROP signaling. Whereas RopGEFs have been found to be phosphorylated proteins, the kinases responsible for their phosphorylation in vivo and biological consequences of RopGEF phosphorylation in pollen tube growth remain unclear. We report here that the Arabidopsis AGC1.5 subfamily of cytoplasmic kinases is critical for the restricted localization of ROP-GTP during pollen tube growth. Loss of AGC1.5 and AGC1.7 functions resulted in the mistargeting of active ROPs and defective events downstream of ROP signaling in pollen tubes. AGC1.5 interacts with RopGEFs via their catalytic PRONE domain and phosphorylates RopGEFs at a conserved Ser residue of PRONE domain. Loss of AGC1.5 and AGC1.7 functions resulted in the mistargeting of RopGEFs in pollen tubes, similar to the phenotype caused by the mutation that renders RopGEFs non-phosphorylatable by AGC1.5. Collectively, our results provide mechanistic insights into the spatiotemporal activation of ROPs during the polar growth of pollen tubes.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sen Chai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei-Tong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
24
|
Tay YD, Leda M, Goryachev AB, Sawin KE. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis. J Cell Sci 2018; 131:jcs.216580. [PMID: 29930085 PMCID: PMC6080602 DOI: 10.1242/jcs.216580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 plays a central role in eukaryotic cell polarity. The rod-shaped fission yeast Schizosaccharomyces pombe has two Cdc42 guanine nucleotide exchange factors (GEFs), Scd1 and Gef1, but little is known about how they are coordinated in polarized growth. Although the microtubule cytoskeleton is normally not required for polarity maintenance in fission yeast, we show here that when scd1 function is compromised, disruption of microtubules or the polarity landmark proteins Tea1, Tea4 or Pom1 leads to disruption of polarized growth. Instead, cells adopt an isotropic-like pattern of growth, which we term PORTLI growth. Surprisingly, PORTLI growth is caused by spatially inappropriate activity of Gef1. Although most Cdc42 GEFs are membrane associated, we find that Gef1 is a broadly distributed cytosolic protein rather than a membrane-associated protein at cell tips like Scd1. Microtubules and the Tea1–Tea4–Pom1 axis counteract inappropriate Gef1 activity by regulating the localization of the Cdc42 GTPase-activating protein Rga4. Our results suggest a new model of fission yeast cell polarity regulation, involving coordination of ‘local’ (Scd1) and ‘global’ (Gef1) Cdc42 GEFs via microtubules and microtubule-dependent polarity landmarks. Highlighted Article: Cell polarity in fission yeast is regulated by two different Cdc42 guanine nucleotide exchange factors, coordinated by the microtubule-dependent landmark system.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew B Goryachev
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
25
|
Davì V, Tanimoto H, Ershov D, Haupt A, De Belly H, Le Borgne R, Couturier E, Boudaoud A, Minc N. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival. Dev Cell 2018; 45:170-182.e7. [DOI: 10.1016/j.devcel.2018.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 02/03/2023]
|
26
|
ER-PM Contacts Restrict Exocytic Sites for Polarized Morphogenesis. Curr Biol 2017; 28:146-153.e5. [PMID: 29290560 DOI: 10.1016/j.cub.2017.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023]
Abstract
Spatial control of exocytosis underlies polarized cell morphogenesis. In rod-shaped fission yeast, exocytic vesicles are conveyed along the actin cytoskeleton by myosin V motors toward growing cell ends [1, 2], the major sites for exocytosis. However, actomyosin-based vesicle delivery is dispensable for polarized secretion and cylindrical cell shape of fission yeast [3]. Thus, additional mechanisms should function in the spatial confinement of exocytosis. Here we report a novel role of endoplasmic reticulum (ER)-plasma membrane (PM) contacts in restricting exocytic sites for polarized fission yeast morphogenesis. We show that fission yeast cells deficient in both ER-PM contacts and actomyosin-based secretory vesicle transport display aberrant globular cell shape due to delocalized exocytosis. By artificially manipulating the strength and extent of ER-PM contacts in wild-type and mutant cells that exhibit induced ectopic exocytosis, we demonstrate that exocytosis and ER-PM contact formation are spatially incompatible. Furthermore, extensive ER-PM junctions at the non-growing lateral cell cortex prevent the PM from exocytic vesicle tethering and hence attenuate growth potential at cell sides. We thus propose that ER-PM contacts function as a new morphogenetic module by limiting exocytosis to growing cell tips in fission yeast. A similar mechanism could apply to other cell types with prominent ER-PM contacts.
Collapse
|
27
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
28
|
Plante S, Normant V, Ramos-Torres KM, Labbé S. Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination. J Biol Chem 2017; 292:11896-11914. [PMID: 28572514 PMCID: PMC5512082 DOI: 10.1074/jbc.m117.794677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Indexed: 11/06/2022] Open
Abstract
During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.
Collapse
MESH Headings
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Copper/metabolism
- Enzyme Activation
- Gene Deletion
- Gene Expression Regulation, Fungal
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Interference
- Microscopy, Phase-Contrast
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- RNA, Fungal/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SLC31 Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/growth & development
- Schizosaccharomyces/metabolism
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Spores, Fungal/cytology
- Spores, Fungal/growth & development
- Spores, Fungal/metabolism
- Spores, Fungal/physiology
- Superoxide Dismutase-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Samuel Plante
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Karla M Ramos-Torres
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|
29
|
Haupt A, Minc N. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast. Mol Biol Cell 2016; 28:210-220. [PMID: 27852900 PMCID: PMC5221626 DOI: 10.1091/mbc.e16-06-0353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge-dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth.
Collapse
Affiliation(s)
- Armin Haupt
- Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Nicolas Minc
- Institut Jacques Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
30
|
Nuñez I, Rodriguez Pino M, Wiley DJ, Das ME, Chen C, Goshima T, Kume K, Hirata D, Toda T, Verde F. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5. eLife 2016; 5. [PMID: 27474797 PMCID: PMC5011436 DOI: 10.7554/elife.14216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.
Collapse
Affiliation(s)
- Illyce Nuñez
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Marbelys Rodriguez Pino
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - David J Wiley
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Maitreyi E Das
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, United States
| | - Chuan Chen
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Toda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan.,The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Fulvia Verde
- Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
31
|
Revilla-Guarinos MT, Martín-García R, Villar-Tajadura MA, Estravís M, Coll PM, Pérez P. Rga6 is a Fission Yeast Rho GAP Involved in Cdc42 Regulation of Polarized Growth. Mol Biol Cell 2016; 27:mbc.E15-12-0818. [PMID: 26960792 PMCID: PMC4850039 DOI: 10.1091/mbc.e15-12-0818] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/15/2022] Open
Abstract
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6 is another fission yeast Cdc42 GAP which shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Notably, in the absence of Rga6 the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose here that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions.
Collapse
Affiliation(s)
- M Teresa Revilla-Guarinos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - M Antonia Villar-Tajadura
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Miguel Estravís
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca, Spain
| |
Collapse
|
32
|
Wei B, Hercyk BS, Mattson N, Mohammadi A, Rich J, DeBruyne E, Clark MM, Das M. Unique spatiotemporal activation pattern of Cdc42 by Gef1 and Scd1 promotes different events during cytokinesis. Mol Biol Cell 2016; 27:1235-45. [PMID: 26941334 PMCID: PMC4831878 DOI: 10.1091/mbc.e15-10-0700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
The Rho-family GTPase Cdc42 regulates cell polarity and localizes to the cell division site. Cdc42 is activated by guanine nucleotide exchange factors (GEFs). We report that Cdc42 promotes cytokinesis via a unique spatiotemporal activation pattern due to the distinct action of its GEFs, Gef1 and Scd1, in fission yeast. Before cytokinetic ring constriction, Cdc42 activation, is Gef1 dependent, and after ring constriction, it is Scd1 dependent. Gef1 localizes to the actomyosin ring immediately after ring assembly and promotes timely onset of ring constriction. Gef1 is required for proper actin organization during cytokinesis, distribution of type V myosin Myo52 to the division site, and timely recruitment of septum protein Bgs1. In contrast, Scd1 localizes to the broader region of ingressing membrane during cytokinetic furrowing. Scd1 promotes normal septum formation, andscd1Δcells display aberrant septa with reduced Bgs1 localization. Thus we define unique roles of the GEFs Gef1 and Scd1 in the regulation of distinct events during cytokinesis. Gef1 localizes first to the cytokinetic ring and promotes timely constriction, whereas Scd1 localizes later to the ingressing membrane and promotes septum formation. Our findings are consistent with reports that complexity in GTPase signaling patterns enables exquisite precision over the control of cellular processes.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Brian S Hercyk
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Mattson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Ahmad Mohammadi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Julie Rich
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Erica DeBruyne
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mikayla M Clark
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Maitreyi Das
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
33
|
Chen Y, Chen L, An K, Wang Y, Jin Q. A vector system for efficient and economical switching of aura4+module to three commonly used antibiotic marker cassettes inSchizosaccharomyces pombe. Yeast 2015; 32:671-82. [DOI: 10.1002/yea.3088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yinghui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; People's Republic of China
| | - Lihua Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; People's Republic of China
| | - Ke An
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; People's Republic of China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; People's Republic of China
| | - Quanwen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; People's Republic of China
| |
Collapse
|
34
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Das M, Nuñez I, Rodriguez M, Wiley DJ, Rodriguez J, Sarkeshik A, Yates JR, Buchwald P, Verde F. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis. Mol Biol Cell 2015; 26:3520-34. [PMID: 26246599 PMCID: PMC4591695 DOI: 10.1091/mbc.e15-02-0095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
The 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, spatially regulating Cdc42 activity during cell morphogenesis. Gef1 is sequestered in the cytoplasm upon 14-3-3 interaction, mediated by Orb6 kinase. The resulting competition for Gef1 promotes anticorrelated Cdc42 oscillations at cell tips. Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.
Collapse
Affiliation(s)
- Maitreyi Das
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Illyce Nuñez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Marbelys Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Juan Rodriguez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Ali Sarkeshik
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101 Marine Biological Laboratory, Woods Hole, MA 02543. )
| |
Collapse
|
36
|
Zermiani M, Begheldo M, Nonis A, Palme K, Mizzi L, Morandini P, Nonis A, Ruperti B. Identification of the Arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. ANNALS OF BOTANY 2015; 116:69-89. [PMID: 26078466 PMCID: PMC4479753 DOI: 10.1093/aob/mcv066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. METHODS Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. KEY RESULTS Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. CONCLUSIONS The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity.
Collapse
Affiliation(s)
- Monica Zermiani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Maura Begheldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Klaus Palme
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 2
| | - Luca Mizzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
37
|
Oscillatory AAA+ ATPase Knk1 constitutes a novel morphogenetic pathway in fission yeast. Proc Natl Acad Sci U S A 2014; 111:17899-904. [PMID: 25422470 DOI: 10.1073/pnas.1407226111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips. Through genetic analysis, we place Knk1 into a novel pathway controlling cell shape independently of MTs and Tea1. Knk1 localizes at cell tips. Its localization is mediated by the Knk1 N terminus and is enhanced upon ATP binding to the C-terminal ATPase domain. Furthermore, Knk1 tip recruitment is regulated by SRC-like adaptor 2 (Sla2) and cell division cycle 42 (Cdc42) independently of Sla2's role in endocytosis. Finally, we discovered that Knk1 shows an anticorrelated oscillatory behavior between the two cell tips at a periodicity that is different from the reported oscillatory Cdc42 dynamics.
Collapse
|
38
|
Abstract
Morphogenesis in fungi is often induced by extracellular factors and executed by fungal genetic factors. Cell surface changes and alterations of the microenvironment often accompany morphogenetic changes in fungi. In this review, we will first discuss the general traits of yeast and hyphal morphotypes and how morphogenesis affects development and adaptation by fungi to their native niches, including host niches. Then we will focus on the molecular machinery responsible for the two most fundamental growth forms, yeast and hyphae. Last, we will describe how fungi incorporate exogenous environmental and host signals together with genetic factors to determine their morphotype and how morphogenesis, in turn, shapes the fungal microenvironment.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - J Andrew Alspaugh
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Steven Harris
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
39
|
Abstract
Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.
Collapse
|
40
|
Müller-Taubenberger A, Kastner PM, Schleicher M, Bolourani P, Weeks G. Regulation of a LATS-homolog by Ras GTPases is important for the control of cell division. BMC Cell Biol 2014; 15:25. [PMID: 24986648 PMCID: PMC4120859 DOI: 10.1186/1471-2121-15-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background Nuclear Dbf-related/large tumor suppressor (NDR/LATS) kinases have been shown recently to control pathways that regulate mitotic exit, cytokinesis, cell growth, morphological changes and apoptosis. LATS kinases are core components of the Hippo signaling cascade and important tumor suppressors controlling cell proliferation and organ size in flies and mammals, and homologs are also present in yeast and Dictyostelium discoideum. Ras proto-oncogens regulate many biological functions, including differentiation, proliferation and apoptosis. Dysfunctions of LATS kinases or Ras GTPases have been implicated in the development of a variety of cancers in humans. Results In this study we used the model organism Dictyostelium discoideum to analyze the functions of NdrC, a homolog of the mammalian LATS2 protein, and present a novel regulatory mechanism for this kinase. Deletion of the ndrC gene caused impaired cell division and loss of centrosome integrity. A yeast two-hybrid analysis, using activated Ras proteins as bait, revealed NdrC as an interactor and identified its Ras-binding domain. Further in vitro pull-down assays showed that NdrC binds RasG and RasB, and to a lesser extent RasC and Rap1. In cells lacking NdrC, the levels of activated RasB and RasG are up-regulated, suggesting a functional connection between RasB, RasG, and NdrC. Conclusions Dictyostelium discoideum NdrC is a LATS2-homologous kinase that is important for the regulation of cell division. NdrC contains a Ras-binding domain and interacts preferentially with RasB and RasG. Changed levels of both, RasB or RasG, have been shown previously to interfere with cell division. Since a defect in cell division is exhibited by NdrC-null cells, RasG-null cells, and cells overexpressing activated RasB, we propose a model for the regulation of cytokinesis by NdrC that involves the antagonistic control by RasB and RasG.
Collapse
|
41
|
Symmetry breaking in spore germination relies on an interplay between polar cap stability and spore wall mechanics. Dev Cell 2014; 28:534-46. [PMID: 24636258 DOI: 10.1016/j.devcel.2014.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022]
Abstract
The morphogenesis of single cells depends on their ability to coordinate surface mechanics and polarity. During germination, spores of many species develop a polar tube that hatches out of a rigid outer spore wall (OSW) in a process termed outgrowth. However, how these awakening cells reorganize to stabilize this first growth axis remains unknown. Here, using quantitative experiments and modeling, we reveal the mechanisms underlying outgrowth in fission yeast. We find that, following an isotropic growth phase during which a single polarity cap wanders around the surface, outgrowth occurs when spores have doubled their volume, concomitantly with the stabilization of the cap and a singular rupture in the OSW. This rupture happens when OSW mechanical stress exceeds a threshold, releases the constraints of the OSW on growth, and stabilizes polarity. Thus, outgrowth exemplifies a self-organizing morphogenetic process in which reinforcements between growth and polarity coordinate mechanics and internal organization.
Collapse
|
42
|
Proper actin ring formation and septum constriction requires coordinated regulation of SIN and MOR pathways through the germinal centre kinase MST-1. PLoS Genet 2014; 10:e1004306. [PMID: 24762679 PMCID: PMC3998894 DOI: 10.1371/journal.pgen.1004306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Nuclear DBF2p-related (NDR) kinases constitute a functionally conserved protein family of eukaryotic regulators that control cell division and polarity. In fungi, they function as effector kinases of the morphogenesis (MOR) and septation initiation (SIN) networks and are activated by pathway-specific germinal centre (GC) kinases. We characterized a third GC kinase, MST-1, that connects both kinase cascades. Genetic and biochemical interactions with SIN components and life cell imaging identify MST-1 as SIN-associated kinase that functions in parallel with the GC kinase SID-1 to activate the SIN-effector kinase DBF-2. SID-1 and MST-1 are both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner. Aberrant cortical actomyosin rings are formed in Δmst-1, which resulted in mis-positioned septa and irregular spirals, indicating that MST-1-dependent regulation of the SIN is required for proper formation and constriction of the septal actomyosin ring. However, MST-1 also interacts with several components of the MOR network and modulates MOR activity at multiple levels. MST-1 functions as promiscuous enzyme and also activates the MOR effector kinase COT-1 through hydrophobic motif phosphorylation. In addition, MST-1 physically interacts with the MOR kinase POD-6, and dimerization of both proteins inactivates the GC kinase hetero-complex. These data specify an antagonistic relationship between the SIN and MOR during septum formation in the filamentous ascomycete model Neurospora crassa that is, at least in part, coordinated through the GC kinase MST-1. The similarity of the SIN and MOR pathways to the animal Hippo and Ndr pathways, respectively, suggests that intensive cross-communication between distinct NDR kinase modules may also be relevant for the homologous NDR kinases of higher eukaryotes. Cytokinesis is a fundamental cellular process essential for cell proliferation of uni- and multicellular organisms. The molecular pathways that regulate cytokinesis are highly complex and involve a large number of components that form elaborate interactive networks. The fungal septation initiation network (SIN) functions as tripartite kinase cascade that connects cell cycle progression with the control of cell division. Mis-regulation of the homologous Hippo pathway in animals results in excessive proliferation and formation of tumors, underscoring the conservation and importance of these kinase networks. A second morphogenesis (MOR) pathway involves homologous components and is controlling cell polarity in fungi and higher eukaryotes. Here we show that the promiscuous functioning Ste20-related kinase MST-1 has a dual role in regulating SIN and MOR network function. Moreover, SIN and MOR coordination through MST-1 can be achieved in an enzyme-independent manner through hetero-dimerization of germinal centre kinases, providing an additional level for activity regulation of signaling networks that is not dependent on phosphate transfer. Given the functional conservation of NDR kinase signaling modules and their regulation, our work may define general mechanisms by which NDR kinase pathway are coordinated in fungi and higher eukaryotes.
Collapse
|
43
|
Kokkoris K, Gallo Castro D, Martin SG. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. J Cell Sci 2014; 127:2005-16. [PMID: 24554432 DOI: 10.1242/jcs.142174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Collapse
Affiliation(s)
- Kyriakos Kokkoris
- University of Lausanne, Department of Fundamental Microbiology, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Abstract
Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.
Collapse
|
45
|
Nagai T, Mizuno K. Multifaceted roles of Furry proteins in invertebrates and vertebrates. J Biochem 2014; 155:137-46. [PMID: 24403109 DOI: 10.1093/jb/mvu001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Furry (Fry) is a large protein that is evolutionarily conserved from yeast to human. Fry and its orthologues in invertebrates (termed Tao3p in budding yeast, Mor2p in fission yeast, Sax-2 in nematode and Fry in fruit fly) genetically and physically interact with nuclear Dbf2-related (NDR) kinases (termed Cbk1p in budding yeast, Orb6p in fission yeast, Sax-1 in nematode and Trc in fruitfly), and function as activators or scaffolds of these kinases. Fry-NDR kinase signals are implicated in the control of polarized cell growth and morphogenesis in yeast, neurite outgrowth in nematode, and epidermal morphogenesis and dendritic tiling in fruit fly. Recent studies revealed that mammalian Fry is a microtubule-associated protein that is involved in the control of chromosome alignment, spindle organization and Polo-like kinase-1 activation in mitosis, and promotes microtubule acetylation in mitotic spindles via inhibiting the tubulin deacetylase Sirtuin 2. Here, we review current knowledge about the diverse cellular functions and regulation of Fry proteins in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Laboratory of Molecular Cell Biology, Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | |
Collapse
|
46
|
Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton. PLoS Comput Biol 2013; 9:e1003287. [PMID: 24146607 PMCID: PMC3798282 DOI: 10.1371/journal.pcbi.1003287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. Fission yeast is a rod-shaped organism that is studied, in part, as a model for how cells develop and regulate their shape. Despite extensive work identifying effects of genetic mutations and pharmacological treatments on the shape of these cells, there is a lack of mathematical and computational models examining how internal cell signals and the cytoskeleton organize to remodel the cell wall, direct growth at cell tips, and maintain tubular shape. In this work we describe how the spatial distribution of regulatory protein signal at growing cell tips relates to cell diameter. Further, we describe the consequences of this signal depending on the shape of the cell, namely its length and diameter. Finally, we propose a computational model for understanding growth and shape that includes an axis-sensing microtubule system, landmarks delivered to cell tips along those microtubules, and a growth zone signal that moves around but is attracted to the landmarks. This picture explains a large number of reported abnormal shapes in terms of only a few modular components.
Collapse
|
47
|
Vjestica A, Zhang D, Liu J, Oliferenko S. Hsp70-Hsp40 chaperone complex functions in controlling polarized growth by repressing Hsf1-driven heat stress-associated transcription. PLoS Genet 2013; 9:e1003886. [PMID: 24146635 PMCID: PMC3798271 DOI: 10.1371/journal.pgen.1003886] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. Heat stress, caused by fluctuations in ambient temperature, occurs frequently in nature. How organisms adapt and maintain regular patterns of growth over a range of environmental conditions remain poorly understood. Our work in the simple unicellular yeast Schizosaccharomyces pombe suggests that the heat stress-associated transcription must be repressed by the evolutionary conserved Hsp70-Hsp40 chaperone complex to allow cells to adapt the polarized growth machinery to elevated temperature.
Collapse
Affiliation(s)
- Aleksandar Vjestica
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Snezhana Oliferenko
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: ,
| |
Collapse
|
48
|
|
49
|
Hachet O, Bendezú FO, Martin SG. Fission yeast: in shape to divide. Curr Opin Cell Biol 2012; 24:858-64. [PMID: 23127610 DOI: 10.1016/j.ceb.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/27/2023]
Abstract
How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division.
Collapse
Affiliation(s)
- Olivier Hachet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Sartorel E, Pérez-Martín J. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. J Cell Sci 2012; 125:4597-608. [PMID: 22767510 DOI: 10.1242/jcs.107862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The morphogenesis-related NDR kinase (MOR) pathway regulates morphogenesis in fungi. In spite of the high conservation of its components, impairing their functions results in highly divergent cellular responses depending on the fungal species. The reasons for such differences are unclear. Here we propose that the species-specific connections between cell cycle regulation and the MOR pathway could be partly responsible for these divergences. We based our conclusion on the characterization of the MOR pathway in the fungus Ustilago maydis. Each gene that encodes proteins of this pathway in U. maydis was deleted. All mutants exhibited a constitutive hyperpolarized growth, contrasting with the loss of polarity observed in other fungi. Using a conditional allele of the central NDR kinase Ukc1, we found that impairing MOR function resulted in a prolonged G2 phase. This cell cycle delay appears to be the consequence of an increase in Cdk1 inhibitory phosphorylation. Strikingly, prevention of the inhibitory Cdk1 phosphorylation abolished the hyperpolarized growth associated with MOR pathway depletion. We found that the prolonged G2 phase resulted in higher levels of expression of crk1, a conserved kinase that promotes polar growth in U. maydis. Deletion of crk1 also abolished the dramatic activation of polar growth in cells lacking the MOR pathway. Taken together, our results suggest that Cdk1 inhibitory phosphorylation may act as an integrator of signaling cascades regulating fungal morphogenesis and that the distinct morphological response observed in U. maydis upon impairment of the MOR pathway could be due to a cell cycle deregulation.
Collapse
Affiliation(s)
- Elodie Sartorel
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| | | |
Collapse
|