1
|
Wu F, Du Z, Zhang T, Jiang L, Zhang L, Ge S. A neurotransmitter histamine mediating phototransduction and photopreference in Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2023; 79:3002-3011. [PMID: 36966484 DOI: 10.1002/ps.7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The biogenic amine histamine plays a critical role in the phototransduction and photopreference of most insects. Here, we study the function of histamine in Callosobruchus maculatus, a global storage pest. RESULTS In our experiment, we initially identified the histidine decarboxylase (hdc) gene through bioinformation analysis. We subsequently investigated effects of hdc and histamine on the photopreference of C. maculatus using a combination of RNA interference (RNAi), electroretinograms (ERG), immunostaining, and photopreference behavior approaches. Our results showed that histamine was required for visual signal transduction of C. maculatus, and increased its photopreference regardless of the wavelength. CONCLUSION This is the first study analyzing the molecular characteristics of C. maculatus photopreference, which forms the basis for a molecular mechanism for the effects of histamine on its visual transduction and preference. In practice, better understanding the photopreference patterns contributes to IPM (integrated pest management) for this storage pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong Du
- College of Life Sciences, Fujian Normal University, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fuzhou, China
| | - Tianhao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijie Zhang
- Science and Technical Research Center of China Customs, Beijing, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Evidence of separate influence of moon and sun on light synchronization of mussel's daily rhythm during the polar night. iScience 2023; 26:106168. [PMID: 36876122 PMCID: PMC9978622 DOI: 10.1016/j.isci.2023.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.
Collapse
|
3
|
Fifel K, El Farissi A, Cherasse Y, Yanagisawa M. Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200640. [PMID: 35794435 PMCID: PMC9403635 DOI: 10.1002/advs.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Motivation and its hedonic valence are powerful modulators of sleep/wake behavior, yet its underlying mechanism is still poorly understood. Given the well-established role of midbrain dopamine (mDA) neurons in encoding motivation and emotional valence, here, neuronal mechanisms mediating sleep/wake regulation are systematically investigated by DA neurotransmission. It is discovered that mDA mediates the strong modulation of sleep/wake states by motivational valence. Surprisingly, this modulation can be uncoupled from the classically employed measures of circadian and homeostatic processes of sleep regulation. These results establish the experimental foundation for an additional new factor of sleep regulation. Furthermore, an electroencephalographic marker during wakefulness at the theta range is identified that can be used to reliably track valence-related modulation of sleep. Taken together, this study identifies mDA signaling as an important neural substrate mediating sleep modulation by motivational valence.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Amina El Farissi
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI‐IIIS)University of TsukubaTsukubaIbaraki305‐8577Japan
| |
Collapse
|
4
|
Zurl M, Poehn B, Rieger D, Krishnan S, Rokvic D, Veedin Rajan VB, Gerrard E, Schlichting M, Orel L, Ćorić A, Lucas RJ, Wolf E, Helfrich-Förster C, Raible F, Tessmar-Raible K. Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. Proc Natl Acad Sci U S A 2022; 119:e2115725119. [PMID: 35622889 PMCID: PMC9295771 DOI: 10.1073/pnas.2115725119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights’ darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome’s principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.
Collapse
Affiliation(s)
- Martin Zurl
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Birgit Poehn
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Dirk Rieger
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Shruthi Krishnan
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Dunja Rokvic
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Lukas Orel
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Robert J. Lucas
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eva Wolf
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Charlotte Helfrich-Förster
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Florian Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Carl-von-Ossietzky University, 26111 Oldenburg, Germany
| |
Collapse
|
5
|
Cohen JH, Last KS, Charpentier CL, Cottier F, Daase M, Hobbs L, Johnsen G, Berge J. Photophysiological cycles in Arctic krill are entrained by weak midday twilight during the Polar Night. PLoS Biol 2021; 19:e3001413. [PMID: 34665816 PMCID: PMC8525745 DOI: 10.1371/journal.pbio.3001413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.
Collapse
Affiliation(s)
- Jonathan H. Cohen
- School of Marine Science & Policy, University of Delaware, Lewes, Delaware, United States of America
- * E-mail:
| | - Kim S. Last
- Scottish Association for Marine Science, Oban, United Kingdom
| | - Corie L. Charpentier
- Department of Biology, Stetson University, DeLand, Florida, United States of America
| | - Finlo Cottier
- Scottish Association for Marine Science, Oban, United Kingdom
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
| | - Malin Daase
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
| | - Laura Hobbs
- Scottish Association for Marine Science, Oban, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Geir Johnsen
- University Centre in Svalbard, Longyearbyen, Norway
- Centre of Autonomous Marine Operations and Systems, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Berge
- UiT, The Arctic University of Norway, Faculty for Biosciences, Fisheries and Economics, Department for Arctic and Marine Biology, Tromsø, Norway
- University Centre in Svalbard, Longyearbyen, Norway
- Centre of Autonomous Marine Operations and Systems, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021; 11:20067. [PMID: 34625611 PMCID: PMC8501079 DOI: 10.1038/s41598-021-99531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. In Drosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.
Collapse
Affiliation(s)
- Margaret Driscoll
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Steven N Buchert
- Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA
| | - Victoria Coleman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Morgan McLaughlin
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Amanda Nguyen
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA. .,Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| |
Collapse
|
7
|
Faltraco F, Palm D, Uzoni A, Borchert L, Simon F, Tucha O, Thome J. Dopamine adjusts the circadian gene expression of Per2 and Per3 in human dermal fibroblasts from ADHD patients. J Neural Transm (Vienna) 2021; 128:1135-1145. [PMID: 34275001 PMCID: PMC8295132 DOI: 10.1007/s00702-021-02374-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
A link between dopamine levels, circadian gene expression, and attention deficit hyperactivity disorder (ADHD) has already been demonstrated. The aim of this study was to investigate the extent of these relationships by measuring circadian gene expression in primary human-derived dermal fibroblast cultures (HDF) after dopamine exposure. We analyzed circadian preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls and participants with ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire (D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different dopamine concentrations in human dermal fibroblast (HDF) cultures, the rhythmicity of circadian gene expression (Clock, Bmal1, Per1-3, Cry1) was analyzed via qRT-PCR. We found no statistical significant effect in the actigraphy of both groups (healthy controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, wake after sleep onset, and total number of wake bouts. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with ADHD displayed both definitive and moderate evening preferences. Dopamine has no effect on Per3 expression in healthy controls, but produces a significant difference in the ADHD group at ZT24 and ZT28. In the ADHD group, incubation with dopamine, either 1 µM or 10 µM, resulted in an adjustment of Per3 expression to control levels. A similar effect also was found in the expression of Per2. Statistical significant differences in the expression of Per2 (ZT4) in the control group compared to the ADHD group were found, following incubation with dopamine. The present study illustrates that dopamine impacts on circadian function. The results lead to the suggestion that dopamine may improve the sleep quality as well as ADHD symptoms by adjustment of the circadian gene expression, especially for Per2 and Per3.
Collapse
Affiliation(s)
- Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Lena Borchert
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Centre Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
8
|
Liang Y, Huang R, Chen Y, Zhong J, Deng J, Wang Z, Wu Z, Li M, Wang H, Sun Y. Study on the Sleep-Improvement Effects of Hemerocallis citrina Baroni in Drosophila melanogaster and Targeted Screening to Identify Its Active Components and Mechanism. Foods 2021; 10:foods10040883. [PMID: 33920660 PMCID: PMC8072781 DOI: 10.3390/foods10040883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.
Collapse
|
9
|
Wong KY, Fernandez FX. Circadian Responses to Light-Flash Exposure: Conceptualization and New Data Guiding Future Directions. Front Neurol 2021; 12:627550. [PMID: 33643205 PMCID: PMC7905211 DOI: 10.3389/fneur.2021.627550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/21/2021] [Indexed: 01/03/2023] Open
Abstract
A growing number of studies document circadian phase-shifting after exposure to millisecond light flashes. When strung together by intervening periods of darkness, these stimuli evoke pacemaker responses rivaling or outmatching those created by steady luminance, suggesting that the circadian system's relationship to light can be contextualized outside the principle of simple dose-dependence. In the current review, we present a brief chronology of this work. We then develop a conceptual model around it that attempts to relate the circadian effects of flashes to a natural integrative process the pacemaker uses to intermittently sample the photic information available at dawn and dusk. Presumably, these snapshots are employed as building blocks in the construction of a coherent representation of twilight the pacemaker consults to orient the next day's physiology (in that way, flash-resetting of pacemaker rhythms might be less an example of a circadian visual illusion and more an example of the kinds of gestalt inferences that the image-forming system routinely makes when identifying objects within the visual field; i.e., closure). We conclude our review with a discussion on the role of cones in the pacemaker's twilight predictions, providing new electrophysiological data suggesting that classical photoreceptors—but not melanopsin—are necessary for millisecond, intermediate-intensity flash responses in ipRGCs (intrinsically photosensitive retinal ganglion cells). Future investigations are necessary to confirm this “Cone Sentinel Model” of circadian flash-integration and twilight-prediction, and to further define the contribution of cones vs. rods in transducing pacemaker flash signals.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Fabian-Xosé Fernandez
- Department of Psychology, BIO5 Research Institute, University of Arizona, Tucson, AZ, United States.,Department of Neurology, McKnight Brain Research Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Fellgett A, Middleton CA, Munns J, Ugbode C, Jaciuch D, Wilson LG, Chawla S, Elliott CJ. Multiple Pathways of LRRK2-G2019S/Rab10 Interaction in Dopaminergic Neurons. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1805-1820. [PMID: 34250948 PMCID: PMC8609683 DOI: 10.3233/jpd-202421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inherited mutations in the LRRK2 protein are common causes of Parkinson's disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. OBJECTIVE To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. METHODS LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern ('sleep'), and courtship memory determined in aged flies. RESULTS Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. CONCLUSION We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Jack Munns
- Department of Biology, University of York, York, UK
| | - Chris Ugbode
- Department of Biology, University of York, York, UK
| | | | - Laurence G. Wilson
- Department of Physics, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Christopher J.H. Elliott
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| |
Collapse
|
11
|
Di Nicolantonio M, Rossi E, Deli A, Marano A. The human centric lighting approach for the design of Age-Friendly products. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2020. [DOI: 10.1080/1463922x.2020.1742400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Emilio Rossi
- Lincoln School of Design, University of Lincoln, Lincoln, United Kingdom
| | - Aldo Deli
- Department of Architecture, University of Chieti-Pescara, Pescara, Italy
| | - Antonio Marano
- Department of Architecture, University of Chieti-Pescara, Pescara, Italy
| |
Collapse
|
12
|
Sasaki K, Goto K, Harano KI. Timing of male territorial flight and foraging of the large carpenter bee Xylocopa appendiculata related to serotonin in the brain. Naturwissenschaften 2020; 107:25. [PMID: 32495213 DOI: 10.1007/s00114-020-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022]
Abstract
To determine how males of the large carpenter bee, Xylocopa appendiculata, maximize access to females while minimizing energy cost and acquiring energy for territorial flights, we investigated the times of territorial flights by males and foraging by males and females. Males were present continuously in territories from 8:00 to 12:00. They approached, chased, and excluded conspecific males from their territories. In the laboratory, males showed higher locomotor and flight activities in the morning and lower activities in the afternoon. Both males and females visited flowers from 8:00 to 16:00, but the most frequent visits were earlier in females (10:00-12:00) than in males (12:00-13:00). Relative body weights in territorial males often increased. These results indicate that the males time their territorial flights to maximize contact with females and obtain nectar as fuel between and after the territorial flights. The time-related territorial flight in males might be based on a time-keeping system in the brain. Brain levels of serotonin and its precursor tryptophan were significantly higher in males collected at 16:00 than at 11:00, suggesting a relation between time-related territorial flight and serotonin synthesis in the brain.
Collapse
Affiliation(s)
- Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, 194-8610, Japan. .,Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, 194-8610, Japan.
| | - Kenta Goto
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, 194-8610, Japan
| | - Ken-Ichi Harano
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, 194-8610, Japan
| |
Collapse
|
13
|
Liang X, Ho MCW, Zhang Y, Li Y, Wu MN, Holy TE, Taghert PH. Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay. Neuron 2019; 102:843-857.e4. [PMID: 30981533 PMCID: PMC6533154 DOI: 10.1016/j.neuron.2019.03.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
Many animals exhibit morning and evening peaks of locomotor behavior. In Drosophila, two corresponding circadian neural oscillators-M (morning) cells and E (evening) cells-exhibit a corresponding morning or evening neural activity peak. Yet we know little of the neural circuitry by which distinct circadian oscillators produce specific outputs to precisely control behavioral episodes. Here, we show that ring neurons of the ellipsoid body (EB-RNs) display spontaneous morning and evening neural activity peaks in vivo: these peaks coincide with the bouts of locomotor activity and result from independent activation by M and E pacemakers. Further, M and E cells regulate EB-RNs via identified PPM3 dopaminergic neurons, which project to the EB and are normally co-active with EB-RNs. These in vivo findings establish the fundamental elements of a circadian neuronal output pathway: distinct circadian oscillators independently drive a common pre-motor center through the agency of specific dopaminergic interneurons.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 100871, China
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
An inexpensive air stream temperature controller and its use to facilitate temperature-controlled behavior in Drosophila. Biotechniques 2019; 66:159-161. [PMID: 30869545 DOI: 10.2144/btn-2018-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Controlling the environment of an organism has many biologically relevant applications. Temperature-dependent inducible biological reagents have proven invaluable for elucidating signaling cascades and dissection of neural circuits. Here we develop a simple and affordable system for rapidly changing temperature in a chamber housing adult Drosophila melanogaster. Utilizing flies expressing the temperature-inducible channel dTrpA1 in dopaminergic neurons we show rapid and reproducible changes in locomotor behavior. This device should have wide application to temperature-modulated biological reagents.
Collapse
|
15
|
De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018; 19:ijms19123911. [PMID: 30563246 PMCID: PMC6321023 DOI: 10.3390/ijms19123911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical and research studies have suggested a link between Parkinson’s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism’s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Mauro Agostino Zordan
- Department of Biology, University of Padova, 35131 Padova, Italy.
- Cognitive Neuroscience Center, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
16
|
Friedman DA, Pilko A, Skowronska-Krawczyk D, Krasinska K, Parker JW, Hirsh J, Gordon DM. The Role of Dopamine in the Collective Regulation of Foraging in Harvester Ants. iScience 2018; 8:283-294. [PMID: 30270022 PMCID: PMC6205345 DOI: 10.1016/j.isci.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
Colonies of the red harvester ant (Pogonomyrmex barbatus) differ in how they regulate collective foraging activity in response to changes in humidity. We used transcriptomic, physiological, and pharmacological experiments to investigate the molecular basis of this ecologically important variation in collective behavior among colonies. RNA sequencing of forager brain tissue showed an association between colony foraging activity and differential expression of transcripts related to biogenic amine and neurohormonal metabolism and signaling. In field experiments, pharmacological increases in forager brain dopamine titer caused significant increases in foraging activity. Colonies that were naturally most sensitive to humidity were significantly more responsive to the stimulatory effect of exogenous dopamine. In addition, forager brain tissue significantly varied among colonies in biogenic amine content. Neurophysiological variation among colonies associated with individual forager sensitivity to humidity may reflect the heritable molecular variation on which natural selection acts to shape the collective regulation of foraging.
Collapse
Affiliation(s)
- Daniel A Friedman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Anna Pilko
- Department of Chemistry and Biochemistry and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorota Skowronska-Krawczyk
- Shiley Eye Institute, Richard C. Atkinson Lab for Regenerative Ophthalmology, Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karolina Krasinska
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Jacqueline W Parker
- Department of Biology, University of Virginia, Charlottesville, Charlottesville, VA 22904, USA
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Charlottesville, VA 22904, USA
| | - Deborah M Gordon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Schlichting M, Rieger D, Cusumano P, Grebler R, Costa R, Mazzotta GM, Helfrich-Förster C. Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in Drosophila melanogaster. Front Mol Neurosci 2018; 11:238. [PMID: 30072870 PMCID: PMC6058042 DOI: 10.3389/fnmol.2018.00238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.
Collapse
Affiliation(s)
- Matthias Schlichting
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA, United States
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | - Rudi Grebler
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLoS Genet 2018; 14:e1007433. [PMID: 29879123 PMCID: PMC6007936 DOI: 10.1371/journal.pgen.1007433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence. Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In Drosophila, calcium and cAMP levels affect the periodicity of Drosophila circadian rhythms, but whether this is due to direct actions on the TTFLs themselves or is a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we used the non-neuronal circadian clock located in the prothoracic gland (PG) to show that these messengers affect the speed of the circadian clock that controls the timing of adult emergence and suggest that these actions are mediated by CREB. Importantly, since calcium and cAMP are also output signals of the clock, they may contribute to the mechanism that imposes a circadian gating to the timing of adult emergence.
Collapse
|
19
|
Himmelberg MM, West RJH, Elliott CJH, Wade AR. Abnormal visual gain control and excitotoxicity in early-onset Parkinson's disease Drosophila models. J Neurophysiol 2018; 119:957-970. [PMID: 29142100 PMCID: PMC5899316 DOI: 10.1152/jn.00681.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
The excitotoxic theory of Parkinson's disease (PD) hypothesizes that a pathophysiological degeneration of dopaminergic neurons stems from neural hyperactivity at early stages of disease, leading to mitochondrial stress and cell death. Recent research has harnessed the visual system of Drosophila PD models to probe this hypothesis. Here, we investigate whether abnormal visual sensitivity and excitotoxicity occur in early-onset PD (EOPD) Drosophila models DJ-1αΔ72, DJ-1βΔ 93, and PINK15. We used an electroretinogram to record steady-state visually evoked potentials driven by temporal contrast stimuli. At 1 day of age, all EOPD mutants had a twofold increase in response amplitudes compared with w̄ controls. Furthermore, we found that excitotoxicity occurs in older EOPD models after increased neural activity is triggered by visual stimulation. In an additional analysis, we used a linear discriminant analysis to test whether there were subtle variations in neural gain control that could be used to classify Drosophila into their correct age and genotype. The discriminant analysis was highly accurate, classifying Drosophila into their correct genotypic class at all age groups at 50-70% accuracy (20% chance baseline). Differences in cellular processes link to subtle alterations in neural network operation in young flies, all of which lead to the same pathogenic outcome. Our data are the first to quantify abnormal gain control and excitotoxicity in EOPD Drosophila mutants. We conclude that EOPD mutations may be linked to more sensitive neuronal signaling in prodromal animals that may cause the expression of PD symptomologies later in life. NEW & NOTEWORTHY Steady-state visually evoked potential response amplitudes to multivariate temporal contrast stimuli were recorded in early-onset PD Drosophila models. Our data indicate that abnormal gain control and a subsequent visual loss occur in these PD mutants, supporting a broader excitotoxicity hypothesis in genetic PD. Furthermore, linear discriminant analysis could accurately classify Drosophila into their correct genotype at different ages throughout their lifespan. Our results suggest increased neural signaling in prodromal PD patients.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, The University of York , York , United Kingdom
| | - Ryan J H West
- Department of Biology, The University of York , York , United Kingdom
| | | | - Alex R Wade
- Department of Psychology, The University of York , York , United Kingdom
| |
Collapse
|
20
|
Leal L, Talla V, Källman T, Friberg M, Wiklund C, Dincă V, Vila R, Backström N. Gene expression profiling across ontogenetic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation. Mol Ecol 2018; 27:935-948. [DOI: 10.1111/mec.14501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Luis Leal
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
- Department of Plant Ecology and Evolution; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Venkat Talla
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology; Uppsala Biomedical Centre (BMC); Uppsala Sweden
| | - Magne Friberg
- Department of Biology; Biodiversity Unit; Lund University; Lund Sweden
| | - Christer Wiklund
- Department of Zoology; Division of Ecology; Stockholm University; Stockholm Sweden
| | - Vlad Dincă
- Department of Ecology and Genetics; University of Oulu; Oulu Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF); Barcelona Spain
| | - Niclas Backström
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
21
|
Mishra I, Singh D, Kumar V. Temporal Expression of c-fos and Genes Coding for Neuropeptides and Enzymes of Amino Acid and Amine Neurotransmitter Biosynthesis in Retina, Pineal and Hypothalamus of a Migratory Songbird: Evidence for Circadian Rhythm-Dependent Seasonal Responses. Neuroscience 2017; 371:309-324. [PMID: 29273324 DOI: 10.1016/j.neuroscience.2017.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
This study investigated whether, in photoperiodic songbirds, the circadian pacemaker system (CPS) connects to the seasonal photoperiodic responses, by changes at transcriptional level in the level and 24-h rhythm of its constituent neurotransmitters. We used black-headed buntings (Emberiza melanocephala), which exhibit distinct seasonal states in captivity under appropriate photoperiods and hence served as a useful model system. Under short days, buntings remain in the photosensitive state (Pse) (winter phenotype: non-migratory, non-breeding). Under long days, however, buntings undergo through early-photostimulated (spring phenotype: pre-migratory, pre-breeding), late photostimulated (summer phenotype: migratory, breeding) and photorefractory (autumn phenotype: post-breeding) states. During all four seasonal states, we measured in the retina, pineal and hypothalamus, which together form avian CPS, 4-hourly mRNA expression of c-fos (a neuronal-activity marker) and of genes coding for neuropeptides (vasoactive intestinal peptide, vip; somatostatin, sst; neuropeptide Y, npy) and for intermediary enzymes of amino acid (glutamate: glutaminase, gls and glutamic-oxaloacetic transaminase 2, got2; GABA: glutamic acid decarboxylase, gad65) and amine (dopamine: tyrosine hydroxylase, th) neurotransmitters biosynthetic pathway. There was a significant alteration in level and 24-h pattern of mRNA expression, albeit with seasonal differences in presence, waveform parameters and phase relationship of 24-h rhythm, of different genes. Particularly, mRNA expression of all candidate genes (except hypothalamic vip, pineal gls and retinal th) was arrhythmic in late photostimulated state. These results underscore that circadian rhythm of peptide, amino acid and amine neurotransmitter biosynthesis in CPS plays a critical role in the photoperiodic regulation of seasonal states in birds.
Collapse
Affiliation(s)
- Ila Mishra
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
22
|
Niens J, Reh F, Çoban B, Cichewicz K, Eckardt J, Liu YT, Hirsh J, Riemensperger TD. Dopamine Modulates Serotonin Innervation in the Drosophila Brain. Front Syst Neurosci 2017; 11:76. [PMID: 29085286 PMCID: PMC5650618 DOI: 10.3389/fnsys.2017.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/28/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) results from a progressive degeneration of the dopaminergic nigrostriatal system leading to a decline in movement control, with resting tremor, rigidity and postural instability. Several aspects of PD can be modeled in the fruit fly, Drosophila melanogaster, including α-synuclein-induced degeneration of dopaminergic neurons, or dopamine (DA) loss by genetic elimination of neural DA synthesis. Defective behaviors in this latter model can be ameliorated by feeding the DA precursor L-DOPA, analogous to the treatment paradigm for PD. Secondary complication from L-DOPA treatment in PD patients are associated with ectopic synthesis of DA in serotonin (5-HT)-releasing neurons, leading to DA/5-HT imbalance. Here we examined the neuro-anatomical adaptations resulting from imbalanced DA/5-HT signaling in Drosophila mutants lacking neural DA. We find that, similar to rodent models of PD, lack of DA leads to increased 5-HT levels and arborizations in specific brain regions. Conversely, increased DA levels by L-DOPA feeding leads to reduced connectivity of 5-HT neurons to their target neurons in the mushroom body (MB). The observed alterations of 5-HT neuron plasticity indicate that loss of DA signaling is not solely responsible for the behavioral disorders observed in Drosophila models of PD, but rather a combination of the latter with alterations of 5-HT circuitry.
Collapse
Affiliation(s)
- Janna Niens
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Fabienne Reh
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Büşra Çoban
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Julia Eckardt
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yi-Ting Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Thomas D Riemensperger
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Julienne H, Buhl E, Leslie DS, Hodge JJL. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes. Neurobiol Dis 2017; 104:15-23. [PMID: 28435104 PMCID: PMC5469398 DOI: 10.1016/j.nbd.2017.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is more commonly associated with its motor symptoms and the related degeneration of dopamine (DA) neurons. However, it is becoming increasingly clear that PD patients also display a wide range of non-motor symptoms, including memory deficits and disruptions of their sleep-wake cycles. These have a large impact on their quality of life, and often precede the onset of motor symptoms, but their etiology is poorly understood. The fruit fly Drosophila has already been successfully used to model PD, and has been used extensively to study relevant non-motor behaviours in other contexts, but little attention has yet been paid to modelling non-motor symptoms of PD in this genetically tractable organism. We examined memory performance and circadian rhythms in flies with loss-of-function mutations in two PD genes: PINK1 and parkin. We found learning and memory abnormalities in both mutant genotypes, as well as a weakening of circadian rhythms that is underpinned by electrophysiological changes in clock neurons. Our study paves the way for further work that may help us understand the mechanisms underlying these neglected aspects of PD, thus identifying new targets for treatments to address these non-motor problems specifically and perhaps even to halt disease progression in its prodromal phase.
Collapse
Affiliation(s)
- Hannah Julienne
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - David S Leslie
- Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
24
|
Frenkel L, Muraro NI, Beltrán González AN, Marcora MS, Bernabó G, Hermann-Luibl C, Romero JI, Helfrich-Förster C, Castaño EM, Marino-Busjle C, Calvo DJ, Ceriani MF. Organization of Circadian Behavior Relies on Glycinergic Transmission. Cell Rep 2017; 19:72-85. [DOI: 10.1016/j.celrep.2017.03.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/30/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022] Open
|
25
|
Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Sci Rep 2016; 6:37784. [PMID: 27883065 PMCID: PMC5121609 DOI: 10.1038/srep37784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
Collapse
|
26
|
Cichewicz K, Garren EJ, Adiele C, Aso Y, Wang Z, Wu M, Birman S, Rubin GM, Hirsh J. A new brain dopamine-deficient Drosophila and its pharmacological and genetic rescue. GENES BRAIN AND BEHAVIOR 2016; 16:394-403. [PMID: 27762066 DOI: 10.1111/gbb.12353] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Dopamine (DA) is a neurotransmitter with conserved behavioral roles between invertebrate and vertebrate animals. In addition to its neural functions, in insects DA is a critical substrate for cuticle pigmentation and hardening. Drosophila tyrosine hydroxylase (DTH) is the rate limiting enzyme for DA biosynthesis. Viable brain DA-deficient flies were previously generated using tissue-selective GAL4-UAS binary expression rescue of a DTH null mutation and these flies show specific behavioral impairments. To circumvent the limitations of rescue via binary expression, here we achieve rescue utilizing genomically integrated mutant DTH. As expected, our DA-deficient flies have no detectable DTH or DA in the brain, and show reduced locomotor activity. This deficit can be rescued by l-DOPA/carbidopa feeding, similar to human Parkinson's disease treatment. Genetic rescue via GAL4/UAS-DTH was also successful, although this required the generation of a new UAS-DTH1 transgene devoid of most untranslated regions, as existing UAS-DTH transgenes express in the brain without a Gal4 driver via endogenous regulatory elements. A surprising finding of our newly constructed UAS-DTH1m is that it expresses DTH at an undetectable level when regulated by dopaminergic GAL4 drivers even when fully rescuing DA, indicating that DTH immunostaining is not necessarily a valid marker for DA expression. This finding necessitated optimizing DA immunohistochemistry, showing details of DA innervation to the mushroom body and the central complex. When DA rescue is limited to specific DA neurons, DA does not diffuse beyond the DTH-expressing terminals, such that DA signaling can be limited to very specific brain regions.
Collapse
Affiliation(s)
- K Cichewicz
- Department of Biology, University of Virginia, Charlottesville
| | - E J Garren
- Department of Biology, University of Virginia, Charlottesville
| | - C Adiele
- Department of Biology, University of Virginia, Charlottesville
| | - Y Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Z Wang
- Department of Biology, University of Virginia, Charlottesville
| | - M Wu
- Department of Biology, University of Virginia, Charlottesville
| | - S Birman
- Genes, Circuits, Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - G M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - J Hirsh
- Department of Biology, University of Virginia, Charlottesville
| |
Collapse
|
27
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
28
|
Mishra I, Singh D, Kumar V. Daily expression of genes coding for neurotransmitters in central and peripheral tissues of redheaded bunting: Implication for circadian regulation of physiology in songbirds. Chronobiol Int 2016; 33:280-92. [DOI: 10.3109/07420528.2016.1139587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Devraj Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Caffeine promotes wakefulness via dopamine signaling in Drosophila. Sci Rep 2016; 6:20938. [PMID: 26868675 PMCID: PMC4751479 DOI: 10.1038/srep20938] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine.
Collapse
|
30
|
Genomic Patterns of Geographic Differentiation in Drosophila simulans. Genetics 2016; 202:1229-40. [PMID: 26801179 DOI: 10.1534/genetics.115.185496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022] Open
Abstract
Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair.
Collapse
|
31
|
Yoshii T, Hermann-Luibl C, Helfrich-Förster C. Circadian light-input pathways in Drosophila. Commun Integr Biol 2016; 9:e1102805. [PMID: 27066180 PMCID: PMC4802797 DOI: 10.1080/19420889.2015.1102805] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/02/2022] Open
Abstract
Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-studied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called "clock neurons" and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock.
Collapse
Affiliation(s)
- Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
32
|
Li D, Su Y, Tu J, Wei R, Fan X, Yin H, Hu Y, Xu H, Yao Y, Yang D, Yang M. Evolutionary conservation of the circadian gene timeout in Metazoa. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Timeless (Tim) is considered to function as an essential circadian clock gene in Drosophila. Putative homologues of the Drosophila timeless gene have been identified in both mice and humans. While Drosophila contains two paralogs, timeless and timeout, acting in clock/light entrainment and chromosome integrity/photoreception, respectively, mammals contain only one Tim homolog. In this paper, we study the phylogeny of the timeless/timeout family in 48 species [including 1 protozoan (Guillardia theta), 1 nematode (Caenorhabditis elegans), 8 arthropods and 38 chordates], for which whole genome data are available by using MEGA (Molecular Evolutionary Genetics Analysis). Phylogenetic Analysis by Maximum Likelihood (PAML) was used to analyze the selective pressure acting on metazoan timeless/timeout genes. Our phylogeny clearly separates insect timeless and timeout lineages and shows that non-insect animal Tim genes are homologs of insect timeout. In this study, we explored the relatively rapidly evolving timeless lineage that was apparently lost from most deuterostomes, including chordates, and from Caenorhabditis elegans. In contrast, we found that the timeout protein, often confusingly called “timeless” in the vertebrate literature, is present throughout the available animal genomes. Selection results showed that timeout is under weaker negative selection than timeless. Finally, our phylogeny of timeless/timeout showed an evolutionary conservation of the circadian clock gene timeout in Metazoa. This conservation is in line with its multifunctionality, being essential for embryonic development and maintenance of chromosome integrity, among others.
Collapse
Affiliation(s)
- Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yuan Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Jianbo Tu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Ranlei Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yaodong Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Huailiang Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yongfang Yao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| |
Collapse
|
33
|
Abstract
Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.
Collapse
|
34
|
Hanna ME, Bednářová A, Rakshit K, Chaudhuri A, O'Donnell JM, Krishnan N. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2015; 73:11-19. [PMID: 25585352 PMCID: PMC4699656 DOI: 10.1016/j.jinsphys.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
The impact of mutations in four essential genes involved in dopamine (DA) synthesis and transport on longevity, motor behavior, and resistance to oxidative stress was monitored in Drosophila melanogaster. The fly lines used for this study were: (i) a loss of function mutation in Catecholamines up (Catsup(26)), which is a negative regulator of the rate limiting enzyme for DA synthesis, (ii) a mutant for the gene pale (ple(2)) that encodes for the rate limiting enzyme tyrosine hydroxylase (TH), (iii) a mutant for the gene Punch (Pu(Z22)) that encodes guanosine triphosphate cyclohydrolase, required for TH activity, and (iv) a mutant in the vesicular monoamine transporter (VMAT(Δ14)), which is required for packaging of DA as vesicles inside DA neurons. Median lifespans of ple(2), Pu(Z22) and VMAT(Δ14) mutants were significantly decreased compared to Catsup(26) and wild type controls that did not significantly differ between each other. Catsup(26) flies survived longer when exposed to hydrogen peroxide (80 μM) or paraquat (10mM) compared to ple(2), Pu(Z22) or VMAT(Δ14) and controls. These flies also exhibited significantly higher negative geotaxis activity compared to ple(2), Pu(Z22), VMAT(Δ14) and controls. All mutant flies demonstrated rhythmic circadian locomotor activity in general, albeit Catsup(26) and VMAT(Δ14) flies had slightly weaker rhythms. Expression analysis of some key antioxidant genes revealed that glutathione S-transferase Omega-1 (GSTO1) expression was significantly up-regulated in all DA synthesis pathway mutants and especially in Catsup(26) and VMAT(Δ14) flies at both mRNA and protein levels. Taken together, we hypothesize that DA could directly influence GSTO1 transcription and thus play a significant role in the regulation of response to oxidative stress. Additionally, perturbations in DA synthesis do not appear to have a significant impact on circadian locomotor activity rhythms per se, but do have an influence on general locomotor activity levels.
Collapse
Affiliation(s)
- Marley E Hanna
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrea Bednářová
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Entomology, Biology Centre, Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Anathbandhu Chaudhuri
- Department of Natural Sciences, Stinson Mathematics and Science Building, 3601 Stillman Blvd, Stillman College, Tuscaloosa, AL 35043, USA
| | - Janis M O'Donnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
35
|
Schlichting M, Helfrich-Förster C. Photic entrainment in Drosophila assessed by locomotor activity recordings. Methods Enzymol 2014; 552:105-23. [PMID: 25707274 DOI: 10.1016/bs.mie.2014.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Light is the most important Zeitgeber to entrain the circadian clock of the fruit fly Drosophila melanogaster to the 24-h cycle on earth. The fruit fly's circadian clock is very light sensitive, mainly because about half of the 150 clock neurons in the fly's brain express the blue-light photopigment, Cryptochrome, which provokes an immediate degradation of the clock protein Timeless upon activation by light. Consequently, Drosophila's molecular clock can reset very fast to measure the changes in environmental-lighting conditions. However, usually the responses of the molecular clock to light are not directly measured, but conclusions about entrainment of the circadian clock are drawn from recording the flies' locomotor activity rhythms. Here, we review how the flies' locomotor activity can be recorded under different light regimes and how entrainment can be analyzed and properly judged. We also summarize the influence of different recording and lighting methods on the flies' activity pattern, highlight their advantages and disadvantages, and stress general pitfalls.
Collapse
Affiliation(s)
- Matthias Schlichting
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Hariharan R, Hoffman JM, Thomas AS, Soltow QA, Jones DP, Promislow DEL. Invariance and plasticity in the Drosophila melanogaster metabolomic network in response to temperature. BMC SYSTEMS BIOLOGY 2014; 8:139. [PMID: 25540032 PMCID: PMC4302152 DOI: 10.1186/s12918-014-0139-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
Background Metabolomic responses to extreme thermal stress have recently been investigated in Drosophila melanogaster. However, a network level understanding of metabolomic responses to longer and less drastic temperature changes, which more closely reflect variation in natural ambient temperatures experienced during development and adulthood, is currently lacking. Here we use high-resolution, non-targeted metabolomics to dissect metabolomic changes in D. melanogaster elicited by moderately cool (18°C) or warm (27°C) developmental and adult temperature exposures. Results We find that temperature at which larvae are reared has a dramatic effect on metabolomic network structure measured in adults. Using network analysis, we are able to identify modules that are highly differentially expressed in response to changing developmental temperature, as well as modules whose correlation structure is strongly preserved across temperature. Conclusions Our results suggest that the effect of temperature on the metabolome provides an easily studied and powerful model for understanding the forces that influence invariance and plasticity in biological networks. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramkumar Hariharan
- Department of Pathology, University of Washington, Box 357705, Seattle, WA, 98195, USA. .,Laboratory for Integrated Bioinformatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Jessica M Hoffman
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Ariel S Thomas
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA. .,Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63108, USA.
| | - Quinlyn A Soltow
- Division of Pulmonary Allergy & Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA. .,Department of Medicine, Clinical Biomarkers Laboratory, Emory University, Atlanta, GA, 30322, USA. .,ClinMet Inc, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Dean P Jones
- Division of Pulmonary Allergy & Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA. .,Department of Medicine, Clinical Biomarkers Laboratory, Emory University, Atlanta, GA, 30322, USA.
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Box 357705, Seattle, WA, 98195, USA. .,Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
37
|
Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS One 2014; 9:e86240. [PMID: 24465981 PMCID: PMC3900505 DOI: 10.1371/journal.pone.0086240] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022] Open
Abstract
Disturbances of the daily sleep/wake cycle are common non-motor symptoms of Parkinson's disease (PD). However, the impact of dopamine (DA) depletion on circadian rhythms in PD patients or non-human primate (NHP) models of the disorder have not been investigated. We evaluated alterations of circadian rhythms in NHP following MPTP lesion of the dopaminergic nigro-striatal system. DA degeneration was assessed by in vivo PET ([(11)C]-PE2I) and post-mortem TH and DAT quantification. In a light∶dark cycle, control and MPTP-treated NHP both exhibit rest-wake locomotor rhythms, although DA-depleted NHP show reduced amplitude, decreased stability and increased fragmentation. In all animals, 6-sulphatoxymelatonin peaks at night and cortisol in early morning. When the circadian system is challenged by exposure to constant light, controls retain locomotor rest-wake and hormonal rhythms that free-run with stable phase relationships whereas in the DA-depleted NHP, locomotor rhythms are severely disturbed or completely abolished. The amplitude and phase relations of hormonal rhythms nevertheless remain unaltered. Use of a light-dark masking paradigm shows that expression of daily rest-wake activity in MPTP monkeys requires the stimulatory and inhibitory effects of light and darkness. These results suggest that following DA lesion, the central clock in the SCN remains intact but, in the absence of environmental timing cues, is unable to drive downstream rhythmic processes of striatal clock gene and dopaminergic functions that control locomotor output. These findings suggest that the circadian component of the sleep-wake disturbances in PD is more profoundly affected than previously assumed.
Collapse
|
38
|
Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Int J Mol Sci 2014; 15:629-53. [PMID: 24398985 PMCID: PMC3907829 DOI: 10.3390/ijms15010629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.
Collapse
|
39
|
Hanafusa S, Kawaguchi T, Umezaki Y, Tomioka K, Yoshii T. Sexual interactions influence the molecular oscillations in DN1 pacemaker neurons in Drosophila melanogaster. PLoS One 2013; 8:e84495. [PMID: 24367668 PMCID: PMC3867508 DOI: 10.1371/journal.pone.0084495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/14/2013] [Indexed: 11/24/2022] Open
Abstract
Circadian rhythms can synchronize to environmental time cues, such as light, temperature, humidity, and food availability. Previous studies have suggested that these rhythms can also be entrained by social interactions. Here, we used Drosophila melanogaster as a model to study the influence of socio-sexual interactions on the circadian clock in behavior and pacemaker neurons. If two flies of opposite sex were paired and kept in a small space, the daily activity patterns of the two flies were clearly different from the sum of the activity of single male and female flies. Compared with single flies, paired flies were more active in the night and morning, were more active during females’ active phase, and were less active during males’ active phase. These behavioral phenotypes are related to courtship behavior, but not to the circadian clock. Nevertheless, in male-female pairs of flies with clocks at different speeds (wild-type and perS flies), clock protein cycling in the DN1 pacemaker neurons in the male brain were slightly influenced by their partners. These results suggest that sexual interactions between male-female couples can serve as a weak zeitgeber for the DN1 pacemaker neurons, but the effect is not sufficient to alter rhythms of behavioral activity.
Collapse
Affiliation(s)
- Shiho Hanafusa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomoaki Kawaguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yujiro Umezaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
40
|
Vinayak P, Coupar J, Hughes SE, Fozdar P, Kilby J, Garren E, Yoshii T, Hirsh J. Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PLoS Genet 2013; 9:e1003615. [PMID: 23874218 PMCID: PMC3715431 DOI: 10.1371/journal.pgen.1003615] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 12/17/2022] Open
Abstract
Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles. We investigate the paradox that fruit flies show exquisite light sensitivity for day/night circadian clock functions, yet the circadian photoreceptor cryptochrome (CRY) responds only to very high light levels in assays requiring immediate responses. Our in vivo behavioral assays are unique in that we expose flies to dim and limiting levels of light. We find that CRY integrates photons efficiently over time periods of at least six hours, with light sensitivity unexpectedly increasing with duration of light exposure. This contrasts with image-forming responses that occur on millisecond time scales in Drosophila. We show that light dependent degradation of the CRY target timeless (TIM) occurs at limiting light levels, closely paralleling behavioral effects, in the circadian pacemaker neurons. One of these neurons shows particularly strong light sensitivity, and a particularly strong temporal integration effect. We have thus identified the precise step at which temporal integration is functioning. The structurally unrelated vertebrate circadian photoreceptor melanopsin also shows the ability to integrate photons over time, though not to the extent of Drosophila CRY. We thus conclude that temporal integration is a universal mechanism to enhance photosensitivity of non-visual photopigments.
Collapse
Affiliation(s)
- Pooja Vinayak
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - Jamie Coupar
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - S. Emile Hughes
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - Preeya Fozdar
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - Jack Kilby
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - Emma Garren
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Jay Hirsh
- University of Virginia, Department of Biology, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED, Dayan T, Helfrich-Forster C. Chronobiology by moonlight. Proc Biol Sci 2013; 280:20123088. [PMID: 23825199 DOI: 10.1098/rspb.2012.3088] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most studies in chronobiology focus on solar cycles (daily and annual). Moonlight and the lunar cycle received considerably less attention by chronobiologists. An exception are rhythms in intertidal species. Terrestrial ecologists long ago acknowledged the effects of moonlight on predation success, and consequently on predation risk, foraging behaviour and habitat use, while marine biologists have focused more on the behaviour and mainly on reproduction synchronization with relation to the Moon phase. Lately, several studies in different animal taxa addressed the role of moonlight in determining activity and studied the underlying mechanisms. In this paper, we review the ecological and behavioural evidence showing the effect of moonlight on activity, discuss the adaptive value of these changes, and describe possible mechanisms underlying this effect. We will also refer to other sources of night-time light ('light pollution') and highlight open questions that demand further studies.
Collapse
|
42
|
Hindle S, Afsari F, Stark M, Middleton CA, Evans GJ, Sweeney ST, Elliott CJ. Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy. Hum Mol Genet 2013; 22:2129-40. [PMID: 23396536 PMCID: PMC3652415 DOI: 10.1093/hmg/ddt061] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is associated with loss of dopaminergic signalling, and affects not just movement, but also vision. As both mammalian and fly visual systems contain dopaminergic neurons, we investigated the effect of LRRK2 mutations (the most common cause of inherited PD) on Drosophila electroretinograms (ERGs). We reveal progressive loss of photoreceptor function in flies expressing LRRK2-G2019S in dopaminergic neurons. The photoreceptors showed elevated autophagy, apoptosis and mitochondrial disorganization. Head sections confirmed extensive neurodegeneration throughout the visual system, including regions not directly innervated by dopaminergic neurons. Other PD-related mutations did not affect photoreceptor function, and no loss of vision was seen with kinase-dead transgenics. Manipulations of the level of Drosophila dLRRK suggest G2019S is acting as a gain-of-function, rather than dominant negative mutation. Increasing activity of the visual system, or of just the dopaminergic neurons, accelerated the G2019S-induced deterioration of vision. The fly visual system provides an excellent, tractable model of a non-autonomous deficit reminiscent of that seen in PD, and suggests that increased energy demand may contribute to the mechanism by which LRRK2-G2019S causes neurodegeneration.
Collapse
|
43
|
Lee G, Kikuno K, Bahn JH, Kim KM, Park JH. Dopamine D2 Receptor as a Cellular Component Controlling Nocturnal Hyperactivities inDrosophila melanogaster. Chronobiol Int 2013; 30:443-59. [DOI: 10.3109/07420528.2012.741169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 2012; 22:2114-23. [PMID: 23022067 PMCID: PMC3505250 DOI: 10.1016/j.cub.2012.09.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND The neuronal circuitry underlying sleep is poorly understood. Although dopamine (DA) is thought to play a key role in sleep/wake regulation, the identities of the individual DA neurons and their downstream targets required for this process are unknown. RESULTS Here, we identify a DA neuron in each PPL1 cluster that promotes wakefulness in Drosophila. Imaging data suggest that the activity of these neurons is increased during wakefulness, consistent with a role in promoting arousal. Strikingly, these neurons project to the dorsal fan-shaped body, which has previously been shown to promote sleep. The reduced sleep caused by activation of DA neurons can be blocked by loss of DopR, and restoration of DopR expression in the fan-shaped body can rescue the wake-promoting effects of DA in a DopR mutant background. CONCLUSIONS These experiments define a novel arousal circuit at the single-cell level. Because the dorsal fan-shaped body promotes sleep, these data provide a key link between wake and sleep circuits. Furthermore, these findings suggest that inhibition of sleep centers via monoaminergic signaling is an evolutionarily conserved mechanism to promote arousal.
Collapse
Affiliation(s)
- Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
45
|
Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 2012; 193:159-76. [PMID: 23086220 DOI: 10.1534/genetics.112.142042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.
Collapse
|
46
|
Videnovic A, Golombek D. Circadian and sleep disorders in Parkinson's disease. Exp Neurol 2012; 243:45-56. [PMID: 22935723 DOI: 10.1016/j.expneurol.2012.08.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
Impaired sleep and alertness, initially recognized by James Parkinson in his famous monograph "An Essay on the Shaking Palsy" in 1817, is one of the most common and disabling nonmotor symptoms of Parkinson's disease (PD). It is only recently, however, that sleep disturbances in PD have received the attention of medical and research community. Dopamine, the major neurotransmitter implicated in the pathogenesis of PD, plays a pivotal role in the regulation of sleep and circadian homeostasis. Sleep dysfunction affects up to 90% of patients with PD, and may precede the onset of the disease by decades. Sleep dysfunction in PD may be categorized into disturbances of overnight sleep and daytime alertness. Etiology of impaired sleep and alertness in PD is multifactorial. Co-existent primary sleep disorders, medication side effects, overnight re-emergence of motor symptoms, and primary neurodegeneration itself, are main causes of sleep disruption and excessive daytime sleepiness among patients with PD. Increasing body of evidence suggests that the circadian system becomes dysregulated in PD, which may lead to poor sleep and alertness. Treatment options are limited and frequently associated with unwanted side effects. Further studies that will examine pathophysiology of sleep dysfunction in PD, and focus on novel treatment approaches are therefore very much needed. In this article we review the role of dopamine in regulation of sleep and alertness and discuss main sleep and circadian disturbances associated with PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- PD and Movement Disorders Center, Circadian Rhythms and Sleep Research Laboratory, Department of Neurology, Northwestern University, 710 N Lake Shore Dr #1106, Chicago, IL 60611, USA.
| | | |
Collapse
|
47
|
Kistenpfennig C, Hirsh J, Yoshii T, Helfrich-Förster C. Phase-shifting the fruit fly clock without cryptochrome. J Biol Rhythms 2012; 27:117-25. [PMID: 22476772 DOI: 10.1177/0748730411434390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The blue light photopigment cryptochrome (CRY) is thought to be the main circadian photoreceptor of Drosophila melanogaster. Nevertheless, entrainment to light-dark cycles is possible without functional CRY. Here, we monitored phase response curves of cry(01) mutants and control flies to 1-hour 1000-lux light pulses. We found that cry(01) mutants phase-shift their activity rhythm in the subjective early morning and late evening, although with reduced magnitude. This phase-shifting capability is sufficient for the slowed entrainment of the mutants, indicating that the eyes contribute to the clock's light sensitivity around dawn and dusk. With longer light pulses (3 hours and 6 hours), wild-type flies show greatly enhanced magnitude of phase shift, but CRY-less flies seem impaired in the ability to integrate duration of the light pulse in a wild-type manner: Only 6-hour light pulses at circadian time 21 significantly increased the magnitude of phase advances in cry(01) mutants. At circadian time 15, the mutants exhibited phase advances instead of the expected delays. These complex results are discussed.
Collapse
|
48
|
Szular J, Sehadova H, Gentile C, Szabo G, Chou WH, Britt SG, Stanewsky R. Rhodopsin 5- and Rhodopsin 6-mediated clock synchronization in Drosophila melanogaster is independent of retinal phospholipase C-β signaling. J Biol Rhythms 2012; 27:25-36. [PMID: 22306971 DOI: 10.1177/0748730411431673] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.
Collapse
Affiliation(s)
- Joanna Szular
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila. PLoS One 2012; 7:e36477. [PMID: 22574167 PMCID: PMC3344876 DOI: 10.1371/journal.pone.0036477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 04/06/2012] [Indexed: 11/23/2022] Open
Abstract
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.
Collapse
|
50
|
Rieger D, Peschel N, Dusik V, Glotz S, Helfrich-Förster C. The Ability to Entrain to Long Photoperiods Differs between 3 Drosophila melanogaster Wild-Type Strains and Is Modified by Twilight Simulation. J Biol Rhythms 2012; 27:37-47. [DOI: 10.1177/0748730411420246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability to adapt to different environmental conditions including seasonal changes is a key feature of the circadian clock. Here, we compared the ability of 3 Drosophila melanogaster wild-type strains to adapt rhythmic activity to long photoperiods simulated in the laboratory. Fruit flies are predominantly crepuscular with activity bouts in the morning (M) and evening (E). The M peak follows dawn and the E peak follows dusk when the photoperiod is extended. We show that this ability is restricted to a certain extension of the phase angle between M and E peaks, such that the E peak does not delay beyond a certain phase under long days. We demonstrate that this ability is significantly improved by simulated twilight and that it depends additionally on the genetic background and the ambient temperature. At 20 °C, the laboratory strain CantonS had the most flexible phase angle between M and E peaks, a Northern wild-type strain had an intermediate one, and a Southern wild-type strain had the lowest flexibility. Furthermore, we found that the 3 strains differed in clock light sensitivity, with the CantonS and the Northern strains more light sensitive than the Southern strain. These results are generally in accord with the recently discovered polymorphisms in the timeless gene ( tim) that affect clock light sensitivity.
Collapse
Affiliation(s)
- Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicolai Peschel
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Verena Dusik
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Silvia Glotz
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|