1
|
Wen Y, Ren C, Zhu L, Huang L, Qi H, Yu W, Wang K, Zhao M, Xu Q. Unmasking of molecular players: proteomic profiling of vitreous humor in pathologic myopia. BMC Ophthalmol 2024; 24:352. [PMID: 39160465 PMCID: PMC11334356 DOI: 10.1186/s12886-024-03584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND This study aimed to identify the differentially expressed proteins in the vitreous humor (VH) of eyes with and without pathologic myopia (PM), providing insights into the molecular pathogenesis. METHODS A cross-sectional, observational study was conducted. VH samples were collected from patients undergoing vitrectomy for idiopathic epiretinal membrane (ERM), macular hole (MH), or myopic retinoschisis (MRS). Label-free quantitative proteomic analysis identified differential protein expression, with validation using ELISA. RESULTS The proteomic profiling revealed significantly higher expressions of tubulin alpha 1a (TUBA1A) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) in PM groups (MH-PM, MRS-PM) compared to controls (MH, ERM). Conversely, xylosyltransferase 1 (XYLT1), versican core protein (VCAN), and testican-2 (SPOCK2) expressions were lower in PM. ELISA validation confirmed these findings. CONCLUSIONS Our study provides novel insights into the molecular mechanisms of PM. The differentially expressed proteins EEF1A1, TUBA1A, XYLT1, VCAN, and SPOCK2 may play crucial roles in chorioretinal cell apoptosis, scleral extracellular matrix (ECM) synthesis, and scleral remodeling in PM. These proteins represent potential new targets for therapeutic intervention in PM, highlighting the importance of further investigations to elucidate their functions and underlying mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Yue Wen
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Chi Ren
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Huijun Qi
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Wenzhen Yu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Kai Wang
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Beijing, China
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China.
- College of Optometry, Peking University People's Hospital, Beijing, China.
- Eye Disease and Optometry Institute, Beijing, China.
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China.
| | - Qiong Xu
- Department of Ophthalmology, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China.
- College of Optometry, Peking University People's Hospital, Beijing, China.
- Eye Disease and Optometry Institute, Beijing, China.
- Peking University Health Science Center, No. 11 South Avenue of XiZhiMen, Xi Cheng District, 100044, Beijing, China.
| |
Collapse
|
2
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Sekiya T, Hidano S, Takaki S. Tonic TCR and IL-1β signaling mediate phenotypic alterations of naive CD4 + T cells. Cell Rep 2024; 43:113954. [PMID: 38492221 DOI: 10.1016/j.celrep.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Inert naive CD4+ T (TN) cells differentiate into functional T helper (Th) or regulatory T (Treg) cell subsets upon encountering antigens, mediating properly directed immune responses. Although all TN cells can differentiate into any of the Th and Treg cell subsets, heterogeneity exists among TN cells. By constructing reporter mice to detect ongoing T cell receptor (TCR) signaling, we identify that interleukin (IL)-1β signaling affects TN cell characteristics, independent of tonic TCR signaling, which also alters TN cell phenotypes. IL-1β reversibly attenuates the differentiation potential of TN cells toward Treg cells. IL-1β signaling is elevated in the splenic TN cells, consequently attenuating their differentiation potential toward Treg cells. Aberrant elevation of IL-1β signaling augments colitogenic activities of TN cells. TN cells in patients with colitis exhibited elevated IL-1β signaling. We demonstrate that phenotypic alteration in TN cells by IL-1β is an important mechanism in the regulation of immune responses.
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan; Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan.
| | - Shinya Hidano
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| |
Collapse
|
4
|
Gonzalez-Cárdenas M, Treviño V. The Impact of Mutational Hotspots on Cancer Survival. Cancers (Basel) 2024; 16:1072. [PMID: 38473427 DOI: 10.3390/cancers16051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cofactors, biomarkers, and the mutational status of genes such as TP53, EGFR, IDH1/2, or PIK3CA have been used for patient stratification. However, many genes exhibit recurrent mutational positions known as hotspots, specifically linked to varying degrees of survival outcomes. Nevertheless, few hotspots have been analyzed (e.g., TP53 and EGFR). Thus, many other genes and hotspots remain unexplored. METHODS We systematically screened over 1400 hotspots across 33 TCGA cancer types. We compared the patients carrying a hotspot against (i) all cases, (ii) gene-mutated cases, (iii) other mutated hotspots, or (iv) specific hotspots. Due to the limited number of samples in hotspots and the inherent group imbalance, besides Cox models and the log-rank test, we employed VALORATE to estimate their association with survival precisely. RESULTS We screened 1469 hotspots in 6451 comparisons, where 314 were associated with survival. Many are discussed and linked to the current literature. Our findings demonstrate associations between known hotspots and survival while also revealing more potential hotspots. To enhance accessibility and promote further investigation, all the Kaplan-Meier curves, the log-rank tests, Cox statistics, and VALORATE-estimated null distributions are accessible on our website. CONCLUSIONS Our analysis revealed both known and putatively novel hotspots associated with survival, which can be used as biomarkers. Our web resource is a valuable tool for cancer research.
Collapse
Affiliation(s)
- Melissa Gonzalez-Cárdenas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| | - Víctor Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
5
|
Wang S, Sun S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol Neurodegener 2023; 18:58. [PMID: 37626421 PMCID: PMC10464328 DOI: 10.1186/s13024-023-00642-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
RNA translation is tightly controlled in eukaryotic cells to regulate gene expression and maintain proteome homeostasis. RNA binding proteins, translation factors, and cell signaling pathways all modulate the translation process. Defective translation is involved in multiple neurological diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder and poses a major public health challenge worldwide. Over the past few years, tremendous advances have been made in the understanding of the genetics and pathogenesis of ALS. Dysfunction of RNA metabolisms, including RNA translation, has been closely associated with ALS. Here, we first introduce the general mechanisms of translational regulation under physiological and stress conditions and review well-known examples of translation defects in neurodegenerative diseases. We then focus on ALS-linked genes and discuss the recent progress on how translation is affected by various mutant genes and the repeat expansion-mediated non-canonical translation in ALS.
Collapse
Affiliation(s)
- Shaopeng Wang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Engelfriet ML, Małecki JM, Forsberg AF, Falnes PØ, Ciosk R. Characterization of the biochemical activity and tumor-promoting role of the dual protein methyltransferase METL-13/METTL13 in Caenorhabditis elegans. PLoS One 2023; 18:e0287558. [PMID: 37347777 PMCID: PMC10286969 DOI: 10.1371/journal.pone.0287558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The methyltransferase-like protein 13 (METTL13) methylates the eukaryotic elongation factor 1 alpha (eEF1A) on two locations: the N-terminal amino group and lysine 55. The absence of this methylation leads to reduced protein synthesis and cell proliferation in human cancer cells. Previous studies showed that METTL13 is dispensable in non-transformed cells, making it potentially interesting for cancer therapy. However, METTL13 has not been examined yet in whole animals. Here, we used the nematode Caenorhabditis elegans as a simple model to assess the functions of METTL13. Using methyltransferase assays and mass spectrometry, we show that the C. elegans METTL13 (METL-13) methylates eEF1A (EEF-1A) in the same way as the human protein. Crucially, the cancer-promoting role of METL-13 is also conserved and depends on the methylation of EEF-1A, like in human cells. At the same time, METL-13 appears dispensable for animal growth, development, and stress responses. This makes C. elegans a convenient whole-animal model for studying METL13-dependent carcinogenesis without the complications of interfering with essential wild-type functions.
Collapse
Affiliation(s)
- Melanie L. Engelfriet
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jędrzej M. Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Anna F. Forsberg
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rafal Ciosk
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Jiang H, Zhang Y, Liu B, Yang X, Wang Z, Han M, Li H, Luo J, Yao H. Dynamic regulation of eEF1A1 acetylation affects colorectal carcinogenesis. Biol Chem 2022; 404:585-599. [PMID: 36420535 DOI: 10.1515/hsz-2022-0180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P.R. China
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Huiying Li
- College of Biological Sciences and Technology , Beijing Key Laboratory of Food Processing and Safety in Forest, Beijing Forestry University , Beijing 100083 , P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics , Peking University Health Science Center , Beijing 100191 , P.R. China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital , Capital Medical University; Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Diseases , 95 Yong-an Road, Xi-Cheng District , Beijing 100050 , P.R. China
| |
Collapse
|
8
|
Tang C, Zhou Y, Sun W, Hu H, Liu Y, Chen L, Ou F, Zeng S, Lin N, Yu L. Oncopeptide MBOP Encoded by LINC01234 Promotes Colorectal Cancer through MAPK Signaling Pathway. Cancers (Basel) 2022; 14:cancers14092338. [PMID: 35565466 PMCID: PMC9100262 DOI: 10.3390/cancers14092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) ranks third in incidence rate and second in mortality rate of malignancy worldwide, and the diagnosis and therapeutics of it remain to be further studied. With the emergence of noncoding RNAs (ncRNAs) and potential peptides derived from ncRNAs across various biological processes, we here aimed to identify a ncRNA-derived peptide possible for revealing the oncogenesis of CRC. Through combined predictive analysis of the coding potential of a batch of long noncoding RNAs (lncRNAs), the existence of an 85 amino-acid-peptide, named MEK1-binding oncopeptide (MBOP) and encoded from LINC01234 was confirmed. Mass spectrometry and Western blot assays indicated the overexpression of MBOP in CRC tissues and cell lines compared to adjacent noncancerous tissues and the normal colonic epithelial cell line. In vivo and in vitro migration and proliferation assays defined MBOP as an oncogenic peptide. Immunoprecipitation trials showed that MEK1 was the key interacting protein of MBOP, and MBOP promoted the MEK1/pERK/MMP2/MMP9 axis in CRC. Two E3-ligase enzymes MAEA and RMND5A mediated the ubiquitin-protease-system-related degradation of MBOP. This study indicates that MBOP might be a candidate prognostic indicator and a potential target for clinical therapy of CRC.
Collapse
Affiliation(s)
- Chunyuan Tang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Ying Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Wen Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Lu Chen
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Fengting Ou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.T.); (Y.Z.); (W.S.); (H.H.); (Y.L.); (F.O.); (S.Z.)
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.C.); (N.L.)
- Correspondence: ; Tel.: +86-571-88208407
| |
Collapse
|
9
|
A Tight Control of Non-Canonical TGF-β Pathways and MicroRNAs Downregulates Nephronectin in Podocytes. Cells 2022; 11:cells11010149. [PMID: 35011710 PMCID: PMC8750045 DOI: 10.3390/cells11010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Nephronectin (NPNT) is an extracellular matrix protein in the glomerular basement membrane that is produced by podocytes and is important for the integrity of the glomerular filtration barrier. Upregulated transforming growth factor β (TGF-β) and altered NPNT are seen in different glomerular diseases. TGF-β downregulates NPNT and upregulates NPNT-targeting microRNAs (miRs). However, the pathways involved were previously unknown. By using selective inhibitors of the canonical, SMAD-dependent, and non-canonical TGF-β pathways, we investigated NPNT transcription, translation, secretion, and regulation through miRs in podocytes. TGF-β decreased NPNT mRNA and protein in cultured human podocytes. TGF-β-dependent regulation of NPNT was meditated through intracellular signaling pathways. Under baseline conditions, non-canonical pathways predominantly regulated NPNT post-transcriptionally. Podocyte NPNT secretion, however, was not dependent on canonical or non-canonical TGF-β pathways. The canonical TGF-β pathway was also dispensable for NPNT regulation after TGF-β stimulation, as TGF-β was still able to downregulate NPNT in the presence of SMAD inhibitors. In contrast, in the presence of different non-canonical pathway inhibitors, TGF-β stimulation did not further decrease NPNT expression. Moreover, distinct non-canonical TGF-β pathways mediated TGF-β-induced upregulation of NPNT-targeting miR-378a-3p. Thus, we conclude that post-transcriptional fine-tuning of NPNT expression in podocytes is mediated predominantly through non-canonical TGF-β pathways.
Collapse
|
10
|
Hou Y, Lu H, Li J, Guan Z, Zhang J, Zhang W, Yin C, Sun L, Zhang Y, Jiang H. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol 2021; 29:133-144.e20. [PMID: 34478637 DOI: 10.1016/j.chembiol.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023]
Abstract
2'3'-cyclic GMP-AMP (2'3'-cGAMP), generated by cyclic GMP-AMP synthase (cGAS) under activation by cytosolic DNA, has a vital role in innate immune response via its receptor protein stimulator of interferon genes (STING) to fight viral infections and tumors. In order to have a complete understanding of biological functions of 2'3'-cGAMP, it is important to find out whether 2'3'-cGAMP has other unrevealed binding proteins present in mammalian cells and executes unknown functions. Here we report the 2'3'-cGAMP-based photoaffinity probes that capture and isolate 2'3'-cGAMP-binding proteins. These probes enable the identification of some potential 2'3'-cGAMP-binding proteins from HeLa cells. EF1A1, an essential protein regulating protein synthesis, is further validated to associate with 2'3'-cGAMP in vitro and in cells to impede protein synthesis. Thus, our studies provide a powerful approach to enable identification of the 2'3'-cGAMP interactome, discover unknown functions of 2'3'-cGAMP, and understand its physiological/pathological roles in tumor immunity and immune-related diseases.
Collapse
Affiliation(s)
- Yingjie Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenyu Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Mateyak MK, He D, Sharma P, Kinzy TG. Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity. FEBS Lett 2021; 595:2208-2220. [PMID: 34293820 PMCID: PMC9292714 DOI: 10.1002/1873-3468.14164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested that phosphorylation of translation elongation factor 1A (eEF1A) can alter its function, and large‐scale phospho‐proteomic analyses in Saccharomyces cerevisiae have identified 14 eEF1A residues phosphorylated under various conditions. Here, a series of eEF1A mutations at these proposed sites were created and the effects on eEF1A activity were analyzed. The eEF1A‐S53D and eEF1A‐T430D phosphomimetic mutant strains were inviable, while corresponding alanine mutants survived but displayed defects in growth and protein synthesis. The activity of an eEF1A‐S289D mutant was significantly reduced in the absence of the guanine nucleotide exchange factor eEF1Bα and could be restored by an exchange‐deficient form of the protein, suggesting that eEF1Bα promotes eEF1A activity by a mechanism other than nucleotide exchange. Our data show that several of the phosphorylation sites identified by high‐throughput analysis are critical for eEF1A function.
Collapse
Affiliation(s)
- Maria K Mateyak
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dongming He
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pragati Sharma
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Terri Goss Kinzy
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Illinois State University, Normal, IL, USA
| |
Collapse
|
12
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
13
|
Sopko B, Tejral G, Bitti G, Abate M, Medvedikova M, Hajduch M, Chloupek J, Fajmonova J, Skoric M, Amler E, Erban T. Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS OMEGA 2021; 6:14848-14857. [PMID: 34151066 PMCID: PMC8209799 DOI: 10.1021/acsomega.1c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.
Collapse
Affiliation(s)
- Bruno Sopko
- Crop
Research Institute, Prague 161 06, Czechia
- Department
of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czechia
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Gracian Tejral
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Guissepe Bitti
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Marianna Abate
- Department
of Precision Medicine, University of Campania
“Luigi Vanvitelli”, Naples 80131, Italy
| | - Martina Medvedikova
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Marian Hajduch
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Jan Chloupek
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Jolana Fajmonova
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Misa Skoric
- Department
of Pathological Morphology and Parasitology, Faculty of Veterinary
Medicine, University of Veterinary and Pharmaceutical
Sciences Brno, Brno 612 42, Czechia
| | - Evzen Amler
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Tomas Erban
- Crop
Research Institute, Prague 161 06, Czechia
| |
Collapse
|
14
|
Kaitsuka T, Tomizawa K, Matsushita M. Heat Shock-Induced Dephosphorylation of Eukaryotic Elongation Factor 1BδL by Protein Phosphatase 1. Front Mol Biosci 2021; 7:598578. [PMID: 33521052 PMCID: PMC7841112 DOI: 10.3389/fmolb.2020.598578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Several variant proteins are produced from EEF1D, including two representative proteins produced via alternative splicing machinery. One protein is the canonical translation eukaryotic elongation factor eEF1Bδ1, and the other is the heat shock-responsive transcription factor eEF1BδL. eEF1Bδ1 is phosphorylated by cyclin-dependent kinase 1 (CDK1), but the machinery controlling eEF1BδL phosphorylation and dephosphorylation has not been clarified. In this study, we found that both proteins were dephosphorylated under heat shock and proteotoxic stress, and this dephosphorylation was inhibited by okadaic acid. Using proteins with mutations at putative phosphorylated residues, we revealed that eEF1Bδ1 and eEF1BδL are phosphorylated at S133 and S499, respectively, and these residues are both CDK1 phosphorylation sites. The eEF1BδL S499A mutant more strongly activated HSPA6 promoter-driven reporter than the wild-type protein and S499D mutant. Furthermore, protein phosphatase 1 (PP1) was co-immunoprecipitated with eEF1Bδ1 and eEF1BδL, and PP1 dephosphorylated both proteins in vitro. Thus, this study clarified the role of phosphorylation/dephosphorylation in the functional regulation of eEF1BδL during heat shock.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,School of Pharmacy in Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
15
|
Qin S, Ye L, Zheng Y, Gao J. Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1. FEBS Lett 2021; 595:507-520. [PMID: 33354788 DOI: 10.1002/1873-3468.14030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022]
Abstract
Mutations in PINK1 (PTEN-induced putative kinase 1) are associated with autosomal recessive early-onset Parkinson's disease. Full-length PINK1 (PINK1-l) has been extensively studied in mitophagy; however, the functions of the short form of PINK1 (PINK1-s) remain poorly understood. Here, we report that PINK1-s is recruited to ribosome fractions after short-term inhibition of proteasomes. The expression of PINK1-s greatly inhibits protein synthesis even without proteasomal stress. Mechanistically, PINK1-s phosphorylates the translation elongation factor eEF1A1 during proteasome inhibition. The expression of the phosphorylation mimic mutation eEF1A1S396E rescues protein synthesis defects and cell viability caused by PINK1 knockout. These findings implicate an important role for PINK1-s in protecting cells against proteasome stress through inhibiting protein synthesis.
Collapse
Affiliation(s)
- Siyue Qin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, China
| | - Ling Ye
- Lishui Center for Disease Control and Prevention, Lishui, China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ju Gao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
17
|
White JT, Cato T, Deramchi N, Gabunilas J, Roy KR, Wang C, Chanfreau GF, Clarke SG. Protein Methylation and Translation: Role of Lysine Modification on the Function of Yeast Elongation Factor 1A. Biochemistry 2019; 58:4997-5010. [PMID: 31738538 DOI: 10.1021/acs.biochem.9b00818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, 12 protein lysine methyltransferases that modify translational elongation factors and ribosomal proteins (Efm1-7 and Rkm 1-5) have been identified in the yeast Saccharomyces cerevisiae. Of these 12, five (Efm1 and Efm4-7) appear to be specific to elongation factor 1A (EF1A), the protein responsible for bringing aminoacyl-tRNAs to the ribosome. In S. cerevisiae, the functional implications of lysine methylation in translation are mostly unknown. In this work, we assessed the physiological impact of disrupting EF1A methylation in a strain where four of the most conserved methylated lysine sites are mutated to arginine residues and in strains lacking either four or five of the Efm lysine methyltransferases specific to EF1A. We found that loss of EF1A methylation was not lethal but resulted in reduced growth rates, particularly under caffeine and rapamycin stress conditions, suggesting EF1A interacts with the TORC1 pathway, as well as altered sensitivities to ribosomal inhibitors. We also detected reduced cellular levels of the EF1A protein, which surprisingly was not reflected in its stability in vivo. We present evidence that these Efm methyltransferases appear to be largely devoted to the modification of EF1A, finding no evidence of the methylation of other substrates in the yeast cell. This work starts to illuminate why one protein can need five different methyltransferases for its functions and highlights the resilience of yeast to alterations in their posttranslational modifications.
Collapse
Affiliation(s)
- Jonelle T White
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Tieranee Cato
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Neil Deramchi
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Kevin R Roy
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Charles Wang
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
18
|
Gotoh T, Iwahana H, Kannan S, Marei RG, Mousa H, Elgamal M, Souchelnytskyi S. Glycosylation is a novel TGFβ1-independent post-translational modification of Smad2. Biochem Biophys Res Commun 2019; 521:1010-1016. [PMID: 31727370 DOI: 10.1016/j.bbrc.2019.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/09/2023]
Abstract
Smad2 is a crucial component of intracellular signaling by transforming growth factor-β (TGFβ). Here we describe that Smad2 is glycosylated, which is a novel for Smad2 post-translational modification. We showed that the Smad2 glycosylation was inhibited upon treatment of cells with 17β-estradiol, and was enhanced in cells in a dense culture as compared to cells in a sparse culture. The Smad2 glycosylation was not dependent on the C-terminal phosphorylation of Smad2, and was not affected by TGFβ1 treatment of the cells. Smad2 was glycosylated at multiple sites, and one of the predicted sites is Serine110. Thus, Smad2 is glycosylated, and this post-translational modification was modulated by 17β-estradiol but not by TGFβ1.
Collapse
Affiliation(s)
- Takaya Gotoh
- Jichi Medical School,Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan; Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Science, 4-9-1, Anagawa, Inagae, Chiba, 263-8555, Japan; Faculty of Sports and Health Science, Department of Health Science, Daito Bunka University, 560, Iwadono, Higashimatsuyama, Saitama, 355-8501, Japan
| | - Hiroyuki Iwahana
- Division of Community and Family Medicine Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken, 329-0498, Japan
| | - Surya Kannan
- College of Medicine, Health Cluster, Qatar University, Doha, 2713, Qatar
| | - Reham Ghazal Marei
- College of Medicine, Health Cluster, Qatar University, Doha, 2713, Qatar
| | - Hanaa Mousa
- College of Medicine, Health Cluster, Qatar University, Doha, 2713, Qatar
| | - Mahmoud Elgamal
- College of Medicine, Health Cluster, Qatar University, Doha, 2713, Qatar
| | | |
Collapse
|
19
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
20
|
Zinoviev A, Goyal A, Jindal S, LaCava J, Komar AA, Rodnina MV, Hellen CUT, Pestova TV. Functions of unconventional mammalian translational GTPases GTPBP1 and GTPBP2. Genes Dev 2018; 32:1226-1241. [PMID: 30108131 PMCID: PMC6120710 DOI: 10.1101/gad.314724.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/06/2018] [Indexed: 02/02/2023]
Abstract
In this study, Zinoviev et al. investigated how translational GTPases (GTPBPs) function in mRNA surveillance and ribosome-associated quality control. They demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aa-tRNA to the ribosomal A site in a GTP-dependent manner, and that GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, lacked elongation activity, and did not stimulate exosomal degradation. Their results indicate that GTPBP1 and GTPBP2 have different functions. GTP-binding protein 1 (GTPBP1) and GTPBP2 comprise a divergent group of translational GTPases with obscure functions, which are most closely related to eEF1A, eRF3, and Hbs1. Although recent reports implicated GTPBPs in mRNA surveillance and ribosome-associated quality control, how they perform these functions remains unknown. Here, we demonstrate that GTPBP1 possesses eEF1A-like elongation activity, delivering cognate aminoacyl-transfer RNA (aa-tRNA) to the ribosomal A site in a GTP-dependent manner. It also stimulates exosomal degradation of mRNAs in elongation complexes. The kinetics of GTPBP1-mediated elongation argues against its functioning in elongation per se but supports involvement in mRNA surveillance. Thus, GTP hydrolysis by GTPBP1 is not followed by rapid peptide bond formation, suggesting that after hydrolysis, GTPBP1 retains aa-tRNA, delaying its accommodation in the A site. In physiological settings, this would cause ribosome stalling, enabling GTPBP1 to elicit quality control programs; e.g., by recruiting the exosome. GTPBP1 can also deliver deacylated tRNA to the A site, indicating that it might function via interaction with deacylated tRNA, which accumulates during stresses. Although GTPBP2's binding to GTP was stimulated by Phe-tRNAPhe, suggesting that its function might also involve interaction with aa-tRNA, GTPBP2 lacked elongation activity and did not stimulate exosomal degradation, indicating that GTPBP1 and GTPBP2 have different functions.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York 10065, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
21
|
Abstract
Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus.
Collapse
|
22
|
Jakobsson ME, Małecki J, Falnes PØ. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation. RNA Biol 2018; 15:314-319. [PMID: 29447067 DOI: 10.1080/15476286.2018.1440875] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity of the responsible lysine methyltransferases (KMTs), have until recently remained largely elusive. However, recent discoveries and characterizations of human eEF1A-specific KMTs indicate that lysine methylation of eEF1A can be dynamic and inducible, and modulates mRNA translation in a codon-specific fashion. Here, we give a general overview of eEF1A lysine methylation and discuss its possible functional and regulatory significance, with particular emphasis on newly discovered human KMTs.
Collapse
Affiliation(s)
- Magnus E Jakobsson
- a Department of Biosciences , Faculty of Mathematics and Natural Sciences, University of Oslo , Oslo , Norway.,b Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR) , University of Copenhagen , Copenhagen , Denmark
| | - Jędrzej Małecki
- a Department of Biosciences , Faculty of Mathematics and Natural Sciences, University of Oslo , Oslo , Norway
| | - Pål Ø Falnes
- a Department of Biosciences , Faculty of Mathematics and Natural Sciences, University of Oslo , Oslo , Norway
| |
Collapse
|
23
|
Sakano H, Zorio DAR, Wang X, Ting YS, Noble WS, MacCoss MJ, Rubel EW, Wang Y. Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. J Comp Neurol 2017; 525:3341-3359. [PMID: 28685837 DOI: 10.1002/cne.24281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
The avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input. More recently, fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates local protein translation, has been shown to be enriched in NL dendrites, suggesting its potential role in the structural dynamics of these dendrites. To explore the molecular role of FMRP in this nucleus, we performed proteomic analysis of NL, using micro laser capture and liquid chromatography tandem mass spectrometry. We identified 657 proteins, greatly represented in pathways involved in mitochondria, translation and metabolism, consistent with high levels of activity of NL neurons. Of these, 94 are potential FMRP targets, by comparative analysis with previously proposed FMRP targets in mammals. These proteins are enriched in pathways involved in cellular growth, cellular trafficking and transmembrane transport. Immunocytochemistry verified the dendritic localization of several proteins in NL. Furthermore, we confirmed the direct interaction of FMRP with one candidate, RhoC, by in vitro RNA binding assays. In summary, we provide a database of highly expressed proteins in NL and in particular a list of potential FMRP targets, with the goal of facilitating molecular characterization of FMRP signaling in future studies.
Collapse
Affiliation(s)
- Hitomi Sakano
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Diego A R Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Ying S Ting
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
24
|
Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids 2016; 48:2339-52. [DOI: 10.1007/s00726-016-2311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
25
|
Fan Z, Cui X, Wei D, Liu W, Li B, He H, Ye H, Zhu N, Wei X. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy. Sci Rep 2016; 6:25353. [PMID: 27150264 PMCID: PMC4858656 DOI: 10.1038/srep25353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.
Collapse
Affiliation(s)
- Zhichao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | - Xiaojun Cui
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Buhong Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huamao Ye
- Department of Urology, Changhai Hospital, Second Military University, Shanghai, China
| | - Naishuo Zhu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tatè R, Rippa E, Arcari P, Lamberti A. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 2015. [PMID: 26212729 DOI: 10.1016/j.biochi.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic translation elongation factor 1A (eEF1A) is a moonlighting protein that besides to its canonical role in protein synthesis is also involved in many other cellular processes such as cell survival and apoptosis. In a previous work, we identified eEF1A Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and apoptosis of human cancer cells. We proposed that the phosphorylation of eEF1A by C-Raf required the presence of both eEF1A isoforms thus suggesting the formation of a potential eEF1A heterodimer owning regulatory properties. This study aimed at investigating the cellular localization and interaction between two eEF1A isoforms. To this end, we developed chimera proteins by adding at the N-terminal end of both eEF1A1 and eEF1A2 cyan fluorescence protein (mCerulean) and yellow fluorescence protein (mVenus), respectively. The fluorescent eEF1A1 and eEF1A2 chimeras were both addressed to COS-7 cells and found co-localized in the cytoplasm at the level of cellular membranes. We highlighted FRET between the labeled N-termini of eEF1A isoforms. The intra-molecular FRET of this chimera was about 17%. Our results provide novel information on the intracellular distribution and interaction of eEF1A isoforms.
Collapse
Affiliation(s)
- Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Sanges
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Arbucci
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Perez WB, Kinzy TG. Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2α phosphorylation. J Biol Chem 2015; 289:20928-38. [PMID: 24936063 DOI: 10.1074/jbc.m114.570077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control non-derepressible 2 (Gcn2p) protein kinase. Gcn2p causes downregulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation.
Collapse
|
28
|
Lin KW, Souchelnytskyi S. Translational connection of TGFβ signaling: Phosphorylation of eEF1A1 by TβR-I inhibits protein synthesis. Small GTPases 2014; 2:104-108. [PMID: 21776411 DOI: 10.4161/sgtp.2.2.15603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling pathways regulate a wide array of cellular activities that are crucial for cell proliferation, apoptosis, migration and differentiation. TGFβ signaling pathways are initiated by ligand-activated TGFβ receptors, with type I TGFβ receptors (TβR-I) kinase being essential for phosphorylation of downstream targets. Until now, a prevalent view was that the TGFβ intracellular signaling targets would regulate transcription. Recently, we uncovered a novel TGFβ signaling pathway that exerts a direct regulatory effect on mRNA translation and protein synthesis. Eukaryotic elongation factor eEF1A1 is a GTP-binding protein that plays a central role in protein synthesis. By using a screening method for kinase substrate that was developed in our laboratory, we identified eEF1A1 as a novel substrate of TβR-I. This shed a new light on the convergence of TGFβ signaling and protein synthesis. We also showed phosphorylation of eEF1A1 at Ser300 by TβR-I prevents aa-tRNA binding to eEF1A1. As a consequence, TGFβ-dependent phosphorylation of eEF1A1 has an inhibitory effect on protein synthesis and cell proliferation. Therefore, we unveiled a novel regulatory mechanism of cellular proliferation by TGFβ at the translational level. Here we discuss this finding in the context of its potential role in the multiplicity of TGFβ signaling, and in the regulation of fundamental cellular functions, such as proliferation.
Collapse
Affiliation(s)
- Kah Wai Lin
- Karolinska Biomics Center; Department of Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital; Stockholm, Sweden
| | | |
Collapse
|
29
|
Tan Y, Xu Q, Li Y, Mao X, Zhang K. Crosstalk between the p38 and TGF-β signaling pathways through TβRI, TβRII and Smad3 expression in plancental choriocarcinoma JEG-3 cells. Oncol Lett 2014; 8:1307-1311. [PMID: 25120713 PMCID: PMC4114612 DOI: 10.3892/ol.2014.2255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/29/2014] [Indexed: 11/05/2022] Open
Abstract
Choriocarcinoma is a highly aggressive tumor that develops from germ cells. Some choriocarcinomas originate in the testes or ovaries, while others may develop in the uterus after a normal pregnancy or after miscarriage. The tumor is characterized by early hematogenous spread to distal organs, such as the lung and brain. Transforming growth factor β1 (TGF-β1) is key in regulating tumor cell proliferation and invasion through a variety of Smad-dependent and -independent pathways, including the p38 mitogen-activated protein kinase (MAPK) pathway. There appears to be crosstalk between the TGF-β/Smad and p38 MAPK pathways; however, the molecular mechanisms underlying the crosstalk are not fully understood. The present study validated the role of TGF-β signaling in cancer progression and explored the interaction between Smad and p38 MAPK signaling on transduction mediators in choriocarcinoma using the JEG-3 cell line. MTT assay was used to detect the effect of TGF-β1 on JEG-3 cell proliferation. Cells were treated with p38 MAPK inhibitor and TGF-β receptor inhibitor, followed by TGF-β1, and reverse transcription quantitative real-time polymerase chain reaction was used to examine the transcriptional levels of Smad3 and TGF-β receptors. The data demonstrated that TGF-β can enhance the viability of JEG-3 cells. Blockade of the TGF-β and p38 MAPK pathways attenuated the expression of Smad3, TGF-β receptor type I (TβRI) and TβRII, and inhibited their expression in a dose-dependent manner. Analysis revealed that p38 MAPK is involved in and contributes to the TGF-β pathway, dependent on the regulation of TβRI, TβRII and Smad3. Further investigation of the interactions between the TGF-β and p38 MAPK pathways may offer potential venues for therapeutic intervention for choriocarcinoma.
Collapse
Affiliation(s)
- Yusi Tan
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qian Xu
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yuhong Li
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiaodan Mao
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Kongyan Zhang
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
30
|
Tay LX, Lim CK, Mansor A, Kamarul T. Differential protein expression between chondrogenic differentiated MSCs, undifferentiated MSCs and adult chondrocytes derived from Oryctolagus cuniculus in vitro. Int J Med Sci 2014; 11:24-33. [PMID: 24396283 PMCID: PMC3880988 DOI: 10.7150/ijms.7244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/25/2013] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs). METHODS ACs and bone marrow-derived MSCs were harvested from New Zealand White rabbits (n = 3). ACs and cMSCs were embedded in alginate and were cultured using a defined chondrogenic medium containing transforming growth factor-beta 3 (TGF-β3). Chondrogenic expression was determined using type-II collagen, Safranin-O staining and glycosaminoglycan analyses. Two-dimensional gel electrophoresis (2-DE) was used to isolate proteins from MSCs, cMSCs and ACs before being identified using liquid chromatography-mass spectrometry (LC-MS). The differentially expressed proteins were then analyzed using image analysis software. RESULTS Both cMSCs and ACs were positively stained with type-II collagen and safranin-O. The expression of glycosaminoglycan in cMSCs was comparable to AC at which the highest level was observed at day-21 (p>0.05). Six protein spots were found to be most differentially expressed between MSCs, cMSCs and ACs. The protein spots cofilin-1 (CFL1) and glycealdehyde-3-phosphate dehydrogenase (GAPD) from cMSCs had expression levels similar to that of ACs whereas the others (ie. MYL6B, ALDOA, TAGLN2, EF1-alpha), did not match the expression level of ACs. CONCLUSION Despite having similar phenotypic expressions to ACs, cMSCs expressed proteins which were not typically expected. This may explain the reason for the unexplained lack of improvement in cartilage repair outcomes reported in previous studies.
Collapse
Affiliation(s)
- Liang-Xin Tay
- 1. Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya,50603 Kuala Lumpur, Malaysia
| | - Chin-Keong Lim
- 2. Centre of Studies for Preclinical Sciences, Faculty of Dentistry, Universiti Teknologi Mara, 40450 Shah Alam, Malaysia
| | - Azura Mansor
- 1. Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya,50603 Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- 1. Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya,50603 Kuala Lumpur, Malaysia ; 3. Clinical Investigative Centre (CIC), University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Soares DC, Abbott CM. Highly homologous eEF1A1 and eEF1A2 exhibit differential post-translational modification with significant enrichment around localised sites of sequence variation. Biol Direct 2013; 8:29. [PMID: 24220286 PMCID: PMC3868327 DOI: 10.1186/1745-6150-8-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
REVIEWERS This article was reviewed by Frank Eisenhaber and Ramanathan Sowdhamini.Translation elongation factors eEF1A1 and eEF1A2 are 92% identical but exhibit non-overlapping expression patterns. While the two proteins are predicted to have similar tertiary structures, it is notable that the minor variations between their sequences are highly localised within their modelled structures. We used recently available high-throughput "omics" data to assess the spatial location of post-translational modifications and discovered that they are highly enriched on those surface regions of the protein that correspond to the clusters of sequence variation. This observation suggests how these two isoforms could be differentially regulated allowing them to perform distinct functions.
Collapse
|
32
|
Qi T, Zhang W, Luan Y, Kong F, Xu D, Cheng G, Wang Y. Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells. Mol Cell Proteomics 2013; 13:49-62. [PMID: 24105791 DOI: 10.1074/mcp.m113.027813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Oncogene addiction" is an unexplained phenomenon in the area of cancer targeted therapy. In this study, we have tested a hypothesis that rapid apoptotic response of cancer cells following acute inhibition of the addicted oncogenes is because of loss of multiple short-lived proteins whose activity normally maintain cell survival by blocking caspase activation directly or indirectly. It was shown that rapid apoptotic response or acute apoptosis could be induced in both A431 and MiaPaCa-2 cells, and quick down-regulation of 17 proteins, which were all members of the central proteome of human cells, was found to be associated with the onset of acute apoptosis. Knockdown of PSMD11 could partially promote the occurrence of acute apoptosis in both MiaPaCa-2 and PANC-1 pancreatic cancer cells. These findings indicate that maintaining the stability of central proteome may be a primary mechanism for addicted oncogenes to maintain the survival of cancer cells through various signaling pathways, and quick loss of some of the short-lived members of the central proteome may be the direct reason for the rapid apoptotic response or acute apoptosis following acute inhibition of the addicted oncogenes in cancer cells. These findings we have presented can help us better understand the phenomenon of oncogene-addiction and may have important implications for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
33
|
López-Díaz FJ, Gascard P, Balakrishnan SK, Zhao J, Del Rincon SV, Spruck C, Tlsty TD, Emerson BM. Coordinate transcriptional and translational repression of p53 by TGF-β1 impairs the stress response. Mol Cell 2013; 50:552-64. [PMID: 23706820 DOI: 10.1016/j.molcel.2013.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/25/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGF-β1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F-4 binds constitutively to the TP53 gene and induces transcription. TGF-β1-activated Smads are recruited to a composite Smad/E2F-4 element by an E2F-4/p107 complex that switches to a Smad corepressor, which represses TP53 transcription. TGF-β1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGF-β1 signaling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGF-β and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance.
Collapse
Affiliation(s)
- Fernando J López-Díaz
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The B55α regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol 2013; 33:2865-78. [PMID: 23716589 DOI: 10.1128/mcb.01730-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factor (FGF)-induced growth arrest of chondrocytes is a unique cell type-specific response which contrasts with the proliferative response of most cell types and underlies several genetic skeletal disorders caused by activating FGF receptor (FGFR) mutations. We have shown that one of the earliest key events in FGF-induced growth arrest is dephosphorylation of the retinoblastoma protein (Rb) family member p107 by protein phosphatase 2A (PP2A), a ubiquitously expressed multisubunit phosphatase. In this report, we show that the PP2A-B55α holoenzyme (PP2A containing the B55α subunit) is responsible for this phenomenon. Only the B55α (55-kDa regulatory subunit, alpha isoform) regulatory subunit of PP2A was able to bind p107, and this interaction was induced by FGF in chondrocytes but not in other cell types. Small interfering RNA (siRNA)-mediated knockdown of B55α prevented p107 dephosphorylation and FGF-induced growth arrest of RCS (rat chondrosarcoma) chondrocytes. Importantly, the B55α subunit bound with higher affinity to dephosphorylated p107. Since the p107 region interacting with B55α is also the site of cyclin-dependent kinase (CDK) binding, B55α association may also prevent p107 phosphorylation by CDKs. FGF treatment induces dephosphorylation of the B55α subunit itself on several serine residues that drastically increases the affinity of B55α for the PP2A A/C dimer and p107. Together these observations suggest a novel mechanism of p107 dephosphorylation mediated by activation of PP2A through B55α dephosphorylation. This mechanism might be a general signal transduction pathway used by PP2A to initiate cell cycle arrest when required by external signals.
Collapse
|
35
|
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J 2013; 32:701-12. [PMID: 23395902 DOI: 10.1038/emboj.2013.15] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/09/2013] [Indexed: 02/01/2023] Open
Abstract
Pathogens target important components of host immunity to cause disease. The Pseudomonas syringae type III-secreted effector HopU1 is a mono-ADP-ribosyltransferase required for full virulence on Arabidopsis thaliana. HopU1 targets several RNA-binding proteins including GRP7, whose role in immunity is still unclear. Here, we show that GRP7 associates with translational components, as well as with the pattern recognition receptors FLS2 and EFR. Moreover, GRP7 binds specifically FLS2 and EFR transcripts in vivo through its RNA recognition motif. HopU1 does not affect the protein-protein associations between GRP7, FLS2 and translational components. Instead, HopU1 blocks the interaction between GRP7 and FLS2 and EFR transcripts in vivo. This inhibition correlates with reduced FLS2 protein levels upon Pseudomonas infection in a HopU1-dependent manner. Our results reveal a novel virulence strategy used by a microbial effector to interfere with host immunity.
Collapse
Affiliation(s)
- Valerie Nicaise
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
mRNA translation is the most energy consuming process in the cell. In addition, it plays a pivotal role in the control of gene expression and is therefore tightly regulated. In response to various extracellular stimuli and intracellular cues, signaling pathways induce quantitative and qualitative changes in mRNA translation by modulating the phosphorylation status and thus the activity of components of the translational machinery. In this work we focus on the phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways, as they are strongly implicated in the regulation of translation in homeostasis, whereas their malfunction has been linked to aberrant translation in human diseases, including cancer.
Collapse
Affiliation(s)
- Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
37
|
Häsler J, Rada C, Neuberger MS. The cytoplasmic AID complex. Semin Immunol 2012; 24:273-80. [PMID: 22698843 DOI: 10.1016/j.smim.2012.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Although AID fulfils its physiological function of diversifying antibody genes in the nucleus, most of the AID protein within the cell is found in a complex located in the cytoplasm. In this review, we summarize what is currently known about this cytoplasmic AID complex. Its size has been estimated to lie between 300 and 500kDa (sedimentation coefficient of 10-11S) and it comprises the abundant protein translation elongation factor 1α (eEF1A) as a major stoichiometric component. We speculate on the possible roles of this complex as well as of chaperones known to interact with AID in regulating the cytosolic retention of AID and its controlled release for import into the nucleus.
Collapse
Affiliation(s)
- Julien Häsler
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | |
Collapse
|
38
|
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9:71-83. [PMID: 22292825 DOI: 10.1586/epr.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery. There are 97% homologous A1 and A2 isoforms of eEF1A; their expression in mammalian tissues is mutually exclusive and differentially regulated in development. The A2 isoform reveals proto-oncogenic properties and specifically interacts with some cellular proteins. Several tyrosine residues shown experimentally to be phosphorylated in eEF1A1 are hardly solution accessible, so their phosphorylation could be linked with structural rearrangement of the protein molecule. The possible role of tyrosine phosphorylation in providing the background for structural differences between the 'extended' A1 isoform and the compact oncogenic A2 isoform is discussed. The 'road map' for targeted analysis of any protein of interest using phosphoproteomics data is presented.
Collapse
Affiliation(s)
- Boris Negrutskii
- Institute of Molecular Biology & Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.
| | | | | |
Collapse
|
39
|
Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:543-55. [PMID: 22555874 DOI: 10.1002/wrna.1118] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non-canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | |
Collapse
|