1
|
Hanna SM, Tavafoghi B, Chen JS, Howard I, Ren L, Willet AH, Gould KL. New mutations in the core Schizosaccharomyces pombe spindle pole body scaffold Ppc89 reveal separable functions in regulating cell division. G3 (BETHESDA, MD.) 2025; 15:jkae249. [PMID: 39471327 PMCID: PMC11708228 DOI: 10.1093/g3journal/jkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89. Alleles with mutations in 2 predicted α-helices near the C-terminus were specifically defective in anchoring Sid4, the scaffold for the septation initiation network (SIN), and proteins dependent on Sid4 (Cdc11, Dma1, Mto1, and Mto2). Artificial tethering of Sid4 to the SPB fully rescued these ppc89 mutants. Another ppc89 allele had mutations located throughout the coding region. While this mutant was also defective in Sid4 anchoring, it displayed additional defects including fragmented SPBs and forming and constricting a second cytokinetic ring in 1 daughter cell. These defects were shared with a ppc89 allele truncated of the most C-terminal predicted α-helices that is still able to recruit Sid4 and the SIN. We conclude that Ppc89 not only tethers the SIN to the SPB but is also necessary for the integrity of the SPB and faithful coordination of cytokinesis with mitosis.
Collapse
Affiliation(s)
- Sarah M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Bita Tavafoghi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Isaac Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, PMB 407935, 465 21st Ave. S, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Nie L, Liu W, Liang Z, Zheng F, Liu X, Yao X, Xiang S, Jiang K, Zheng S, Fu C. Klp2-mediated Rsp1-Mto1 colocalization inhibits microtubule-dependent microtubule assembly in fission yeast. SCIENCE ADVANCES 2025; 11:eadq0670. [PMID: 39752482 PMCID: PMC11698074 DOI: 10.1126/sciadv.adq0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast Schizosaccharomyces pombe as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules. In addition, we demonstrate that Klp2 is not required for the localization of Mto1, a factor promoting microtubule assembly, to microtubules. Moreover, Rsp1-Ssa1 inhibits the interaction of Mto1-Mto2 with the gamma-tubulin small complex. The absence of Klp2 reduces the colocalization of Rsp1 and Mto1 foci on preexisting microtubules, resulting in an increased microtubule-dependent microtubule assembly. Our results suggest that Klp2 regulates the activity of noncentrosomal MTOCs by targeting Rsp1 to the sites of Mto1 activity and reveal a mechanism for the inhibition of noncentrosomal microtubule assembly by a kinesin-14 motor.
Collapse
Affiliation(s)
- Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Wenyue Liu
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuobi Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fan Zheng
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shengqi Xiang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Kai Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Key Laboratory of Chemical Biology and New Quality Medicine & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
3
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
4
|
Nageshan RK, Ortega R, Krogan N, Cooper JP. Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown. Nat Commun 2024; 15:4707. [PMID: 38830842 PMCID: PMC11148042 DOI: 10.1038/s41467-024-48382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Persisting replication intermediates can confer mitotic catastrophe. Loss of the fission yeast telomere protein Taz1 (ortholog of mammalian TRF1/TRF2) causes telomeric replication fork (RF) stalling and consequently, telomere entanglements that stretch between segregating mitotic chromosomes. At ≤20 °C, these entanglements fail to resolve, resulting in lethality. Rif1, a conserved DNA replication/repair protein, hinders the resolution of telomere entanglements without affecting their formation. At mitosis, local nuclear envelope (NE) breakdown occurs in the cell's midregion. Here we demonstrate that entanglement resolution occurs in the cytoplasm following this NE breakdown. However, in response to taz1Δ telomeric entanglements, Rif1 delays midregion NE breakdown at ≤20 °C, in turn disfavoring entanglement resolution. Moreover, Rif1 overexpression in an otherwise wild-type setting causes cold-specific NE defects and lethality, which are rescued by membrane fluidization. Hence, NE properties confer the cold-specificity of taz1Δ lethality, which stems from postponement of NE breakdown. We propose that such postponement promotes clearance of simple stalled RFs, but resolution of complex entanglements (involving strand invasion between nonsister telomeres) requires rapid exposure to the cytoplasm.
Collapse
Affiliation(s)
- Rishi Kumar Nageshan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Raquel Ortega
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Bellingham-Johnstun K, Thorn A, Belmonte JM, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. Mol Biol Cell 2023; 34:ar77. [PMID: 37099380 PMCID: PMC10398876 DOI: 10.1091/mbc.e23-01-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Cells actively position their nuclei based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over an ∼90-min period, approximately half of the duration of the cell cycle. Live-cell and simulation experiments support the cooperation of two distinct microtubule competition mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic spindle pole body microtubules that push the nucleus away from the ends of the cell, while a postanaphase array of microtubules baskets the nucleus and limits its migration toward the division plane. Second, a slow-and-grow mechanism slowly centers the nucleus in the newborn cell by a combination of microtubule competition and asymmetric cell growth. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Annelise Thorn
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| | - Julio M. Belmonte
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
- Physics Department, College of Sciences, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
6
|
Bellingham-Johnstun K, Tyree ZL, Martinez-Baird J, Thorn A, Laplante C. Actin–Microtubule Crosstalk Imparts Stiffness to the Contractile Ring in Fission Yeast. Cells 2023; 12:cells12060917. [PMID: 36980258 PMCID: PMC10047812 DOI: 10.3390/cells12060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Actin–microtubule interactions are critical for cell division, yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring, and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubules and the impact on their physical attachment to the contractile ring remain unclear. We found that Myp2p facilitates the recruitment of Mto1p to the inner face of the contractile ring, where the eMTOCs polymerize microtubules without their direct interaction. The PAA microtubules form a dynamic polygon of Ase1p crosslinked microtubules inside the contractile ring. The specific loss of PAA microtubules affects the mechanical properties of the contractile ring of actin by lowering its stiffness. This change in the mechanical properties of the ring has no measurable impact on cytokinesis or on the anchoring of the ring. Our work proposes that the PAA microtubules exploit the contractile ring for their assembly and function during cell division, while the contractile ring may receive no benefit from these interactions.
Collapse
Affiliation(s)
- Kimberly Bellingham-Johnstun
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607, USA
| | - Zoe L. Tyree
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607, USA
| | - Jessica Martinez-Baird
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607, USA
| | - Annelise Thorn
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607, USA
| | - Caroline Laplante
- Molecular Biomedical Sciences Department, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27607, USA
- Correspondence:
| |
Collapse
|
7
|
Bellingham-Johnstun K, Tyree ZL, Martinez-Baird J, Thorn A, Laplante C. Actin-microtubule crosstalk imparts stiffness to the contractile ring in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530611. [PMID: 36909652 PMCID: PMC10002727 DOI: 10.1101/2023.03.01.530611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Actin-microtubule interactions are critical for cell division yet how these networks of polymers mutually influence their mechanical properties and functions in live cells remains unknown. In fission yeast, the post-anaphase array (PAA) of microtubules assembles in the plane of the contractile ring and its assembly relies on the Myp2p-dependent recruitment of Mto1p, a component of equatorial microtubule organizing centers (eMTOCs). The general organization of this array of microtubule and the impact on their physical attachment to the contractile ring remain unclear. We found that Myp2p facilitates the recruitment of Mto1p to the inner face of the contractile ring where the eMTOCs polymerize microtubules without their direct interaction. The PAA microtubules form a dynamic polygon of Ase1p crosslinked microtubules inside the contractile ring. The specific loss of PAA microtubules affects the mechanical properties of the contractile ring of actin by lowering its stiffness. This change in the mechanical properties of the ring has no measurable impact on cytokinesis or on the anchoring of the ring. Our work proposes that the PAA microtubules exploit the contractile ring for their assembly and function during cell division while the contractile ring may receive no benefit from these interactions.
Collapse
|
8
|
Bellingham-Johnstun K, Thorn A, Belmonte J, Laplante C. Microtubule competition and cell growth recenter the nucleus after anaphase in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526443. [PMID: 36778333 PMCID: PMC9915666 DOI: 10.1101/2023.01.31.526443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells actively position their nucleus based on their activity. In fission yeast, microtubule-dependent nuclear centering is critical for symmetrical cell division. After spindle disassembly at the end of anaphase, the nucleus recenters over a ~90 min period, approximately half of the duration of the cell cycle. Live cell and simulation experiments support the cooperation of two distinct mechanisms in the slow recentering of the nucleus. First, a push-push mechanism acts from spindle disassembly to septation and involves the opposing actions of the mitotic Spindle Pole Body microtubules that push the nucleus away from the ends of the cell while post-anaphase array of microtubules basket the nucleus and limit its migration toward the division plane. Second, a slow-and-grow mechanism finalizes nuclear centering in the newborn cell. In this mechanism, microtubule competition stalls the nucleus while asymmetric cell growth slowly centers it. Our work underlines how intrinsic properties of microtubules differently impact nuclear positioning according to microtubule network organization and cell size.
Collapse
|
9
|
Rale MJ, Romer B, Mahon BP, Travis SM, Petry S. The conserved centrosomin motif, γTuNA, forms a dimer that directly activates microtubule nucleation by the γ-tubulin ring complex (γTuRC). eLife 2022; 11:e80053. [PMID: 36515268 PMCID: PMC9859039 DOI: 10.7554/elife.80053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
To establish the microtubule cytoskeleton, the cell must tightly regulate when and where microtubules are nucleated. This regulation involves controlling the initial nucleation template, the γ-tubulin ring complex (γTuRC). Although γTuRC is present throughout the cytoplasm, its activity is restricted to specific sites including the centrosome and Golgi. The well-conserved γ-tubulin nucleation activator (γTuNA) domain has been reported to increase the number of microtubules (MTs) generated by γTuRCs. However, previously we and others observed that γTuNA had a minimal effect on the activity of antibody-purified Xenopus γTuRCs in vitro (Thawani et al., eLife, 2020; Liu et al., 2020). Here, we instead report, based on improved versions of γTuRC, γTuNA, and our TIRF assay, the first real-time observation that γTuNA directly increases γTuRC activity in vitro, which is thus a bona fide γTuRC activator. We further validate this effect in Xenopus egg extract. Via mutation analysis, we find that γTuNA is an obligate dimer. Moreover, efficient dimerization as well as γTuNA's L70, F75, and L77 residues are required for binding to and activation of γTuRC. Finally, we find that γTuNA's activating effect opposes inhibitory regulation by stathmin. In sum, our improved assays prove that direct γTuNA binding strongly activates γTuRCs, explaining previously observed effects of γTuNA expression in cells and illuminating how γTuRC-mediated microtubule nucleation is regulated.
Collapse
Affiliation(s)
- Michael J Rale
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Brianna Romer
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Brian P Mahon
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sophie M Travis
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sabine Petry
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
10
|
Shankar S, Hsu ZT, Ezquerra A, Li CC, Huang TL, Coyaud E, Viais R, Grauffel C, Raught B, Lim C, Lüders J, Tsai SY, Hsia KC. Α γ-tubulin complex-dependent pathway suppresses ciliogenesis by promoting cilia disassembly. Cell Rep 2022; 41:111642. [DOI: 10.1016/j.celrep.2022.111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
|
11
|
Ramírez-Cota R, Espino-Vazquez AN, Carolina Rodriguez-Vega T, Evelyn Macias-Díaz R, Alicia Callejas-Negrete O, Freitag M, Fischer R, Roberson RW, Mouriño-Pérez RR. The cytoplasmic microtubule array in Neurospora crassa depends on microtubule-organizing centers at spindle pole bodies and microtubule +end-depending pseudo-MTOCs at septa. Fungal Genet Biol 2022; 162:103729. [DOI: 10.1016/j.fgb.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
12
|
Lagadec F, Carlon-Andres I, Ragues J, Port S, Wodrich H, Kehlenbach RH. CRM1 Promotes Capsid Disassembly and Nuclear Envelope Translocation of Adenovirus Independently of Its Export Function. J Virol 2022; 96:e0127321. [PMID: 34757845 PMCID: PMC8826800 DOI: 10.1128/jvi.01273-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.
Collapse
Affiliation(s)
- Floriane Lagadec
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Irene Carlon-Andres
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Jessica Ragues
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Sarah Port
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Harald Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Université de Bordeaux, Bordeaux, France
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Gao X, Herrero S, Wernet V, Erhardt S, Valerius O, Braus GH, Fischer R. The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control. J Cell Sci 2021; 134:271867. [PMID: 34328180 DOI: 10.1242/jcs.256537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Oliver Valerius
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
14
|
Gao X, Fischer R, Takeshita N. Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans. Methods Mol Biol 2021; 2329:277-289. [PMID: 34085230 DOI: 10.1007/978-1-0716-1538-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20 nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.
Collapse
Affiliation(s)
- Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
15
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Jaspersen SL. Anatomy of the fungal microtubule organizing center, the spindle pole body. Curr Opin Struct Biol 2020; 66:22-31. [PMID: 33113389 DOI: 10.1016/j.sbi.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
The fungal kingdom is large and diverse, representing extremes of ecology, life cycles and morphology. At a cellular level, the diversity among fungi is particularly apparent at the spindle pole body (SPB). This nuclear envelope embedded structure, which is essential for microtubule nucleation, shows dramatically different morphologies between different fungi. However, despite phenotypic diversity, many SPB components are conserved, suggesting commonalities in structure, function and duplication. Here, I review the organization of the most well-studied SPBs and describe how advances in genomics, genetics and cell biology have accelerated knowledge of SPB architecture in other fungi, providing insights into microtubule nucleation and other processes conserved across eukaryotes.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
17
|
Dundon SER, Pollard TD. Microtubule nucleation promoters Mto1 and Mto2 regulate cytokinesis in fission yeast. Mol Biol Cell 2020; 31:1846-1856. [PMID: 32520628 PMCID: PMC7525812 DOI: 10.1091/mbc.e19-12-0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 01/16/2023] Open
Abstract
Microtubules of the mitotic spindle direct cytokinesis in metazoans but this has not been documented in fungi. We report evidence that microtubule nucleators at the spindle pole body help coordinate cytokinetic furrow formation in fission yeast. The temperature-sensitive cps1-191 strain (Liu et al., 1999) with a D277N substitution in β-glucan synthase 1 (Cps1/Bgs1) was reported to arrest with an unconstricted contractile ring. We discovered that contractile rings in cps1-191 cells constrict slowly and that an mto2S338N mutation is required with the bgs1D277Nmutation to reproduce the cps1-191 phenotype. Complexes of Mto2 and Mto1 with γ-tubulin regulate microtubule assembly. Deletion of Mto1 along with the bgs1D277N mutation also gives the cps1-191 phenotype, which is not observed in mto2S338N or mto1Δ cells expressing bgs1+. Both mto2S338N and mto1Δ cells nucleate fewer astral microtubules than normal and have higher levels of Rho1-GTP at the division site than wild-type cells. We report multiple conditions that sensitize mto1Δ and mto2S338N cells to furrow ingression phenotypes.
Collapse
Affiliation(s)
- Samantha E. R. Dundon
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Thomas D. Pollard
- Departments of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
- Department of Cell Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
18
|
Liu W, Zheng F, Wang Y, Fu C. Alp7-Mto1 and Alp14 synergize to promote interphase microtubule regrowth from the nuclear envelope. J Mol Cell Biol 2020; 11:944-955. [PMID: 31087092 PMCID: PMC6927237 DOI: 10.1093/jmcb/mjz038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 04/26/2019] [Indexed: 01/02/2023] Open
Abstract
Microtubules grow not only from the centrosome but also from various noncentrosomal microtubule-organizing centers (MTOCs), including the nuclear envelope (NE) and pre-existing microtubules. The evolutionarily conserved proteins Mto1/CDK5RAP2 and Alp14/TOG/XMAP215 have been shown to be involved in promoting microtubule nucleation. However, it has remained elusive as to how the microtubule nucleation promoting factors are specified to various noncentrosomal MTOCs, particularly the NE, and how these proteins coordinate to organize microtubule assembly. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, efficient interphase microtubule growth from the NE requires Alp7/TACC, Alp14/TOG/XMAP215, and Mto1/CDK5RAP2. The absence of Alp7, Alp14, or Mto1 compromises microtubule regrowth on the NE in cells undergoing microtubule repolymerization. We further demonstrate that Alp7 and Mto1 interdependently localize to the NE in cells without microtubules and that Alp14 localizes to the NE in an Alp7 and Mto1-dependent manner. Tethering Mto1 to the NE in cells lacking Alp7 partially restores microtubule number and the efficiency of microtubule generation from the NE. Hence, our study delineates that Alp7, Alp14, and Mto1 work in concert to regulate interphase microtubule regrowth on the NE.
Collapse
Affiliation(s)
- Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| | - Yucai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Promiscuous Binding of Microprotein Mozart1 to γ-Tubulin Complex Mediates Specific Subcellular Targeting to Control Microtubule Array Formation. Cell Rep 2020; 31:107836. [DOI: 10.1016/j.celrep.2020.107836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
|
20
|
Gao X, Schmid M, Zhang Y, Fukuda S, Takeshita N, Fischer R. The spindle pole body of Aspergillus nidulans is asymmetrical and contains changing numbers of γ-tubulin complexes. J Cell Sci 2019; 132:jcs.234799. [PMID: 31740532 DOI: 10.1242/jcs.234799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOCs) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) are found in many cell types. Their composition and structure are only poorly understood. Here, we analyzed nuclear MTOCs (spindle-pole bodies, SPBs) and septal MTOCs in Aspergillus nidulans They both contain γ-tubulin along with members of the family of γ-tubulin complex proteins (GCPs). Our data suggest that SPBs consist of γ-tubulin small complexes (γ-TuSCs) at the outer plaque, and larger γ-tubulin ring complexes (γ-TuRC) at the inner plaque. We show that the MztA protein, an ortholog of the human MOZART protein (also known as MZT1), interacted with the inner plaque receptor PcpA (the homolog of fission yeast Pcp1) at SPBs, while no interaction nor colocalization was detected between MztA and the outer plaque receptor ApsB (fission yeast Mto1). Septal MTOCs consist of γ-TuRCs including MztA but are anchored through AspB and Spa18 (fission yeast Mto2). MztA is not essential for viability, although abnormal spindles were observed frequently in cells lacking MztA. Quantitative PALM imaging revealed unexpected dynamics of the protein composition of SPBs, with changing numbers of γ-tubulin complexes over time during interphase and constant numbers during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Marjorie Schmid
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Ying Zhang
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sayumi Fukuda
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Norio Takeshita
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Gallardo P, Barrales RR, Daga RR, Salas-Pino S. Nuclear Mechanics in the Fission Yeast. Cells 2019; 8:cells8101285. [PMID: 31635174 PMCID: PMC6829894 DOI: 10.3390/cells8101285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, the organization of the genome within the nucleus requires the nuclear envelope (NE) and its associated proteins. The nucleus is subjected to mechanical forces produced by the cytoskeleton. The physical properties of the NE and the linkage of chromatin in compacted conformation at sites of cytoskeleton contacts seem to be key for withstanding nuclear mechanical stress. Mechanical perturbations of the nucleus normally occur during nuclear positioning and migration. In addition, cell contraction or expansion occurring for instance during cell migration or upon changes in osmotic conditions also result innuclear mechanical stress. Recent studies in Schizosaccharomyces pombe (fission yeast) have revealed unexpected functions of cytoplasmic microtubules in nuclear architecture and chromosome behavior, and have pointed to NE-chromatin tethers as protective elements during nuclear mechanics. Here, we review and discuss how fission yeast cells can be used to understand principles underlying the dynamic interplay between genome organization and function and the effect of forces applied to the nucleus by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, 41010 Seville, Spain.
| |
Collapse
|
22
|
Leong SL, Lynch EM, Zou J, Tay YD, Borek WE, Tuijtel MW, Rappsilber J, Sawin KE. Reconstitution of Microtubule Nucleation In Vitro Reveals Novel Roles for Mzt1. Curr Biol 2019; 29:2199-2207.e10. [PMID: 31287970 PMCID: PMC6616311 DOI: 10.1016/j.cub.2019.05.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT) nucleation depends on the γ-tubulin complex (γ-TuC), in which multiple copies of the heterotetrameric γ-tubulin small complex (γ-TuSC) associate to form a ring-like structure (in metazoans, γ-tubulin ring complex; γ-TuRC) [1-7]. Additional conserved regulators of the γ-TuC include the small protein Mzt1 (MOZART1 in human; GIP1/1B and GIP2/1A in plants) [8-13] and proteins containing a Centrosomin Motif 1 (CM1) domain [10, 14-19]. Many insights into γ-TuC regulators have come from in vivo analysis in fission yeast Schizosaccharomyces pombe. The S. pombe CM1 protein Mto1 recruits the γ-TuC to microtubule-organizing centers (MTOCs) [14, 20-22], and analysis of Mto1[bonsai], a truncated version of Mto1 that cannot localize to MTOCs, has shown that Mto1 also has a role in γ-TuC activation [23]. S. pombe Mzt1 interacts with γ-TuSC and is essential for γ-TuC function and localization to MTOCs [11, 12]. However, the mechanisms by which Mzt1 functions remain unclear. Here we describe reconstitution of MT nucleation using purified recombinant Mto1[bonsai], the Mto1 partner protein Mto2, γ-TuSC, and Mzt1. Multiple copies of the six proteins involved coassemble to form a 34-40S ring-like "MGM" holocomplex that is a potent MT nucleator in vitro. Using purified MGM and subcomplexes, we investigate the role of Mzt1 in MT nucleation. Our results suggest that Mzt1 is critical to stabilize Alp6, the S. pombe homolog of human γ-TuSC protein GCP3, in an "interaction-competent" form within the γ-TuSC. This is essential for MGM to become a functional nucleator.
Collapse
Affiliation(s)
- Su Ling Leong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Weronika E Borek
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
23
|
Ito D, Zitouni S, Jana SC, Duarte P, Surkont J, Carvalho-Santos Z, Pereira-Leal JB, Ferreira MG, Bettencourt-Dias M. Pericentrin-mediated SAS-6 recruitment promotes centriole assembly. eLife 2019; 8:41418. [PMID: 31182187 PMCID: PMC6559791 DOI: 10.7554/elife.41418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
The centrosome is composed of two centrioles surrounded by a microtubule-nucleating pericentriolar material (PCM). Although centrioles are known to regulate PCM assembly, it is less known whether and how the PCM contributes to centriole assembly. Here we investigate the interaction between centriole components and the PCM by taking advantage of fission yeast, which has a centriole-free, PCM-containing centrosome, the SPB. Surprisingly, we observed that several ectopically-expressed animal centriole components such as SAS-6 are recruited to the SPB. We revealed that a conserved PCM component, Pcp1/pericentrin, interacts with and recruits SAS-6. This interaction is conserved and important for centriole assembly, particularly its elongation. We further explored how yeasts kept this interaction even after centriole loss and showed that the conserved calmodulin-binding region of Pcp1/pericentrin is critical for SAS-6 interaction. Our work suggests that the PCM not only recruits and concentrates microtubule-nucleators, but also the centriole assembly machinery, promoting biogenesis close by.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Ophiomics, Precision Medicine, Lisboa, Portugal
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM U1081 UMR7284 CNRS, Nice, France
| | | |
Collapse
|
24
|
Okada H, Wloka C, Wu JQ, Bi E. Distinct Roles of Myosin-II Isoforms in Cytokinesis under Normal and Stressed Conditions. iScience 2019; 14:69-87. [PMID: 30928696 PMCID: PMC6441717 DOI: 10.1016/j.isci.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
To address the question of why more than one myosin-II isoform is expressed in a single cell to drive cytokinesis, we analyzed the roles of the myosin-II isoforms, Myo2 and Myp2, of the fission yeast Schizosaccharomyces pombe, in cytokinesis under normal and stressed conditions. We found that Myp2 controls the disassembly, stability, and constriction initiation of the Myo2 ring in response to high-salt stress. A C-terminal coiled-coil domain of Myp2 is required for its immobility and contractility during cytokinesis, and when fused to the tail of the dynamic Myo2, renders the chimera the low-turnover property. We also found, by following distinct processes in real time at the single-cell level, that Myo2 and Myp2 are differentially required but collectively essential for guiding extracellular matrix remodeling during cytokinesis. These results suggest that the dynamic and immobile myosin-II isoforms are evolved to carry out cytokinesis with robustness under different growth conditions. The myosin-II isoforms Myo2 and Myp2 display distinct responses to cellular stress Myp2 controls the constriction initiation of Myo2 during stress response A C-terminal region of Myp2 is required for its immobility during cytokinesis Myo2 and Myp2 are differentially required for guiding ECM remodeling during cytokinesis
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, The Netherlands
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
25
|
Loiodice I, Janson ME, Tavormina P, Schaub S, Bhatt D, Cochran R, Czupryna J, Fu C, Tran PT. Quantifying Tubulin Concentration and Microtubule Number Throughout the Fission Yeast Cell Cycle. Biomolecules 2019; 9:biom9030086. [PMID: 30836700 PMCID: PMC6468777 DOI: 10.3390/biom9030086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αβ-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αβ-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.
Collapse
Affiliation(s)
- Isabelle Loiodice
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcel E Janson
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sebastien Schaub
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Divya Bhatt
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Cochran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Czupryna
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuanhai Fu
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phong T Tran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.
| |
Collapse
|
26
|
Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C. The J-domain cochaperone Rsp1 interacts with Mto1 to organize noncentrosomal microtubule assembly. Mol Biol Cell 2019; 30:256-267. [PMID: 30427751 PMCID: PMC6589567 DOI: 10.1091/mbc.e18-05-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule biogenesis initiates at various intracellular sites, including the centrosome, the Golgi apparatus, the nuclear envelope, and preexisting microtubules. Similarly, in the fission yeast Schizosaccharomyces pombe, interphase microtubules are nucleated at the spindle pole body (SPB), the nuclear envelope, and preexisting microtubules, depending on Mto1 activity. Despite the essential role of Mto1 in promoting microtubule nucleation, how distribution of Mto1 in different sites is regulated has remained elusive. Here, we show that the J-domain cochaperone Rsp1 interacts with Mto1 and specifies the localization of Mto1 to non-SPB nucleation sites. The absence of Rsp1 abolishes the localization of Mto1 to non-SPB nucleation sites, with concomitant enrichment of Mto1 to the SPB and the nuclear envelope. In contrast, Rsp1 overexpression impairs the localization of Mto1 to all microtubule organization sites. These findings delineate a previously uncharacterized mechanism in which Rsp1-Mto1 interaction orchestrates non-SPB microtubule formation.
Collapse
Affiliation(s)
- Juan Shen
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Tianpeng Li
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaojia Niu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wang
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xuebiao Yao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
27
|
Ito D, Bettencourt-Dias M. Centrosome Remodelling in Evolution. Cells 2018; 7:E71. [PMID: 29986477 PMCID: PMC6070874 DOI: 10.3390/cells7070071] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
The centrosome is the major microtubule organizing centre (MTOC) in animal cells. The canonical centrosome is composed of two centrioles surrounded by a pericentriolar matrix (PCM). In contrast, yeasts and amoebozoa have lost centrioles and possess acentriolar centrosomes—called the spindle pole body (SPB) and the nucleus-associated body (NAB), respectively. Despite the difference in their structures, centriolar centrosomes and SPBs not only share components but also common biogenesis regulators. In this review, we focus on the SPB and speculate how its structures evolved from the ancestral centrosome. Phylogenetic distribution of molecular components suggests that yeasts gained specific SPB components upon loss of centrioles but maintained PCM components associated with the structure. It is possible that the PCM structure remained even after centrosome remodelling due to its indispensable function to nucleate microtubules. We propose that the yeast SPB has been formed by a step-wise process; (1) an SPB-like precursor structure appeared on the ancestral centriolar centrosome; (2) it interacted with the PCM and the nuclear envelope; and (3) it replaced the roles of centrioles. Acentriolar centrosomes should continue to be a great model to understand how centrosomes evolved and how centrosome biogenesis is regulated.
Collapse
Affiliation(s)
- Daisuke Ito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | | |
Collapse
|
28
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
29
|
Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. eLife 2018; 7:e33465. [PMID: 29809148 PMCID: PMC6008054 DOI: 10.7554/elife.33465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.
Collapse
Affiliation(s)
- Xun X Bao
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Tomoko Kojidani
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
| | - Eric M Lynch
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Yasushi Hiraoka
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute KobeNational Institute of Information and Communications TechnologyKobeJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
30
|
Friend JE, Sayyad WA, Arasada R, McCormick CD, Heuser JE, Pollard TD. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm. Cytoskeleton (Hoboken) 2017; 75:164-173. [PMID: 29205883 DOI: 10.1002/cm.21425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Myosin-II is required for the assembly and constriction of cytokinetic contractile rings in fungi and animals. We used electron microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS) to characterize the physical properties of Myo2 from fission yeast Schizosaccharomyces pombe. By electron microscopy, Myo2 has two heads and a coiled-coiled tail like myosin-II from other species. The first 65 nm of the tail is a stiff rod, followed by a flexible, less-ordered region up to 30 nm long. Myo2 sediments as a 7 S molecule in high salt, but aggregates rather than forming minifilaments at lower salt concentrations; this is unaffected by heavy chain phosphorylation. We used FRAP and FCS to observe the dynamics of Myo2 in live S. pombe cells and in cell extracts at different salt concentrations; both show that Myo2 with an N-terminal mEGFP tag has a diffusion coefficient of ∼ 3 µm2 s-1 in the cytoplasm of live cells during interphase and mitosis. Photon counting histogram analysis of the FCS data confirmed that Myo2 diffuses as doubled-headed molecules in the cytoplasm. FCS measurements on diluted cell extracts showed that mEGFP-Myo2 has a diffusion coefficient of ∼ 30 µm2 s-1 in 50 to 400 mM KCl concentrations.
Collapse
Affiliation(s)
- Janice E Friend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Wasim A Sayyad
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Rajesh Arasada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Chad D McCormick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-1855
| | - John E Heuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103
| | - Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103.,Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
31
|
Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R. Microtubule-organizing centers of Aspergillus nidulans
are anchored at septa by a disordered protein. Mol Microbiol 2017; 106:285-303. [DOI: 10.1111/mmi.13763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Ying Zhang
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Raphael Manck
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Marjorie Schmid
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Aysha H. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Stephen A. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
- School of Life and Environmental Sciences; University of Tsukuba; Ten-Nou-Dai Tsukuba 305-8572 Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| |
Collapse
|
32
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
33
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 2017; 216:2409-2424. [PMID: 28619713 PMCID: PMC5551712 DOI: 10.1083/jcb.201701041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023] Open
Abstract
Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.
Collapse
Affiliation(s)
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
34
|
Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F, Rappsilber J, Sawin KE. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat Commun 2015; 6:7929. [PMID: 26243668 PMCID: PMC4918325 DOI: 10.1038/ncomms8929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. In S. pombe, cytoplasmic microtubule nucleation, which depends on the Mto1/2 complex, ceases during mitosis. Here, Borek et al., show that multisite phosphorylation of Mto1/2 during mitosis disassembles the Mto1/2 complex and prevents microtubule nucleation activity.
Collapse
Affiliation(s)
- Weronika E Borek
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
35
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
36
|
Syrovatkina V, Tran PT. Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut. Nat Commun 2015; 6:7322. [PMID: 26031557 PMCID: PMC4720966 DOI: 10.1038/ncomms8322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/27/2015] [Indexed: 11/11/2022] Open
Abstract
Aneuploidy – chromosome instability leading to incorrect chromosome number in dividing cells – can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring, or cytokinesis. As most tumors show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research to provide potential therapeutics. Here, we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.
Collapse
Affiliation(s)
- Viktoriya Syrovatkina
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA
| | - Phong T Tran
- 1] Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Room 1145, Philadelphia, Pennsylvania 19104, USA [2] Institut Curie, PSL Research University, Paris F-75248, France [3] Centre National de la Recherche Scientifique, Unite Mixte de Recherche 144, Paris F-75248, France
| |
Collapse
|
37
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
38
|
Ward JJ, Roque H, Antony C, Nédélec F. Mechanical design principles of a mitotic spindle. eLife 2014; 3:e03398. [PMID: 25521247 PMCID: PMC4290452 DOI: 10.7554/elife.03398] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.
Collapse
Affiliation(s)
- Jonathan J Ward
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hélio Roque
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claude Antony
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
39
|
Abenza JF, Chessel A, Raynaud WG, Carazo-Salas RE. Dynamics of cell shape inheritance in fission yeast. PLoS One 2014; 9:e106959. [PMID: 25210736 PMCID: PMC4161360 DOI: 10.1371/journal.pone.0106959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different ‘curved’ mutants - a class of mutants which often fail to grow axially straight – we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.
Collapse
Affiliation(s)
- Juan F. Abenza
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - William G. Raynaud
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rafael E. Carazo-Salas
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| |
Collapse
|
40
|
Arasada R, Pollard TD. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex. Cell Rep 2014; 8:1533-44. [PMID: 25159149 DOI: 10.1016/j.celrep.2014.07.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/22/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022] Open
Abstract
Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p.
Collapse
Affiliation(s)
- Rajesh Arasada
- Department of Molecular Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA; Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA; Department of Cell Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA.
| |
Collapse
|
41
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
42
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
43
|
Lin TC, Neuner A, Schlosser YT, Scharf AND, Weber L, Schiebel E. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 2014; 3:e02208. [PMID: 24842996 PMCID: PMC4034690 DOI: 10.7554/elife.02208] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains. DOI:http://dx.doi.org/10.7554/eLife.02208.001 Microtubules are hollow structures made of proteins that have a central role in cell division and a variety of other important processes within cells. For a cell to divide successfully, the chromosomes containing the genetic information of the cell must be duplicated and then separated so that one copy of each chromosome ends up in each daughter cell. To separate the chromosomes, microtubules extend out from two structures called spindle pole bodies, which are found at either end of the cell, and pull one copy of each chromosome to opposite sides of the cell. Although the individual proteins that make up a microtubule can self-assemble into tubes, this occurs very slowly, so cells employ other molecules to speed up this process. In yeast cells, a protein called gamma-tubulin is recruited to the spindle pole body by the protein Spc110, where it combines with two other proteins to form a complex called the gamma-tubulin small complex. Several of these complexes then join together to form a ring, which probably acts as the platform that microtubules grow from. Recent observations suggested that Spc110 may help to construct this ring, but without revealing how. Now, Lin et al. reveal that Spc110 can regulate microtubule formation by controlling how several gamma-tubulin small complexes bind together, and have identified the exact section of Spc110 that interacts with the complexes. However, the Spc110 must become active before it can perform this role, and it is only activated during certain stages of cell division, through phosphorylation. The structures in Spc110 that bind to the gamma-tubulin small complex in yeast are also found in gamma-tubulin binding receptor proteins in human cells. The work of Lin et al. demonstrates that proteins that are assumed to have passive roles within cells, such as Spc110, often play more active roles instead. DOI:http://dx.doi.org/10.7554/eLife.02208.002
Collapse
Affiliation(s)
- Tien-Chen Lin
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany The Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Yvonne T Schlosser
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Annette N D Scharf
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Lisa Weber
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Lynch EM, Groocock LM, Borek WE, Sawin KE. Activation of the γ-tubulin complex by the Mto1/2 complex. Curr Biol 2014; 24:896-903. [PMID: 24704079 PMCID: PMC3989768 DOI: 10.1016/j.cub.2014.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022]
Abstract
The multisubunit γ-tubulin complex (γ-TuC) is critical for microtubule nucleation in eukaryotic cells, but it remains unclear how the γ-TuC becomes active specifically at microtubule-organizing centers (MTOCs) and not more broadly throughout the cytoplasm. In the fission yeast Schizosaccharomyces pombe, the proteins Mto1 and Mto2 form the Mto1/2 complex, which interacts with the γ-TuC and recruits it to several different types of cytoplasmic MTOC sites. Here, we show that the Mto1/2 complex activates γ-TuC-dependent microtubule nucleation independently of localizing the γ-TuC. This was achieved through the construction of a "minimal" version of Mto1/2, Mto1/2[bonsai], that does not localize to any MTOC sites. By direct imaging of individual Mto1/2[bonsai] complexes nucleating single microtubules in vivo, we further determine the number and stoichiometry of Mto1, Mto2, and γ-TuC subunits Alp4 (GCP2) and Alp6 (GCP3) within active nucleation complexes. These results are consistent with active nucleation complexes containing ∼13 copies each of Mto1 and Mto2 per active complex and likely equimolar amounts of γ-tubulin. Additional experiments suggest that Mto1/2 multimers act to multimerize the fission yeast γ-tubulin small complex and that multimerization of Mto2 in particular may underlie assembly of active microtubule nucleation complexes.
Collapse
Affiliation(s)
- Eric M Lynch
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Weronika E Borek
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK.
| |
Collapse
|
45
|
Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A, Bakshi SD, Dobbelaere J, Johnson S, Lea SM, Raff JW. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev Cell 2014; 28:659-69. [PMID: 24656740 PMCID: PMC3988887 DOI: 10.1016/j.devcel.2014.02.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 01/27/2014] [Accepted: 02/16/2014] [Indexed: 02/02/2023]
Abstract
Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies.
Collapse
Affiliation(s)
- Paul T Conduit
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Zhe Feng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Suruchi D Bakshi
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
| | | | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
46
|
Mana-Capelli S, McLean JR, Chen CT, Gould KL, McCollum D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol Biol Cell 2012; 23:4592-600. [PMID: 23087209 PMCID: PMC3510020 DOI: 10.1091/mbc.e12-07-0532] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, a late mitotic kinase pathway called the septation initiation network (SIN) triggers cytokinesis. Here we show that the SIN is also involved in regulating anaphase spindle elongation and telophase nuclear positioning via inhibition of Klp2, a minus end-directed kinesin-14. Klp2 is known to localize to microtubules (MTs) and have roles in interphase nuclear positioning, mitotic chromosome alignment, and nuclear migration during karyogamy (nuclear fusion during mating). We observe SIN-dependent disappearance of Klp2 from MTs in anaphase, and we find that this is mediated by direct phosphorylation of Klp2 by the SIN kinase Sid2, which abrogates loading of Klp2 onto MTs by inhibiting its interaction with Mal3 (EB1 homologue). Disruption of Klp2 MT localization is required for efficient anaphase spindle elongation. Furthermore, when cytokinesis is delayed, SIN inhibition of Klp2 acts in concert with microtubules emanating from the equatorial microtubule-organizing center to position the nuclei away from the cell division site. These results reveal novel functions of the SIN in regulating the MT cytoskeleton and suggest that the SIN may have broader functions in regulating cellular organization in late mitosis than previously realized.
Collapse
Affiliation(s)
- Sebastian Mana-Capelli
- Department of Microbiology and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
47
|
Ye Y, Lee IJ, Runge KW, Wu JQ. Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis. Mol Biol Cell 2012; 23:1181-95. [PMID: 22298427 PMCID: PMC3315812 DOI: 10.1091/mbc.e11-09-0800] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
How Rho-GEFs and Rho GTPases regulate division-site selection during cytokinesis in fission yeast is unknown. The Rho-GEF Gef2 interacts with the anillin Mid1 to regulate contractile-ring positioning and assembly in coordination with the polo kinase Plo1. In addition, Gef2 is involved in contractile-ring stability and disassembly. Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.
Collapse
Affiliation(s)
- Yanfang Ye
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
48
|
Cell polarity in fission yeast: A matter of confining, positioning, and switching growth zones. Semin Cell Dev Biol 2011; 22:799-805. [DOI: 10.1016/j.semcdb.2011.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/06/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
|
49
|
Anders A, Sawin KE. Microtubule stabilization in vivo by nucleation-incompetent γ-tubulin complex. J Cell Sci 2011; 124:1207-13. [PMID: 21444751 PMCID: PMC3065382 DOI: 10.1242/jcs.083741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although the fission yeast Schizosaccharomyces pombe contains many of the γ-tubulin ring complex (γ-TuRC)-specific proteins of the γ-tubulin complex (γ-TuC), several questions about the organizational state and function of the fission yeast γ-TuC in vivo remain unresolved. Using 3×GFP-tagged γ-TuRC-specific proteins, we show here that γ-TuRC-specific proteins are present at all microtubule organizing centers in fission yeast and that association of γ-TuRC-specific proteins with the γ-tubulin small complex (γ-TuSC) does not depend on Mto1, which is a key regulator of the γ-TuC. Through sensitive imaging in mto1Δ mutants, in which cytoplasmic microtubule nucleation is abolished, we unexpectedly found that γ-TuC incapable of nucleating microtubules can nevertheless associate with microtubule minus-ends in vivo. The presence of γ-TuC at microtubule ends is independent of γ-TuRC-specific proteins and strongly correlates with the stability of microtubule ends. Strikingly, microtubule bundles lacking γ-TuC at microtubule ends undergo extensive treadmilling in vivo, apparently induced by geometrical constraints on plus-end growth. Our results indicate that microtubule stabilization by the γ-TuC, independently of its nucleation function, is important for maintaining the organization and dynamic behavior of microtubule arrays in vivo.
Collapse
Affiliation(s)
- Andreas Anders
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
50
|
Megraw TL, Sharkey JT, Nowakowski RS. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol 2011; 21:470-80. [PMID: 21632253 DOI: 10.1016/j.tcb.2011.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/27/2023]
Abstract
Autosomal recessive primary microcephaly (MCPH) is characterized by small brain size as a result of deficient neuron production in the developing cerebral cortex. Although MCPH is a rare disease, the questions surrounding its etiology strike at the core of stem cell biology. The seven genes implicated in MCPH all encode centrosomal proteins and disruption of the MCPH gene Cdk5rap2 in mice revealed its role in neural progenitor proliferation and in maintaining normal centriole replication control. We discuss here the impact that centrosome regulation has upon neural progenitors in the developing brain. We integrate the impact of centriole replication defects with the functions of Cdk5rap2 and other MCPH proteins, propose mechanisms for progenitor loss in MCPH, and discuss links to two other microcephaly syndromes.
Collapse
Affiliation(s)
- Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, USA.
| | | | | |
Collapse
|