1
|
Wiley MB, Bauer J, Alvarez V, Kolics Z, Cheng W, Church DN, Kerr DJ, Kerr RS, Jung B. Activin A affects colorectal cancer progression and immunomodulation in a stage dependent manner. Sci Rep 2025; 15:8509. [PMID: 40075112 PMCID: PMC11903883 DOI: 10.1038/s41598-025-91853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Advanced colorectal cancer (CRC) continues to present with poor survival and treatment options remain limited. We have shown that increased activin A (activin) expression in the tumor microenvironment (TME) is associated with poor outcome in a cohort of stage III and IV CRC patients. Here, we hypothesized that activin promotes stage specific outcomes in CRC, enhancing metastasis and tolerance in late-stage CRC exclusively. We employed Digital Spatial Profiling (DSP) technology on a cohort of stage II and III CRC patient tissue samples obtained at the time of curative surgery to show that activin co-localization was associated with increased mitogenic signaling, proliferation, and immunosuppression in stage III, but not stage II, CRCs. Furthermore, we found strong linear correlations between markers of immunosuppression and signaling proteins in activin (+) areas, an effect that was not observed in activin (-) areas of tissue. Taken together these data suggest activin exerts pro-metastatic and immunosuppressive effects in stage III, but not stage II, CRC providing an attractive therapeutic target for advanced CRC.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington College of Medicine, Seattle, WA, 98195, USA
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, OX1 4BH, UK
| | - David J Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX1 4BH, UK
| | - Rachel S Kerr
- Department of Oncology, University of Oxford, Oxford, OX1 4BH, UK
| | - Barbara Jung
- School of Medicine, University of California, San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Chen T, Alcorn H, Devbhandari S, Remus D, Lacy E, Huangfu D, Anderson KV. A hypomorphic mutation in Pold1 disrupts the coordination of embryo size expansion and morphogenesis during gastrulation. Biol Open 2022; 11:bio059307. [PMID: 35876795 PMCID: PMC9382117 DOI: 10.1242/bio.059307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.
Collapse
Affiliation(s)
- Tingxu Chen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Chen L, De Menna M, Groenewoud A, Thalmann GN, Kruithof-de Julio M, Snaar-Jagalska BE. A NF-ĸB-Activin A signaling axis enhances prostate cancer metastasis. Oncogene 2019; 39:1634-1651. [PMID: 31740783 DOI: 10.1038/s41388-019-1103-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
Metastasis is a main cause of death in prostate cancer (PCa). To dissect the molecular cues from cancer cell-microenvironment interaction that drive metastatic cascade, bone metastatic PCa cells were intravenously implanted into zebrafish embryos and mice tibia forming metastatic lesions. Transcriptomic analysis showed an elevated expression of stemness genes, pro-inflammatory cytokines and TGF-β family member Activin A in the cancer cells at metastatic onset in both animal models. Consistently, analysis of clinical datasets revealed that the expression of Activin A is specifically elevated in metastases and correlates with poor prognosis in stratified high-risk PCa patients. It is further unveiled that the microenvironment induced Activin A expression by NF-κB activation. The elevated level of Activin A enhanced the invasive ALDHhi CSC-like phenotypes and PCa proliferation by activation of Smad and ERK1/2 signaling driving metastasis. Suppression of Activin A or Activin receptor significantly reduced the CSC-like subpopulation, invasion, metastatic growth, and bone lesion formation in zebrafish and mice xenografts, suggesting a functional role of NF-κB-dependent Activin A in PCa metastasis. Overall, our study demonstrates that human PCa cells can display a comparable response with the microenvironment in zebrafish and mice xenografts. Combining both animal models, we uncovered the microenvironment-dependent activin signaling as an essential driver in PCa metastasis with therapeutic potential.
Collapse
Affiliation(s)
- Lanpeng Chen
- Institute of Biology, University of Leiden, Leiden, Netherlands
| | - Marta De Menna
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T. MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genet 2018; 14:e1007621. [PMID: 30222786 PMCID: PMC6160229 DOI: 10.1371/journal.pgen.1007621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes. Specification of the embryonic axes is an essential step during early development of metazoa. In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatial restriction of the expression of the TGF-ß family member Nodal in ventral cells, a process that requires the activity of the maternal determinant Panda. How the spatially restricted expression of nodal is established downstream of Panda is not well understood. We have discovered that, in the Mediterranean sea urchin Paracentrotus lividus, the spatial restriction of nodal on the ventral side of the embryo requires the inhibitory activity of a transcriptional repressor named Yan/Tel. This finding suggests a molecular mechanism for the control of nodal expression by the release of a repression. We found that this release requires the activity of two families of kinases that we identified as the MAP kinases and GSK3, a kinase which, intriguingly, was previously known as a key regulator of patterning along the animal-vegetal axis. We discovered that phosphorylation by MAPK and GSK3 triggers degradation of Yan/Tel by a β-TRCP proteasome pathway. Finally, we find that Yan/Tel likely acts downstream of Panda in the hierarchy of genes required for nodal restriction. Our study therefore identifies Yan/Tel as a new essential regulator of nodal expression downstream of Panda and identifies a novel key interaction between the gene regulatory networks responsible for patterning along the primary and secondary axis of polarity.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Magali Quirin
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Emmanuel Haillot
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Noémie De Crozé
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mathieu Rouel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Felipe Jimenez
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Radja Amrouche
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Aline Chessel
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
| | - Thierry Lepage
- Department of Natural Sciences, Institut Biologie Valrose, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
5
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
6
|
Calvanese L, Focà A, Sandomenico A, Focà G, Caporale A, Doti N, Iaccarino E, Leonardi A, D'Auria G, Ruvo M, Falcigno L. Structural insights into the interaction of a monoclonal antibody and Nodal peptides by STD-NMR spectroscopy. Bioorg Med Chem 2017; 25:6589-6596. [PMID: 29113739 DOI: 10.1016/j.bmc.2017.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022]
Abstract
Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annalia Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Giuseppina Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Emanuela Iaccarino
- DISTABIF, Università degli Studi della Campania "Lugi Vanvitelli", via Vivaldi, 43, 80100 Caserta, Italy
| | - Antonio Leonardi
- Dept. Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
7
|
Molina MD, Quirin M, Haillot E, Jimenez F, Chessel A, Lepage T. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development 2017; 144:2270-2281. [PMID: 28507001 DOI: 10.1242/dev.152330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton.
Collapse
Affiliation(s)
| | - Magali Quirin
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Emmanuel Haillot
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Felipe Jimenez
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| |
Collapse
|
8
|
Nishimura T, Unezaki N, Kanegi R, Wijesekera DPH, Hatoya S, Sugiura K, Kawate N, Tamada H, Imai H, Inaba T. Generation of Canine Induced Extraembryonic Endoderm-Like Cell Line That Forms Both Extraembryonic and Embryonic Endoderm Derivatives. Stem Cells Dev 2017; 26:1111-1120. [PMID: 28474540 DOI: 10.1089/scd.2017.0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extraembryonic endoderm (XEN) cells are stem cell lines derived from primitive endoderm cells of inner cell mass in blastocysts. These cells have self-renewal properties and differentiate into visceral endoderm (VE) and parietal endoderm (PE) of the yolk sac. Recently, it has been reported that XEN cells can contribute to fetal embryonic endoderm, and their unique potency has been evaluated. In this study, we have described the induction and characterization of new canine stem cell lines that closely resemble to XEN cells. These cells, which we designated canine induced XEN (ciXEN)-like cells, were induced from canine embryonic fibroblasts by introducing four transgenes. ciXEN-like cells expressed XEN markers, which could be maintained over 50 passages in N2B27 medium supplemented with inhibitors of mitogen-activated protein kinase p38 and transforming growth factor-beta 1. Our ciXEN-like cells were maintained without transgene expression and exhibited upregulated expression of VE and PE markers in feeder-free conditions. The cells differentiated from ciXEN-like cells using a coculture system showed multiple nuclei and expressed albumin protein, similar to characteristics of hepatocytes. Furthermore, these cells expressed the adult hepatocyte marker, CYP3A4. Interestingly, these cells also formed a net structure expressing the bile epithelium capillary marker, multidrug resistance-associated protein 2. Thus, we have demonstrated the induction of a new canine stem cell line, ciXEN-like cells, which could form an embryonic endodermal cell layer. Our ciXEN-like cells may be a helpful tool to study the canine embryo development and represent a promising cell source for proceeding human and canine regenerative medicine.
Collapse
Affiliation(s)
- Toshiya Nishimura
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Naoya Unezaki
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Ryoji Kanegi
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | | | - Shingo Hatoya
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Kikuya Sugiura
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Noritoshi Kawate
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Hiromichi Tamada
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| | - Hiroshi Imai
- 2 Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Toshio Inaba
- 1 Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka, Japan
| |
Collapse
|
9
|
Koga T, Shiraki N, Yano S, Suico MA, Morino-Koga S, Sato T, Shuto T, Kume S, Kai H. Mild electrical stimulation with heat shock guides differentiation of embryonic stem cells into Pdx1-expressing cells within the definitive endoderm. BMC Biotechnol 2017; 17:14. [PMID: 28202025 PMCID: PMC5312430 DOI: 10.1186/s12896-017-0331-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Background Because of the increasing number of diabetic patients, it is important to generate pancreatic and duodenal homeobox gene 1 (Pdx1)-expressing cells, which are capable of differentiating into pancreatic endocrine β cells. Mild electrical stimulation was reported to modulate the differentiation of ES cells into ectoderm-derived neuronal cells or mesoderm-derived cardiac cells. Results In this study, we report that mild electrical stimulation with heat shock (MET) potentiates the differentiation of ES cells into definitive endoderm-derived Pdx1-expressing cells. MET has no effect when applied to early definitive endoderm on differentiation day 5. A 1.87-fold increase in the proportion of Pdx1-expressing cells was observed when stimulation was applied to the late definitive endoderm one day prior to the immergence of Pdx1/GFP-expressing cells on differentiation day 7. Pdx1 mRNA was also up-regulated by MET. The potentiating effect of MET synergized with activin and basic fibroblast growth factor into Pdx1-expressing cells. Moreover, MET stimulation on late definitive endoderm up-regulated heat shock protein 72 and activated various kinases including Akt, extracellular signal-regulated kinase, p38, and c-jun NH2-terminal kinase in ES cells. Conclusions Our findings indicate that MET induces the differentiation of Pdx1-expressing cells within the definitive endoderm in a time-dependent manner, and suggest useful application for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoaki Koga
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Present address: Department of Biochemistry, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,Present address: Department of Biological Information, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shuichiro Yano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Saori Morino-Koga
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takashi Sato
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan. .,Present address: Department of Biological Information, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
10
|
Neganova I, Chichagova V, Armstrong L, Lako M. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs. Sci Rep 2017; 7:41693. [PMID: 28155868 PMCID: PMC5290526 DOI: 10.1038/srep41693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 01/17/2023] Open
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. Reprogramming is a stepwise process with well-defined stages of initiation, maturation and stabilisation which are critically dependent on interactions between key pluripotency transcription factors, epigenetic regulators and signalling pathways. In this manuscript we have investigated the role of p38 MAPK signalling pathway and have shown a subpopulation- and phase-specific pattern of activation occurring during the initiation and maturation stage of reprogramming in partially and fully reprogrammed cells respectively. Downregulation of p38 MAPK activity via RNA interference or small molecule inhibitor led to cell accumulation in G1 phase of the cell cycle and reduced expression of cell cycle regulators during the initiation stage of reprogramming. This was associated with a significant downregulation of key pluripotency marker expression, disruption of mesenchymal to epithelial transition (MET), increased expression of differentiation markers and presence of partially reprogrammed cells which retained a typical gene expression profile of mesendodermal cells and were unable to progress to fully reprogrammed phenotype. Together our data indicate an important role for p38 MAPK activity in proliferation, MET progression and establishment of pluripotent phenotype, which are necessary steps for the development of human iPSCs.
Collapse
Affiliation(s)
- Irina Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, NE1 3BZ, UK
| |
Collapse
|
11
|
Warrier S, Nuwayhid S, Sabatino JA, Sugrue KF, Zohn IE. Supt20 is required for development of the axial skeleton. Dev Biol 2016; 421:245-257. [PMID: 27894818 DOI: 10.1016/j.ydbio.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Somitogenesis and subsequent axial skeletal development is regulated by the interaction of pathways that determine the periodicity of somite formation, rostrocaudal somite polarity and segment identity. Here we use a hypomorphic mutant mouse line to demonstrate that Supt20 (Suppressor of Ty20) is required for development of the axial skeleton. Supt20 hypomorphs display fusions of the ribs and vertebrae at lower thoracic levels along with anterior homeotic transformation of L1 to T14. These defects are preceded by reduction of the rostral somite and posterior shifts in Hox gene expression. While cycling of Notch target genes in the posterior presomitic mesoderm (PSM) appeared normal, expression of Lfng was reduced. In the anterior PSM, Mesp2 expression levels and cycling were unaffected; yet, expression of downstream targets such as Lfng, Ripply2, Mesp1 and Dll3 in the prospective rostral somite was reduced accompanied by expansion of caudal somite markers such as EphrinB2 and Hes7. Supt20 interacts with the Gcn5-containing SAGA histone acetylation complex. Gcn5 hypomorphic mutant embryos show similar defects in axial skeletal development preceded by posterior shift of Hoxc8 and Hoxc9 gene expression. We demonstrate that Gcn5 and Supt20 hypomorphs show similar defects in rostral-caudal somite patterning potentially suggesting shared mechanisms.
Collapse
Affiliation(s)
- Sunita Warrier
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samer Nuwayhid
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julia A Sabatino
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Kelsey F Sugrue
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
12
|
Stower MJ, Srinivas S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0546. [PMID: 25349454 PMCID: PMC4216468 DOI: 10.1098/rstb.2013.0546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The elaboration of anterior–posterior (A–P) pattern is one of the earliest events during development and requires the precisely coordinated action of several players at the level of molecules, cells and tissues. In mammals, it is controlled by a specialized population of migratory extraembryonic epithelial cells, the anterior visceral endoderm (AVE). The AVE is a signalling centre that is responsible for several important patterning events during early development, including specifying the orientation of the A–P axis and the position of the heart with respect to the brain. AVE cells undergo a characteristic stereotypical migration which is crucial to their functions.
Collapse
Affiliation(s)
- Matthew J Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
13
|
Wu Q, Fukuda K, Weinstein M, Graff JM, Saga Y. SMAD2 and p38 signaling pathways act in concert to determine XY primordial germ cell fate in mice. Development 2015; 142:575-86. [PMID: 25605784 DOI: 10.1242/dev.119446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sex of primordial germ cells (PGCs) is determined in developing gonads on the basis of cues from somatic cells. In XY gonads, sex-determining region Y (SRY) triggers fibroblast growth factor 9 (FGF9) expression in somatic cells. FGF signaling, together with downstream nodal/activin signaling, promotes male differentiation in XY germ cells by suppressing retinoic acid (RA)-dependent meiotic entry and inducing male-specific genes. However, the mechanism by which nodal/activin signaling regulates XY PGC fate is unknown. We uncovered the roles of SMAD2/3 and p38 MAPK, the putative downstream factors of nodal/activin signaling, in PGC sexual fate decision. We found that conditional deletion of Smad2, but not Smad3, from XY PGCs led to a loss of male-specific gene expression. Moreover, suppression of RA signaling did not rescue male-specific gene expression in Smad2-mutant testes, indicating that SMAD2 signaling promotes male differentiation in a RA-independent manner. By contrast, we found that p38 signaling has an important role in the suppression of RA signaling. The Smad2 deletion did not disrupt the p38 signaling pathway even though Nodal expression was significantly reduced, suggesting that p38 was not regulated by nodal signaling in XY PGCs. Additionally, the inhibition of p38 signaling in the Smad2-mutant testes severely impeded XY PGC differentiation and induced meiosis. In conclusion, we propose a model in which p38 and SMAD2 signaling coordinate to determine the sexual fate of XY PGCs.
Collapse
Affiliation(s)
- Quan Wu
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | - Kurumi Fukuda
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | - Michael Weinstein
- Department of Molecular Genetics and Division of Human Cancer Genetics, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Jonathan M Graff
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NB5.118, Dallas, TX 75390, USA
| | - Yumiko Saga
- Department of Genetics, SOKENDAI, Yata 1111, Mishima 411-8540, Japan Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| |
Collapse
|
14
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
15
|
Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han SW, Mochida K, Adachi T, Takayama S, Matsuo I. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev Cell 2014; 27:131-144. [PMID: 24176640 DOI: 10.1016/j.devcel.2013.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Mouse anterior-posterior axis polarization is preceded by formation of the distal visceral endoderm (DVE) by unknown mechanisms. Here, we show by in vitro culturing of embryos immediately after implantation in microfabricated cavities that the external mechanical cues exerted on the embryo are crucial for DVE formation, as well as the elongated egg cylinder shape, without affecting embryo-intrinsic transcriptional programs except those involving DVE-specific genes. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic factors from maternal tissues. Moreover, the mechanical forces induce a breach of the basement membrane barrier at the distal portion locally, and thereby the transmigrated epiblast cells emerge as the DVE cells. Thus, we propose that external mechanical forces exerted by the interaction between embryo and maternal uterine tissues directly control the location of DVE formation at the distal tip and consequently establish the mammalian primary body axis.
Collapse
Affiliation(s)
- Ryuji Hiramatsu
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Toshiki Matsuoka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Sung-Woong Han
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Taiji Adachi
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isao Matsuo
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Stacer AC, Nyati S, Moudgil P, Iyengar R, Luker KE, Rehemtulla A, Luker GD. NanoLuc Reporter for Dual Luciferase Imaging in Living Animals. Mol Imaging 2013. [DOI: 10.2310/7290.2013.00062] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Amanda C. Stacer
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Shyam Nyati
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Pranav Moudgil
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Rahul Iyengar
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kathryn E. Luker
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Alnawaz Rehemtulla
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Gary D. Luker
- From the Center for Molecular Imaging and Departments of Radiology, Radiation Oncology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Stacer AC, Nyati S, Moudgil P, Iyengar R, Luker KE, Rehemtulla A, Luker GD. NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging 2013; 12:1-13. [PMID: 24371848 PMCID: PMC4144862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Bioluminescence imaging is widely used for cell-based assays and animal imaging studies in biomedical research and drug development, capitalizing on the high signal to background of this technique. A relatively small number of luciferases are available for imaging studies, substantially limiting the ability to image multiple molecular and cellular events, as done commonly with fluorescence imaging. To advance dual reporter bioluminescence molecular imaging, we tested a recently developed, adenosine triphosphate–independent luciferase enzyme from Oplophorus gracilirostris (NanoLuc [NL]) as a reporter for animal imaging. We demonstrated that NL could be imaged in superficial and deep tissues in living mice, although the detection of NL in deep tissues was limited by emission of predominantly blue light by this enzyme. Changes in bioluminescence from NL over time could be used to quantify tumor growth, and secreted NL was detectable in small volumes of serum. We combined NL and firefly luciferase reporters to quantify two key steps in transforming growth factor β signaling in intact cells and living mice, establishing a novel dual luciferase imaging strategy for quantifying signal transduction and drug targeting. Our results establish NL as a new reporter for bioluminescence imaging studies in intact cells and living mice that will expand imaging of signal transduction in normal physiology, disease, and drug development.
Collapse
Affiliation(s)
- Amanda C. Stacer
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Shyam Nyati
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Pranav Moudgil
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Rahul Iyengar
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Kathryn E. Luker
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Alnawaz Rehemtulla
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109-2200
| | - Gary D. Luker
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200
| |
Collapse
|
18
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
19
|
Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, Rodríguez TA. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation. Dev Cell 2013; 26:19-30. [PMID: 23867226 PMCID: PMC3714589 DOI: 10.1016/j.devcel.2013.06.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022]
Abstract
A fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that, although not adversely affecting viability, would compromise their ability to contribute to further development. Here, we show that cell competition is a mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective bone morphogenetic protein signaling or defective autophagy or that are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptosis-dependent manner and is mediated by secreted factors. Furthermore, during this process, we find that establishment of differential c-Myc levels is critical and that c-Myc overexpression is sufficient to induce competitive behavior in ESCs. Cell competition is, therefore, a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance. Defective ESCs are eliminated at the onset of differentiation by wild-type cells Elimination of unfit cells is apoptosis dependent and mediated by secreted factors Higher c-Myc levels are established in wild-type ESCs cocultured with unfit cells c-Myc overexpression induces a competitive advantage in ESCs
Collapse
Affiliation(s)
- Margarida Sancho
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Jin JZ, Ding J. Cripto is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol 2013; 381:170-8. [PMID: 23747598 DOI: 10.1016/j.ydbio.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
During mouse gastrulation, cells in the primitive streak undergo epithelial-mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8-Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | | |
Collapse
|
21
|
Moerkamp AT, Paca A, Goumans MJ, Kunath T, Kruithof BPT, Kruithof-de Julio M. Extraembryonic endoderm cells as a model of endoderm development. Dev Growth Differ 2013; 55:301-8. [PMID: 23414197 DOI: 10.1111/dgd.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm-like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.
Collapse
Affiliation(s)
- Asja T Moerkamp
- Department of Molecular and Cell Biology, Centre of Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Lenalidomide in combination with an activin A-neutralizing antibody: preclinical rationale for a novel anti-myeloma strategy. Leukemia 2013; 27:1715-21. [PMID: 23417027 DOI: 10.1038/leu.2013.50] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/01/2013] [Accepted: 02/11/2013] [Indexed: 01/16/2023]
Abstract
Given the prevalence of osteolytic bone disease in multiple myeloma (MM), novel therapies targeting bone microenvironment are essential. Previous studies have identified activin A to be of critical importance in MM-induced osteolysis. Lenalidomide is a known and approved treatment strategy for relapsed MM. Our findings demonstrate that lenalidomide acts directly on bone marrow stromal cells via an Akt-mediated increase in Jun N-terminal kinase-dependent signaling resulting in activin A secretion, with consequent inhibition of osteoblastogenesis. Here, we attempted to augment the antitumor benefits of lenalidomide while overcoming its effects on osteoblastogenesis by combining it with a neutralizing antibody to activin A. Increased activin A secretion induced by lenalidomide was abrogated by the addition of activin A-neutralizing antibody, which effectively restored osteoblast function and inhibited MM-induced osteolysis without negating the cytotoxic effects of lenalidomide on malignant cells. This provides the rationale for an ongoing clinical trial (NCT01562405) combining lenalidomide with an anti-activin A strategy.
Collapse
|
23
|
Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway. Oncogene 2013; 33:461-73. [PMID: 23334323 PMCID: PMC5025281 DOI: 10.1038/onc.2012.608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/20/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an up-regulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal over-expression, in poorly-invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal over-expression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. Since Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease.
Collapse
|
24
|
Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013; 45:885-98. [PMID: 23291354 DOI: 10.1016/j.biocel.2012.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
With few exceptions, most cells in adult organisms have lost the expression of stem cell-associated proteins and are instead characterized by tissue-specific gene expression and function. This cell fate specification is dictated spatially and temporally during embryogenesis. It has become increasingly apparent that the elegant and complicated process of cell specification is "undone" in cancer. This may be because cancer cells respond to their microenvironment and mutations by acquiring a more permissive, plastic epigenome, or because cancer cells arise from mutated stem cells. Regardless, these advanced cancer cells must use stem cell-associated proteins to sustain their phenotype. One such protein is Nodal, an embryonic morphogen belonging to the transforming growth factor-β (TGF-β) superfamily. First described in early developmental models, Nodal orchestrates embryogenesis by regulating a myriad of processes, including mesendoderm induction, left-right asymmetry and embryo implantation. Nodal is relatively restricted to embryonic and reproductive cell types and is thus absent from most normal adult tissues. However, recent studies focusing on a variety of malignancies have demonstrated that Nodal expression re-emerges during cancer progression. Moreover, in almost every cancer studied thus far, the acquisition of Nodal expression is associated with increased tumourigenesis, invasion and metastasis. As the list of cancers that express Nodal grows, it is essential that the scientific and medical communities fully understand how this morphogen is regulated in both normal and neoplastic conditions. Herein, we review the literature relating to normal and pathological Nodal signalling. In particular, we emphasize the role that this secreted protein plays during morphogenic events and how it signals to support stem cell maintenance and tumour progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, University of Western Ontario and Robarts Research Institute, London, ON, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
When amniotes appeared during evolution, embryos freed themselves from intracellular nutrition; development slowed, the mid-blastula transition was lost and maternal components became less important for polarity. Extra-embryonic tissues emerged to provide nutrition and other innovations. One such tissue, the hypoblast (visceral endoderm in mouse), acquired a role in fixing the body plan: it controls epiblast cell movements leading to primitive streak formation, generating bilateral symmetry. It also transiently induces expression of pre-neural markers in the epiblast, which also contributes to delay streak formation. After gastrulation, the hypoblast might protect prospective forebrain cells from caudalizing signals. These functions separate mesendodermal and neuroectodermal domains by protecting cells against being caught up in the movements of gastrulation.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, GowerStreet (Anatomy Building), London WC1E 6BT, UK.
| | | |
Collapse
|