1
|
Selivanovskiy AV, Molodova MN, Khrameeva EE, Ulianov SV, Razin SV. Liquid condensates: a new barrier to loop extrusion? Cell Mol Life Sci 2025; 82:80. [PMID: 39976773 PMCID: PMC11842697 DOI: 10.1007/s00018-024-05559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 02/23/2025]
Abstract
Liquid-liquid phase separation (LLPS), driven by dynamic, low-affinity multivalent interactions of proteins and RNA, results in the formation of macromolecular condensates on chromatin. These structures are likely to provide high local concentrations of effector factors responsible for various processes including transcriptional regulation and DNA repair. In particular, enhancers, super-enhancers, and promoters serve as platforms for condensate assembly. In the current paradigm, enhancer-promoter (EP) interaction could be interpreted as a result of enhancer- and promoter-based condensate contact/fusion. There is increasing evidence that the spatial juxtaposition of enhancers and promoters could be provided by loop extrusion (LE) by SMC complexes. Here, we propose that condensates may act as barriers to LE, thereby contributing to various nuclear processes including spatial contacts between regulatory genomic elements.
Collapse
Affiliation(s)
- Arseniy V Selivanovskiy
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Maria N Molodova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | | | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
2
|
Ren L, Ma W, Wang Y. Predicting RNA polymerase II transcriptional elongation pausing and associated histone code. Brief Bioinform 2024; 25:bbae246. [PMID: 38783706 PMCID: PMC11116834 DOI: 10.1093/bib/bbae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.
Collapse
Affiliation(s)
- Lixin Ren
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wanbiao Ma
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, 55 Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Wuhua District, Kunming 650223, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 1 Xiangshan Zhi Nong, West Lake District, Hangzhou 330106, China
| |
Collapse
|
3
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
4
|
Singh AK, Chen Q, Nguyen C, Meerzaman D, Singer DS. Cohesin regulates alternative splicing. SCIENCE ADVANCES 2023; 9:eade3876. [PMID: 36857449 PMCID: PMC9977177 DOI: 10.1126/sciadv.ade3876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cohesin, a trimeric complex that establishes sister chromatid cohesion, has additional roles in chromatin organization and transcription. We report that among those roles is the regulation of alternative splicing through direct interactions and in situ colocalization with splicing factors. Degradation of cohesin results in marked changes in splicing, independent of its effects on transcription. Introduction of a single cohesin point mutation in embryonic stem cells alters splicing patterns, demonstrating causality. In primary human acute myeloid leukemia, mutations in cohesin are highly correlated with distinct patterns of alternative splicing. Cohesin also directly interacts with BRD4, another splicing regulator, to generate a pattern of splicing that is distinct from either factor alone, documenting their functional interaction. These findings identify a role for cohesin in regulating alternative splicing in both normal and leukemic cells and provide insights into the role of cohesin mutations in human disease.
Collapse
Affiliation(s)
- Amit K. Singh
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Cu Nguyen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
5
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
6
|
Cheng J, Xu L, Bergér V, Bruckmann A, Yang C, Schubert V, Grasser KD, Schnittger A, Zheng B, Jiang H. H3K9 demethylases IBM1 and JMJ27 are required for male meiosis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 235:2252-2269. [PMID: 35638341 DOI: 10.1111/nph.18286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Dimethylation of histone H3 lysine 9 (H3K9me2), a crucial modification for heterochromatin formation and transcriptional silencing, is essential for proper meiotic prophase progression in mammals. We analyzed meiotic defects and generated genome-wide profiles of H3K9me2 and transcriptomes for the mutants of H3K9 demethylases. Moreover, we also identified proteins interacting with H3K9 demethylases. H3K9me2 is usually found at transposable elements and repetitive sequences but is absent from the bodies of protein-coding genes. In this study, we show that the Arabidopsis thaliana H3K9 demethylases IBM1 and JMJ27 cooperatively regulate crossover formation and chromosome segregation. They protect thousands of protein-coding genes from ectopic H3K9me2, including genes essential for meiotic prophase progression. In addition to removing H3K9me2, IBM1 and JMJ27 interact with the Precocious Dissociation of Sisters 5 (PDS5) cohesin complex cofactors. The pds5 mutant shared similar transcriptional alterations with ibm1 jmj27, including meiosis-essential genes, yet without affecting H3K9me2 levels. Hence, PDS5s, together with IBM1 and JMJ27, regulate male meiosis and gene expression independently of H3K9 demethylation. These findings uncover a novel role of H3K9me2 removal in meiosis and a new function of H3K9 demethylases and cohesin cofactors in meiotic transcriptional regulation.
Collapse
Affiliation(s)
- Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Valentin Bergér
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Astrid Bruckmann
- Department of Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, 93053, Germany
| | - Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| |
Collapse
|
7
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
8
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
9
|
Moretti C, Stévant I, Ghavi-Helm Y. 3D genome organisation in Drosophila. Brief Funct Genomics 2021; 19:92-100. [PMID: 31796947 DOI: 10.1093/bfgp/elz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| |
Collapse
|
10
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|
11
|
Spreafico M, Mangano E, Mazzola M, Consolandi C, Bordoni R, Battaglia C, Bicciato S, Marozzi A, Pistocchi A. The Genome-Wide Impact of Nipblb Loss-of-Function on Zebrafish Gene Expression. Int J Mol Sci 2020; 21:E9719. [PMID: 33352756 PMCID: PMC7766774 DOI: 10.3390/ijms21249719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.
Collapse
Affiliation(s)
- Marco Spreafico
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Eleonora Mangano
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Mara Mazzola
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Roberta Bordoni
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Cristina Battaglia
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio-Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Anna Marozzi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Anna Pistocchi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| |
Collapse
|
12
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
13
|
Zraly CB, Zakkar A, Perez JH, Ng J, White KP, Slattery M, Dingwall AK. The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Res 2020; 48:3476-3495. [PMID: 32052053 PMCID: PMC7144903 DOI: 10.1093/nar/gkaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.
Collapse
Affiliation(s)
- Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abdul Zakkar
- Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jeffrey Ng
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
14
|
Campbell M, Yang WS, Yeh WW, Kao CH, Chang PC. Epigenetic Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency. Front Microbiol 2020; 11:850. [PMID: 32508765 PMCID: PMC7248258 DOI: 10.3389/fmicb.2020.00850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus that infects humans and exhibits a biphasic life cycle consisting of latent and lytic phases. Following entry into host cells, the KSHV genome undergoes circularization and chromatinization into an extrachromosomal episome ultimately leading to the establishment of latency. The KSHV episome is organized into distinct chromatin domains marked by variations in repressive or activating epigenetic modifications, including DNA methylation, histone methylation, and histone acetylation. Thus, the development of KSHV latency is believed to be governed by epigenetic regulation. In the past decade, interrogation of the KSHV epitome by genome-wide approaches has revealed a complex epigenetic mark landscape across KSHV genome and has uncovered the important regulatory roles of epigenetic modifications in governing the development of KSHV latency. Here, we highlight many of the findings regarding the role of DNA methylation, histone modification, post-translational modification (PTM) of chromatin remodeling proteins, the contribution of long non-coding RNAs (lncRNAs) in regulating KSHV latency development, and the role of higher-order episomal chromatin architecture in the maintenance of latency and the latent-to-lytic switch.
Collapse
Affiliation(s)
- Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, CA, United States
| | - Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Hsuan Kao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Li D, Mosbruger T, Verma D, Swaminathan S. Complex Interactions between Cohesin and CTCF in Regulation of Kaposi's Sarcoma-Associated Herpesvirus Lytic Transcription. J Virol 2020; 94:e01279-19. [PMID: 31666380 PMCID: PMC6955261 DOI: 10.1128/jvi.01279-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
CTCF and the cohesin complex modify chromatin by binding to DNA and interacting with each other and with other cellular proteins. Both proteins regulate transcription by a variety of local effects on transcription and by long-range topological effects. CTCF and cohesin also bind to herpesvirus genomes at specific sites and regulate viral transcription during latent and lytic cycles of replication. Kaposi's sarcoma-associated herpesvirus (KSHV) transcription is regulated by CTCF and cohesin, with both proteins previously reported to act as restrictive factors for lytic cycle transcription and virion production. In this study, we examined the interdependence of CTCF and cohesin binding to the KSHV genome. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that cohesin binding to the KSHV genome is highly CTCF dependent, whereas CTCF binding does not require cohesin. Furthermore, depletion of CTCF leads to the almost complete dissociation of cohesin from sites at which they colocalize. Thus, previous studies that examined the effects of CTCF depletion actually represent the concomitant depletion of both CTCF and cohesin components. Analysis of the effects of single and combined depletion indicates that CTCF primarily activates KSHV lytic transcription, whereas cohesin has primarily inhibitory effects. Furthermore, CTCF or cohesin depletion was found to have regulatory effects on cellular gene expression relevant for the control of viral infection, with both proteins potentially facilitating the expression of multiple genes important in the innate immune response to viruses. Thus, CTCF and cohesin have both positive and negative effects on KSHV lytic replication as well as effects on the host cell that enhance antiviral defenses.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to Kaposi's sarcoma and several lymphoproliferative diseases. KSHV, like other herpesviruses, intermittently reactivates from latency and enters a lytic cycle in which numerous lytic mRNAs and proteins are produced, culminating in infectious virion production. These lytic proteins may also contribute to tumorigenesis. Reactivation from latency is controlled by processes that restrict or activate the transcription of KSHV lytic genes. KSHV gene expression is modulated by binding of the host cell proteins CTCF and cohesin complex to the KSHV genome. These proteins bind to and modulate the conformation of chromatin, thereby regulating transcription. We have analyzed the interdependence of binding of CTCF and cohesin and demonstrate that while CTCF is required for cohesin binding to KSHV, they have very distinct effects, with cohesin primarily restricting KSHV lytic transcription. Furthermore, we show that cohesin and CTCF also exert effects on the host cell that promote antiviral defenses.
Collapse
Affiliation(s)
- Dajiang Li
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tim Mosbruger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Dinesh Verma
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Dorsett D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet 2019; 35:542-551. [PMID: 31130395 PMCID: PMC6571051 DOI: 10.1016/j.tig.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The cohesin protein complex mediates sister chromatid cohesion to ensure accurate chromosome segregation, and also influences gene transcription in higher eukaryotes. Modest deficits in cohesin function that do not alter chromosome segregation cause significant birth defects. The mechanisms by which cohesin participates in gene regulation have been studied in Drosophila, revealing that it is involved in gene activation by transcriptional enhancers and epigenetic gene silencing mediated by Polycomb group proteins. Recent studies reveal that early DNA replication origins are important for determining which genes associate with cohesin, and suggest that cohesin at replication origins is important for establishing both sister chromatid cohesion and enhancer-promoter communication.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
18
|
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of ecdysone-dependent expression have been studied for many decades. Initially, the activation of individual genes under the influence of ecdysone was studied on the model of polythene chromosomes from salivary glands of Drosophila melanogaster. These works helped to investigate the many aspects of the Drosophila development. They also revealed plenty of valuable information regarding the fundamental mechanisms controlling the genes’ work. Many years ago, a model describing the process of gene activation by ecdysone, named after the author – Ashburner model – was proposed. This model is still considered an excellent description of the ecdysone cascade, which is implemented in the salivary glands during the formation of the Drosophila pupa. However, these days there is an opinion that the response of cells to the hormone ecdysone can develop with significant differences, depending on the type of cells. The same genes can be activated or repressed under the influence of ecdysone in different tissues. Likely, certain DNA-binding transcription factors that are involved in the ecdysonedependent response together with the EcR/Usp heterodimer are responsible for cell-type specificity. A number of transcriptional regulators involved in the ecdysone response have been described. Among them are several complexes responsible for chromatin remodeling and modification. It has been shown by various methods that ecdysone-dependent activation/repression of gene transcription develops with significant structural changes of chromatin on regulatory elements. The description of the molecular mechanism of this process, in particular, the role of individual proteins in it, as well as structural interactions between various regulatory elements is a matter of the future. This review is aimed to discuss the available information regarding the main regulators that interact with the ecdysone receptor. We provide a brief description of the regulator’s participation in the ecdysone response and links to the corresponding study. We also discuss general aspects of the mechanism of ecdysone-dependent regulation and highlight the most promising points for further research.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| | - N. E. Vorobyeva
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| |
Collapse
|
19
|
Pezzotta A, Mazzola M, Spreafico M, Marozzi A, Pistocchi A. Enigmatic Ladies of the Rings: How Cohesin Dysfunction Affects Myeloid Neoplasms Insurgence. Front Cell Dev Biol 2019; 7:21. [PMID: 30873408 PMCID: PMC6400976 DOI: 10.3389/fcell.2019.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/05/2019] [Indexed: 12/04/2022] Open
Abstract
The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 2018; 14:e1007225. [PMID: 29447171 PMCID: PMC5831647 DOI: 10.1371/journal.pgen.1007225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
21
|
Dong X, Cong S. Identification of differentially expressed genes and regulatory relationships in Huntington's disease by bioinformatics analysis. Mol Med Rep 2018; 17:4317-4326. [PMID: 29328442 PMCID: PMC5802203 DOI: 10.3892/mmr.2018.8410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an inherited, progressive neurodegenerative disease caused by a CAG expansion in the huntingtin (HTT) gene; various dysfunctions of biological processes in HD have been proposed. However, at present the exact pathogenesis of HD is not fully understood. The present study aimed to explore the pathogenesis of HD using a computational bioinformatics analysis of gene expression. GSE11358 was downloaded from the Gene Expression Omnibus andthe differentially expressed genes (DEGs) in the mutant HTT knock-in cell model STHdhQ111/Q111 were predicted. DEGs between the HD and control samples were screened using the limma package in R. Functional and pathway enrichment analyses were conducted using the database for annotation, visualization and integrated discovery software. A protein-protein interaction (PPI) network was established by the search tool for the retrieval of interacting genes and visualized by Cytoscape. Module analysis of the PPI network was performed utilizing MCODE. A total of 471 DEGs were identified, including ribonuclease A family member 4 (RNASE4). In addition, 41 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, as well as several significant Gene Ontology terms (including cytokine-cytokine receptor interaction and cytosolic DNA-sensing) were identified. A total of 18 significant modules were identified from the PPI network. Furthermore, a novel transcriptional regulatory relationship was identified, namely signal transducer and activator of transcription 3 (STAT3), which is regulated by miRNA-124 in HD. In conclusion, deregulation of 18 critical genes may contribute to the occurrence of HD. RNASE4, STAT3, and miRNA-124 may have a regulatory association with the pathological mechanisms in HD.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
22
|
The Drosophila CLAMP protein associates with diverse proteins on chromatin. PLoS One 2017; 12:e0189772. [PMID: 29281702 PMCID: PMC5744976 DOI: 10.1371/journal.pone.0189772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
Gaining new insights into gene regulation involves an in-depth understanding of protein-protein interactions on chromatin. A powerful model for studying mechanisms of gene regulation is dosage compensation, a process that targets the X-chromosome to equalize gene expression between XY males and XX females. We previously identified a zinc finger protein in Drosophila melanogaster that plays a sex-specific role in targeting the Male-specific lethal (MSL) dosage compensation complex to the male X-chromosome, called the Chromatin-Linked Adapter for MSL Proteins (CLAMP). More recently, we established that CLAMP has non-sex-specific roles as an essential protein that regulates chromatin accessibility at promoters genome-wide. To identify associations between CLAMP and other factors in both male and female cells, we used two complementary mass spectrometry approaches. We demonstrate that CLAMP associates with the transcriptional regulator complex Negative Elongation Factor (NELF) in both sexes and determine that CLAMP reduces NELF recruitment to several target genes. In sum, we have identified many new CLAMP-associated factors and provide a resource for further study of this little understood essential protein.
Collapse
|
23
|
Hinshaw SM, Makrantoni V, Harrison SC, Marston AL. The Kinetochore Receptor for the Cohesin Loading Complex. Cell 2017; 171:72-84.e13. [PMID: 28938124 PMCID: PMC5610175 DOI: 10.1016/j.cell.2017.08.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/03/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives the recruitment of high levels of cohesin to link sister chromatids together. We have exploited this system to determine the mechanism of specific cohesin recruitment. We show that phosphorylation of the Ctf19 kinetochore protein by a conserved kinase, DDK, provides a binding site for the Scc2/4 cohesin loading complex, thereby directing cohesin loading to centromeres. A similar mechanism targets cohesin to chromosomes in vertebrates. These findings represent a complete molecular description of targeted cohesin loading, a phenomenon with wide-ranging importance in chromosome segregation and, in multicellular organisms, transcription regulation.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vasso Makrantoni
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
24
|
Newkirk DA, Chen YY, Chien R, Zeng W, Biesinger J, Flowers E, Kawauchi S, Santos R, Calof AL, Lander AD, Xie X, Yokomori K. The effect of Nipped-B-like (Nipbl) haploinsufficiency on genome-wide cohesin binding and target gene expression: modeling Cornelia de Lange syndrome. Clin Epigenetics 2017; 9:89. [PMID: 28855971 PMCID: PMC5574093 DOI: 10.1186/s13148-017-0391-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.
Collapse
Affiliation(s)
- Daniel A. Newkirk
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: ResearchDx Inc., 5 Mason, Irvine, CA 92618 USA
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Thermo Fisher Scientific, Inc., 180 Oyster Point Blvd South, San Francisco, CA 94080 USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Jacob Biesinger
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
- Current address: Verily Life Scienceds, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
| | - Ebony Flowers
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- California State University Long Beach, Long Beach, CA 90840 USA
- Current address: UT Southwestern Medical Center, 5323 Harry Hines Blvd, NA8.124, Dallas, TX 75390 USA
| | - Shimako Kawauchi
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Rosaysela Santos
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Anne L. Calof
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Xiaohui Xie
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
25
|
Pherson M, Misulovin Z, Gause M, Mihindukulasuriya K, Swain A, Dorsett D. Polycomb repressive complex 1 modifies transcription of active genes. SCIENCE ADVANCES 2017; 3:e1700944. [PMID: 28782042 PMCID: PMC5540264 DOI: 10.1126/sciadv.1700944] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/28/2017] [Indexed: 05/21/2023]
Abstract
This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences.
Collapse
|
26
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
27
|
Chavda AP, Ang K, Ivanov D. The torments of the cohesin ring. Nucleus 2017; 8:261-267. [PMID: 28453390 PMCID: PMC5499920 DOI: 10.1080/19491034.2017.1295200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
Cohesin is a ring-shaped protein complex which comprises the Smc1, Smc3 and Scc1 subunits. It topologically embraces chromosomal DNA to connect sister chromatids and stabilize chromatin loops. It is required for proper chromosomal segregation, DNA repair and transcriptional regulation. We have recently reported that cohesin rings can adopt a "collapsed" rod-like conformation which is driven by the interaction between the Smc1 and Smc3 coiled coil arms and is regulated by post-translational modifications. The "collapsed" conformation plays a role in cohesin ring assembly and its loading on the DNA. Here we speculate about the mechanism of cohesin's conformational transitions in relation to its loading on the DNA and draw parallels with other Smc-like complexes.
Collapse
Affiliation(s)
| | - Keven Ang
- Bioinformatics Institute, A*STAR, Singapore
| | - Dmitri Ivanov
- Bioinformatics Institute, A*STAR, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany
- Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
28
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
29
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
30
|
Coyne AN, Zarnescu DC. A Helping Hand: RNA-Binding Proteins Guide Gene-Binding Choices by Cohesin Complexes. PLoS Genet 2016; 12:e1006419. [PMID: 27855157 PMCID: PMC5147772 DOI: 10.1371/journal.pgen.1006419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Alyssa N. Coyne
- Departments of Molecular and Cellular Biology, Neuroscience and Neurology, University of Arizona, Tucson, Arizona
| | - Daniela C. Zarnescu
- Departments of Molecular and Cellular Biology, Neuroscience and Neurology, University of Arizona, Tucson, Arizona
| |
Collapse
|
31
|
Papadopoulou T, Richly H. On-site remodeling at chromatin: How multiprotein complexes are rebuilt during DNA repair and transcriptional activation. Bioessays 2016; 38:1130-1140. [PMID: 27599465 DOI: 10.1002/bies.201600094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss a novel on-site remodeling function that is mediated by the H2A-ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid-mediated gene activation by altering the subunit composition of the Mediator complex. We postulate that ZRF1 operates in conjunction with cellular remodeling machines and suggest that on-site remodeling might be a hallmark of many chromatin-associated signaling pathways. We discuss yet unexplored functions of ZRF1-mediated remodeling in replication and double strand break repair. In conclusion, we postulate that on-site remodeling of multiprotein complexes is essential for the timing of chromatin signaling processes.
Collapse
Affiliation(s)
- Thaleia Papadopoulou
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
32
|
Swain A, Misulovin Z, Pherson M, Gause M, Mihindukulasuriya K, Rickels RA, Shilatifard A, Dorsett D. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements. PLoS Genet 2016; 12:e1006331. [PMID: 27662615 PMCID: PMC5035082 DOI: 10.1371/journal.pgen.1006331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.
Collapse
Affiliation(s)
- Amanda Swain
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kathie Mihindukulasuriya
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
33
|
Gligoris T, Löwe J. Structural Insights into Ring Formation of Cohesin and Related Smc Complexes. Trends Cell Biol 2016; 26:680-693. [PMID: 27134029 PMCID: PMC4989898 DOI: 10.1016/j.tcb.2016.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022]
Abstract
Cohesin facilitates sister chromatid cohesion through the formation of a large ring structure that encircles DNA. Its function relies on two structural maintenance of chromosomes (Smc) proteins, which are found in almost all organisms tested, from bacteria to humans. In accordance with their ubiquity, Smc complexes, such as cohesin, condensin, Smc5-6, and the dosage compensation complex, affect almost all processes of DNA homeostasis. Although their precise molecular mechanism remains enigmatic, here we provide an overview of the architecture of eukaryotic Smc complexes with a particular focus on cohesin, which has seen the most progress recently. Given the evident conservation of many structural features between Smc complexes, it is expected that architecture and topology will have a significant role when deciphering their precise molecular mechanisms.
Collapse
Affiliation(s)
- Thomas Gligoris
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
34
|
Dorsett D. The Drosophila melanogaster model for Cornelia de Lange syndrome: Implications for etiology and therapeutics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:129-37. [PMID: 27097273 DOI: 10.1002/ajmg.c.31490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Discovery of genetic alterations that cause human birth defects provide key opportunities to improve the diagnosis, treatment, and family counseling. Frequently, however, these opportunities are limited by the lack of knowledge about the normal functions of the affected genes. In many cases, there is more information about the gene's orthologs in model organisms, including Drosophila melanogaster. Despite almost a billion years of evolutionary divergence, over three-quarters of genes linked to human diseases have Drosophila homologs. With a short generation time, a twenty-fold smaller genome, and unique genetic tools, the conserved functions of genes are often more easily elucidated in Drosophila than in other organisms. Here we present how this applies to Cornelia de Lange syndrome, as a model for how Drosophila can be used to increase understanding of genetic syndromes caused by mutations with broad effects on gene transcription and exploited to develop novel therapies. © 2016 Wiley Periodicals, Inc.
Collapse
|
35
|
Mannini L, Cucco F, Quarantotti V, Amato C, Tinti M, Tana L, Frattini A, Delia D, Krantz ID, Jessberger R, Musio A. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins. Sci Rep 2015; 5:18472. [PMID: 26673124 PMCID: PMC4682075 DOI: 10.1038/srep18472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023] Open
Abstract
Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Clelia Amato
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Mara Tinti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Luigi Tana
- Azienda Ospedaliero Universitaria Pisana, U.O. Fisica Sanitaria, Pisa, Italy
| | - Annalisa Frattini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi dell’Insubria, Varese, Italy
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
36
|
Wu Y, Gause M, Xu D, Misulovin Z, Schaaf CA, Mosarla RC, Mannino E, Shannon M, Jones E, Shi M, Chen WF, Katz OL, Sehgal A, Jongens TA, Krantz ID, Dorsett D. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior. PLoS Genet 2015; 11:e1005655. [PMID: 26544867 PMCID: PMC4636142 DOI: 10.1371/journal.pgen.1005655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects. Cornelia de Lange Syndrome (CdLS) alters many aspects of growth and development. CdLS is caused by mutations in genes encoding proteins that ensure that chromosomes are distributed equally when a cell divides. These include genes that encode components of the cohesin complex, and Nipped-B-Like (NIPBL) that puts cohesin onto chromosomes. Individuals with CdLS have only modest reductions in the activities of these genes and do not show changes in chromosome distribution. Instead, they show differences in the expression many genes that control development. Animal models of CdLS will be useful for studies aimed at understanding how development is altered, and testing methods for treating CdLS. We find that Drosophila with one mutant copy of the Nipped-B gene, which is equivalent to the NIPBL gene, show characteristics similar to individuals with CdLS. These include reduced growth, learning, memory, and altered circadian rhythms. These studies thus indicate that Drosophila Nipped-B mutants are a valuable system for investigating the causes of the CdLS birth defects, and developing potential treatments. They also reveal that the slow growth in Drosophila Nipped-B mutants is not caused by disruption of systemic hormonal growth controls, and that the learning and memory deficits may reflect changes in brain structure.
Collapse
Affiliation(s)
- Yaning Wu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dongbin Xu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Cheri A. Schaaf
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ramya C. Mosarla
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Mannino
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Megan Shannon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily Jones
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mi Shi
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wen-Feng Chen
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olivia L. Katz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian D. Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (IDK); (DD)
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (IDK); (DD)
| |
Collapse
|
37
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
38
|
Zakari M, Yuen K, Gerton JL. Etiology and pathogenesis of the cohesinopathies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:489-504. [PMID: 25847322 PMCID: PMC6680315 DOI: 10.1002/wdev.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Universite Pierre et Marie Curie, Paris, France
| | - Kobe Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
39
|
Hinshaw SM, Makrantoni V, Kerr A, Marston AL, Harrison SC. Structural evidence for Scc4-dependent localization of cohesin loading. eLife 2015; 4:e06057. [PMID: 26038942 PMCID: PMC4471937 DOI: 10.7554/elife.06057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/01/2015] [Indexed: 01/21/2023] Open
Abstract
The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2(NIPBL)/Scc4(Mau2) (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surface of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Vasso Makrantoni
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L Marston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
40
|
Antony J, Dasgupta T, Rhodes JM, McEwan MV, Print CG, O'Sullivan JM, Horsfield JA. Cohesin modulates transcription of estrogen-responsive genes. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:257-69. [PMID: 25542856 DOI: 10.1016/j.bbagrm.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
The cohesin complex has essential roles in cell division, DNA damage repair and gene transcription. The transcriptional function of cohesin is thought to derive from its ability to connect distant regulatory elements with gene promoters. Genome-wide binding of cohesin in breast cancer cells frequently coincides with estrogen receptor alpha (ER), leading to the hypothesis that cohesin facilitates estrogen-dependent gene transcription. We found that cohesin modulates the expression of only a subset of genes in the ER transcription program, either activating or repressing transcription depending on the gene target. Estrogen-responsive genes most significantly influenced by cohesin were enriched in pathways associated with breast cancer progression such as PI3K and ErbB1. In MCF7 breast cancer cells, cohesin depletion enhanced transcription of TFF1 and TFF2, and was associated with increased ER binding and increased interaction between TFF1 and its distal enhancer situated within TMPRSS3. In contrast, cohesin depletion reduced c-MYC mRNA and was accompanied by reduced interaction between a distal enhancer of c-MYC and its promoters. Our data indicates that cohesin is not a universal facilitator of ER-induced transcription and can even restrict enhancer-promoter communication. We propose that cohesin modulates transcription of estrogen-dependent genes to achieve appropriate directionality and amplitude of expression.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, 9016, New Zealand
| | - Tanushree Dasgupta
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, 9016, New Zealand
| | - Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, 9016, New Zealand
| | - Miranda V McEwan
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, 9016, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, School of Medical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
41
|
Slattery M, Ma L, Spokony RF, Arthur RK, Kheradpour P, Kundaje A, Nègre N, Crofts A, Ptashkin R, Zieba J, Ostapenko A, Suchy S, Victorsen A, Jameel N, Grundstad AJ, Gao W, Moran JR, Rehm EJ, Grossman RL, Kellis M, White KP. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster. Genome Res 2015; 24:1224-35. [PMID: 24985916 PMCID: PMC4079976 DOI: 10.1101/gr.168807.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development.
Collapse
Affiliation(s)
- Matthew Slattery
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lijia Ma
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rebecca F Spokony
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert K Arthur
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Nicolas Nègre
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA; Université de Montpellier II and INRA, UMR1333 DGIMI, F-34095 Montpellier, France
| | - Alex Crofts
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ryan Ptashkin
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Zieba
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander Ostapenko
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah Suchy
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alec Victorsen
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nader Jameel
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - A Jason Grundstad
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wenxuan Gao
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer R Moran
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - E Jay Rehm
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert L Grossman
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
42
|
Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 2014; 6:a019349. [PMID: 25274705 DOI: 10.1101/cshperspect.a019349] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The trithorax group of genes (trxG) was identified in mutational screens that examined developmental phenotypes and suppression of Polycomb mutant phenotypes. The protein products of these genes are primarily involved in gene activation, although some can also have repressive effects. There is no central function for these proteins. Some move nucleosomes about on the genome in an ATP-dependent manner, some covalently modify histones such as methylating lysine 4 of histone H3, and some directly interact with the transcription machinery or are a part of that machinery. It is interesting to consider why these specific members of large families of functionally related proteins have strong developmental phenotypes.
Collapse
Affiliation(s)
- Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - John W Tamkun
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
43
|
Kranz AL, Jiao CY, Winterkorn LH, Albritton SE, Kramer M, Ercan S. Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol 2014; 14:R112. [PMID: 24125077 PMCID: PMC3983662 DOI: 10.1186/gb-2013-14-10-r112] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/26/2022] Open
Abstract
Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II.
Collapse
|
44
|
Dorsett D, Kassis JA. Checks and balances between cohesin and polycomb in gene silencing and transcription. Curr Biol 2014; 24:R535-9. [PMID: 24892918 PMCID: PMC4104651 DOI: 10.1016/j.cub.2014.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cohesin protein complex was discovered for its roles in sister chromatid cohesion and segregation, and the Polycomb group (PcG) proteins for their roles in epigenetic gene silencing during development. Cohesin also controls gene transcription via multiple mechanisms. Genetic and molecular evidence from Drosophila argue that cohesin and the PRC1 PcG complex interact to control transcription of many active genes that are critical for development, and that via these interactions cohesin also controls the availability of PRC1 for gene silencing.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | - Judith A Kassis
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Sheng J, Luo C, Jiang Y, Hinds PW, Xu Z, Hu GF. Transcription of angiogenin and ribonuclease 4 is regulated by RNA polymerase III elements and a CCCTC binding factor (CTCF)-dependent intragenic chromatin loop. J Biol Chem 2014; 289:12520-34. [PMID: 24659782 DOI: 10.1074/jbc.m114.551762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenin (ANG) and ribonuclease 4 (RNASE4), two members of the secreted and vertebrate-specific ribonuclease superfamily, play important roles in cancers and neurodegenerative diseases. The ANG and RNASE4 genes share genetic regions with promoter activities, but the structure and regulation of these putative promotes are unknown. We have characterized the promoter regions, defined the transcription start site, and identified a mechanism of transcription regulation that involves both RNA polymerase III (Pol III) elements and CCCTC binding factor (CTCF) sites. We found that two Pol III elements within the promoter region influence ANG and RNASE4 expression in a position- and orientation-dependent manner. We also provide evidence for the presence of an intragenic chromatin loop between the two CTCF binding sites located in two introns flanking the ANG coding exon. We found that formation of this intragenic loop preferentially enhances ANG transcription. These results suggest a multilayer transcriptional regulation of ANG and RNASE4 gene locus. These data also add more direct evidence to the notion that Pol III elements are able to directly influence Pol II gene transcription. Furthermore, our data indicate that a CTCF-dependent chromatin loop is able to differentially regulate transcription of genes that share the same promoters.
Collapse
Affiliation(s)
- Jinghao Sheng
- From the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111 and
| | | | | | | | | | | |
Collapse
|
46
|
Ball AR, Chen YY, Yokomori K. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:191-202. [PMID: 24269489 PMCID: PMC3951616 DOI: 10.1016/j.bbagrm.2013.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
47
|
CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. PLoS Pathog 2014; 10:e1003880. [PMID: 24415941 PMCID: PMC3887114 DOI: 10.1371/journal.ppat.1003880] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular genome by acting as gene-specific activators of some promoters, but differ in acting as global negative regulators of transcription.
Collapse
|
48
|
Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum Mutat 2013; 34:1589-96. [PMID: 24038889 PMCID: PMC3880228 DOI: 10.1002/humu.22430] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous developmental disorder. Clinical features include growth retardation, intellectual disability, limb defects, typical facial dysmorphism, and other systemic involvement. The increased understanding of the genetic basis of CdLS has led to diagnostic improvement and expansion of the phenotype. Mutations in five genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8), all regulators or structural components of cohesin, have been identified. Approximately 60% of CdLS cases are due to NIPBL mutations, 5% caused by mutations in SMC1A, RAD21, and HDAC8 and one proband was found to carry a mutation in SMC3. To date, 311 CdLS-causing mutations are known including missense, nonsense, small deletions and insertions, splice site mutations, and genomic rearrangements. Phenotypic variability is seen both intra- and intergenically. This article reviews the spectrum of CdLS mutations with a particular emphasis on their correlation to the clinical phenotype.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
49
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
50
|
The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins. G3-GENES GENOMES GENETICS 2013; 3:1785-94. [PMID: 23979932 PMCID: PMC3789803 DOI: 10.1534/g3.113.007534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.
Collapse
|