1
|
Millard AS, Sperandio I, Chouinard PA. The size-distance scaling of real objects and afterimages is equivalent in typical but not reduced visual environments. Exp Brain Res 2025; 243:144. [PMID: 40350527 PMCID: PMC12066382 DOI: 10.1007/s00221-025-07064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025]
Abstract
Size constancy refers to the human ability to perceive an object as having the same size, despite changes in its retinal image caused by variations in viewing distance. The relationship between perceived size and perceived distance is predicted by Emmert's law. This study investigated whether the principles of size constancy apply in the same way to afterimages and real objects, hypothesising that perceptual equivalency would result in consistent size-distance scaling constancy for both types of stimuli. Twenty participants completed a size judgment task involving real objects and afterimages presented under binocular, monocular, and complete darkness conditions. Results showed that both types of stimuli adhered to Emmert's law under binocular conditions; however, afterimages exhibited greater deviations in monocular and dark environments, indicating a breakdown in size constancy. While real objects maintained perceptual scaling even in reduced environments, afterimages displayed diminished accuracy in size and distance perception, especially in darkness. The findings support the signal ambiguity theory, suggesting that afterimages rely more heavily on contextual information due to the lack of stable external references. This study highlights the utility of afterimages as a tool for exploring the limits of visual perception, offering insights into how the visual system handles ambiguous signals.
Collapse
Affiliation(s)
- Amy Siobhan Millard
- Department of Psychology, Counselling, and Therapy, La Trobe University, Melbourne, Australia
| | - Irene Sperandio
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Philippe A Chouinard
- Department of Psychology, Counselling, and Therapy, La Trobe University, Melbourne, Australia.
| |
Collapse
|
2
|
Walradt T, Szvarca D, Thompson CC. Shining a New Light on Gastrointestinal Endoscopy: Evaluating the Effect of Green Light vs Dim Light on Performance in the Endoscopy Suite. Gastroenterology 2025:S0016-5085(25)00044-7. [PMID: 39923814 DOI: 10.1053/j.gastro.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Affiliation(s)
- Trent Walradt
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Daniel Szvarca
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Huang Z, Tong C, Zhao Y, Jiang L, Deng L, Gao X, He J, Jiang J. An Au 25 nanocluster/MoS 2 vdWaals heterojunction phototransistor for chromamorphic visual-afterimage emulation. NANOSCALE 2024; 16:17064-17078. [PMID: 39189366 DOI: 10.1039/d4nr02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Color vision relies on three cone photoreceptors that are sensitive to different wavelengths of light. The interaction of three incident light wavelengths over time creates a fascinating color coupling perception, termed chromamorphic computing. However, the realization of this fascinating characteristic in semiconductor devices remains a great challenge. Herein, a mixed-dimensional optoelectronic transistor based on a novel metal nanocluster Au25(SC12H25)18 and two-dimensional MoS2 van der Waals (vdWaals) heterojunction is proposed for chromamorphic visual-afterimage emulation with red-green-blue three-color spatiotemporal coupling perception. This distinguished molecular-like electronic level of Au25 nanoclusters allows the transistor to have visible light-sensitive properties, endowing it with the ability to perceive color information. Moreover, the chromamorphic functions are realized using a color spatiotemporal coupling approach. By utilizing the photogating effect of light stimulus, the device exhibits visual experience-dependent plasticity in accordance with the Bienenstock-Cooper-Munro (BCM) learning rule. Most importantly, for the first time, intriguing visual afterimages could be implemented using a color sensitization approach based on a close relationship between visual persistence and negative afterimages. These results represent an important step towards a new generation of intelligent visual color perception systems for human-computer interaction, bionic robots, etc.
Collapse
Affiliation(s)
- Zhuohui Huang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chuanjia Tong
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
| | - Yanbo Zhao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
| | - Leyong Jiang
- School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lianwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
| | - Xiaohui Gao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
4
|
Li J, Wang L, Zhang Z, Feng Y, Huang M, Liang D. Analysis and recognition of a novel experimental paradigm for musical emotion brain-computer interface. Brain Res 2024; 1839:149039. [PMID: 38815645 DOI: 10.1016/j.brainres.2024.149039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Musical emotions have received increasing attention over the years. To better recognize the emotions by brain-computer interface (BCI), the random music-playing and sequential music-playing experimental paradigms are proposed and compared in this paper. Two experimental paradigms consist of three positive pieces, three neutral pieces and three negative pieces of music. Ten subjects participate in two experimental paradigms. The features of electroencephalography (EEG) signals are firstly analyzed in the time, frequency and spatial domains. To improve the effect of emotion recognition, a recognition model is proposed with the optimal channels selecting by Pearson's correlation coefficient, and the feature fusion combining differential entropy and wavelet packet energy. According to the analysis results, the features of sequential music-playing experimental paradigm are more different among three emotions. The classification results of sequential music-playing experimental paradigm are also better, and its average results of positive, neutral and negative emotions are 78.53%, 72.81% and 77.35%, respectively. The more obvious the changes of EEG induced by the emotions, the higher the classification accuracy will be. After analyzing two experimental paradigms, a better way for music to induce the emotions can be explored. Therefore, our research offers a novel perspective on affective BCIs.
Collapse
Affiliation(s)
- Jin Li
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li Wang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhun Zhang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yujie Feng
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mingyang Huang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
| | - Danni Liang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Kronemer SI, Holness M, Morgan AT, Teves JB, Gonzalez-Castillo J, Handwerker DA, Bandettini PA. Visual imagery vividness correlates with afterimage conscious perception. Neurosci Conscious 2024; 2024:niae032. [PMID: 39101126 PMCID: PMC11294681 DOI: 10.1093/nc/niae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g. conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g. imagery, hallucinations, and dreams) that occur without bottom-up sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. However, we cannot exclude alternative explanations, including demand characteristics and afterimage perception reporting inaccuracy. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Micah Holness
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - A Tyler Morgan
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD 20892, United States
| | - Joshua B Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD 20892, United States
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Kronemer SI, Holness M, Morgan AT, Teves JB, Gonzalez-Castillo J, Handwerker DA, Bandettini PA. Visual imagery vividness correlates with afterimage conscious perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570716. [PMID: 38168380 PMCID: PMC10760211 DOI: 10.1101/2023.12.07.570716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g., conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down, brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g., imagery, hallucinations, and dreams) that occur without bottom-up, sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
Collapse
Affiliation(s)
- Sharif I. Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Micah Holness
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - A. Tyler Morgan
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD
| | - Joshua B. Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Daniel A. Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
- Functional Magnetic Resonance Imaging Core Facility, NIMH, NIH, Bethesda, MD
| |
Collapse
|
7
|
Krempel R, Monzel M. Aphantasia and involuntary imagery. Conscious Cogn 2024; 120:103679. [PMID: 38564857 DOI: 10.1016/j.concog.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Aphantasia is a condition that is often characterized as the impaired ability to create voluntary mental images. Aphantasia is assumed to selectively affect voluntary imagery mainly because even though aphantasics report being unable to visualize something at will, many report having visual dreams. We argue that this common characterization of aphantasia is incorrect. Studies on aphantasia are often not clear about whether they are assessing voluntary or involuntary imagery, but some studies show that several forms of involuntary imagery are also affected in aphantasia (including imagery in dreams). We also raise problems for two attempts to show that involuntary images are preserved in aphantasia. In addition, we report the results of a study about afterimages in aphantasia, which suggest that these tend to be less intense in aphantasics than in controls. Involuntary imagery is often treated as a unitary kind that is either present or absent in aphantasia. We suggest that this approach is mistaken and that we should look at different types of involuntary imagery case by case. Doing so reveals no evidence of preserved involuntary imagery in aphantasia. We suggest that a broader characterization of aphantasia, as a deficit in forming mental imagery, whether voluntary or not, is more appropriate. Characterizing aphantasia as a volitional deficit is likely to lead researchers to give incorrect explanations for aphantasia, and to look for the wrong mechanisms underlying it.
Collapse
Affiliation(s)
- Raquel Krempel
- Center for Logic, Epistemology and History of Science, State University of Campinas, R. Sérgio Buarque de Holanda, 251 - Cidade Universitária, Campinas, SP 13083-859, Brazil; Center for Philosophy of Science, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA.
| | - Merlin Monzel
- Department of Psychology, Personality Psychology and Biological Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
8
|
After-image formation by adaptation to dynamic color gradients. Atten Percept Psychophys 2023; 85:174-187. [PMID: 36207667 PMCID: PMC9546419 DOI: 10.3758/s13414-022-02570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
The eye's retinotopic exposure to an adapter typically produces an after-image. For example, an observer who fixates a red adapter on a gray background will see an illusory cyan after-image after removing the adapter. The after-image's content, like its color or intensity, gives insight into mechanisms responsible for adaptation and processing of a specific feature. To facilitate adaptation, vision scientists traditionally present stable, unchanging adapters for prolonged durations. How adaptation affects perception when features (e.g., color) dynamically change over time is not understood. To investigate adaptation to a dynamically changing feature, participants viewed a colored patch that changed from a color to gray, following either a direct or curved path through the (roughly) equiluminant color plane of CIE LAB space. We varied the speed and curvature of color changes across trials and experiments. Results showed that dynamic adapters produce after-images, vivid enough to be reported by the majority of participants. An after-image consisted of a color complementary to the average of the adapter's colors with a small bias towards more recent rather than initial adapter colors. The modelling of the reported after-image colors further confirmed that adaptation rapidly instigates and gradually dissipates. A second experiment replicated these results and further showed that the probability of observing an after-image diminishes only slightly when the adapter displays transient (stepwise, abrupt) color transitions. We conclude from the results that the visual system can adapt to dynamic colors, to a degree that is robust to the potential interference of transient changes in adapter content.
Collapse
|
9
|
Gao Y, Pieller J, Webster MA, Jiang F. Temporal dynamics of face adaptation. J Vis 2022; 22:14. [PMID: 36301525 PMCID: PMC9624263 DOI: 10.1167/jov.22.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The appearance of a face can be strongly affected by adaptation to faces seen previously. A number of studies have examined the time course of these aftereffects, but the integration time over which adaptation pools signals to control the adaptation state remains uncertain. Here we examined the effects of temporal frequency on face gender aftereffects induced by a pair of faces alternating between the two genders to assess when the aftereffects were pooled over successive faces versus driven by the last face seen. In the first experiment, we found that temporal frequencies between 0.25 and 2.00 Hz all failed to produce an aftereffect, suggesting a fairly long integration time. In the second experiment, we therefore probed slower alternation rates of 0.03 to 0.25 Hz. A rate of 0.0625 Hz (i.e., 8 seconds per face) was required to generate significant aftereffects from the last presented face and was consistent with an average time constant of 15 to 20 seconds for an exponentially decaying integration window. This integration time is substantially longer than found previously for analogous effects for alternating colors, and thus points to a potentially slower mechanism of adaptation for faces compared with chromatic adaptation.
Collapse
Affiliation(s)
- Yi Gao
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA,
| | - Jarod Pieller
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, NV, USA,
| | - Michael A. Webster
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, NV, USA,
| | - Fang Jiang
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, NV, USA,
| |
Collapse
|
10
|
Sivkovich Fagin O, Mack A. Negative Color Aftereffect in the Absence of a Colored Stimulus. Perception 2022; 51:77-90. [PMID: 35098783 DOI: 10.1177/03010066221076302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Negative color aftereffects normally occur following prolonged observation of colored surfaces and are generally attributed to sensory adaptation of opponent processes responsible for color vision. We describe evidence that negative color aftereffects, no different from those that occur when actually viewing red, are perceived in the complete absence of a colored stimulus by highly suggestible persons who are hypnotized and hallucinate seeing red. Highly suggestible participants also excel at imagining color although this is less likely to generate an aftereffect suggesting that there is more to hallucinating than imagining. Our results are clear evidence that sensory adaptation is not necessary for negative color aftereffects.
Collapse
Affiliation(s)
| | - Arien Mack
- Department of Psychology, 5926The New School for Social Research, New York, NY, USA
| |
Collapse
|
11
|
Edwards G, Berestova A, Battelli L. Behavioral gain following isolation of attention. Sci Rep 2021; 11:19329. [PMID: 34588526 PMCID: PMC8481494 DOI: 10.1038/s41598-021-98670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
Stable sensory perception is achieved through balanced excitatory-inhibitory interactions of lateralized sensory processing. In real world experience, sensory processing is rarely equal across lateralized processing regions, resulting in continuous rebalancing. Using lateralized attention as a case study, we predicted rebalancing lateralized processing following prolonged spatial attention imbalance could cause a gain in attention in the opposite direction. In neurotypical human adults, we isolated covert attention to one visual field with a 30-min attention-demanding task and found an increase in attention in the opposite visual field after manipulation. We suggest a gain in lateralized attention in the previously unattended visual field is due to an overshoot through attention rebalancing. The offline post-manipulation effect is suggestive of long-term potentiation affecting behavior. Our finding of visual field specific attention increase could be critical for the development of clinical rehabilitation for patients with a unilateral lesion and lateralized attention deficits. This proof-of-concept study initiates the examination of overshoot following the release of imbalance in other lateralized control and sensory domains, important in our basic understanding of lateralized processing.
Collapse
Affiliation(s)
- Grace Edwards
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy. .,Department of Psychology, Harvard University, Cambridge, MA, 02138, USA.
| | - Anna Berestova
- Lesley University, 29 Everett St, Cambridge, MA, 02138, USA
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Department of Psychology, Harvard University, Cambridge, MA, 02138, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
12
|
Hübner C, Schütz AC. Rapid visual adaptation persists across saccades. iScience 2021; 24:102986. [PMID: 34485868 PMCID: PMC8403744 DOI: 10.1016/j.isci.2021.102986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/28/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Neurons in the visual cortex quickly adapt to constant input, which should lead to perceptual fading within few tens of milliseconds. However, perceptual fading is rarely observed in everyday perception, possibly because eye movements refresh retinal input. Recently, it has been suggested that amplitudes of large saccadic eye movements are scaled to maximally decorrelate presaccadic and postsaccadic inputs and thus to annul perceptual fading. However, this argument builds on the assumption that adaptation within naturally brief fixation durations is strong enough to survive any visually disruptive saccade and affect perception. We tested this assumption by measuring the effect of luminance adaptation on postsaccadic contrast perception. We found that postsaccadic contrast perception was affected by presaccadic luminance adaptation during brief periods of fixation. This adaptation effect emerges within 100 milliseconds and persists over seconds. These results indicate that adaptation during natural fixation periods can affect perception even after visually disruptive saccades.
Collapse
Affiliation(s)
- Carolin Hübner
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, 35037 Marburg, Germany.,Institut für Psychologie, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, 35037 Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
13
|
Liu X, Li H, Wang Y, Lei T, Wang J, Spillmann L, Andolina IM, Wang W. From Receptive to Perceptive Fields: Size-Dependent Asymmetries in Both Negative Afterimages and Subcortical On and Off Post-Stimulus Responses. J Neurosci 2021; 41:7813-7830. [PMID: 34326144 PMCID: PMC8445057 DOI: 10.1523/jneurosci.0300-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Negative afterimages are perceptual phenomena that occur after physical stimuli disappear from sight. Their origin is linked to transient post-stimulus responses of visual neurons. The receptive fields (RFs) of these subcortical ON- and OFF-center neurons exhibit antagonistic interactions between central and surrounding visual space, resulting in selectivity for stimulus polarity and size. These two features are closely intertwined, yet their relationship to negative afterimage perception remains unknown. Here we tested whether size differentially affects the perception of bright and dark negative afterimages in humans of both sexes, and how this correlates with neural mechanisms in subcortical ON and OFF cells. Psychophysically, we found a size-dependent asymmetry whereby dark disks produce stronger and longer-lasting negative afterimages than bright disks of equal contrast at sizes >0.8°. Neurophysiological recordings from retinal and relay cells in female cat dorsal lateral geniculate nucleus showed that subcortical ON cells exhibited stronger sustained post-stimulus responses to dark disks, than OFF cells to bright disks, at sizes >1°. These sizes agree with the emergence of center-surround antagonism, revealing stronger suppression to opposite-polarity stimuli for OFF versus ON cells, particularly in dorsal lateral geniculate nucleus. Using a network-based retino-geniculate model, we confirmed stronger antagonism and temporal transience for OFF-cell post-stimulus rebound responses. A V1 population model demonstrated that both strength and duration asymmetries can be propagated to downstream cortical areas. Our results demonstrate how size-dependent antagonism impacts both the neuronal post-stimulus response and the resulting afterimage percepts, thereby supporting the idea of perceptual RFs reflecting the underlying neuronal RF organization of single cells.SIGNIFICANCE STATEMENT Visual illusions occur when sensory inputs and perceptual outcomes do not match, and provide a valuable tool to understand transformations from neural to perceptual responses. A classic example are negative afterimages that remain visible after a stimulus is removed from view. Such perceptions are linked to responses in early visual neurons, yet the details remain poorly understood. Combining human psychophysics, neurophysiological recordings in cats and retino-thalamo-cortical computational modeling, our study reveals how stimulus size and the receptive-field structure of subcortical ON and OFF cells contributes to the parallel asymmetries between neural and perceptual responses to bright versus dark afterimages. Thus, this work provides a deeper link from the underlying neural mechanisms to the resultant perceptual outcomes.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, 100024, China
| | - Tianhao Lei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, Freiburg, 79085, Germany
| | - Ian Max Andolina
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
| | - Wei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain and Brain-inspired Intelligence Technology, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Paz-Filgueira C, Tan M, Elliott S, Cao D. Dynamics of Visual Adaptation With Simultaneous Stimulation of Two Visual Pathways. Front Neurosci 2021; 15:719499. [PMID: 34497489 PMCID: PMC8419739 DOI: 10.3389/fnins.2021.719499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Primates’ retinal ganglion cells in different visual pathways have been shown to adapt independently (Current Biology 22 (2012) 220–224). However, the manner in which adaptation occurs under simultaneous stimulation of two visual pathways has not yet been explored. In this study, the dynamics of color afterimages were measured while stimulating one or two visual pathway using a time-varying afterimage paradigm. The dynamics of adaptation was approximately equivalent among the three primary visual pathways, but adaptation was slower for simultaneous stimulation of two visual pathways compared to the stimulation of one visual pathway. In addition, we found that the speed of adaptation also depends upon which two pathways are combined. We developed a two-stage adaptation model, both with the same dynamics, to account for the results with simultaneous stimulation of two pathways.
Collapse
Affiliation(s)
- Clemente Paz-Filgueira
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael Tan
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah Elliott
- Peppermill Resort Spa Casino, Reno, NV, United States
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Abstract
Illusions and hallucinations are commonly encountered in both daily life and clinical practice. In this chapter, we review definitions and possible underlying mechanisms of these phenomena and then review what is known about specific conditions that are associated with them, including ophthalmic causes, migraine, epilepsy, Parkinson's disease, and schizophrenia. We then discuss specific syndromes including the Charles Bonnet syndrome, visual snow syndrome, Alice in Wonderland syndrome, and peduncular hallucinosis. The scientific study of illusions and hallucinations has contributed significantly to our understanding of how eye and brain process vision and contribute to perception. Important concepts are the distinction between topologic and hodologic mechanisms underlying hallucinations and the involvement of attentional networks. This chapter examines the various ways in which pathological illusions and hallucinations might arise in relation to the phenomenology and known pathology of the various conditions associated with them.
Collapse
Affiliation(s)
- Clare L Fraser
- Department of Ophthalmology, Save Sight Institute, Faculty of Health and Medicine, University of Sydney, Sydney, Australia.
| | - Christian J Lueck
- Department of Neurology, Canberra Hospital, and Australian National University Medical School, Canberra, Australia
| |
Collapse
|
16
|
Pastilha R, Gupta G, Gross N, Hurlbert A. Temporal dynamics of daylight perception: Detection thresholds. J Vis 2020; 20:18. [PMID: 33372985 PMCID: PMC7774110 DOI: 10.1167/jov.20.13.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Temporal changes in illumination are ubiquitous; natural light, for example, varies in color temperature and irradiance throughout the day. Yet little is known about human sensitivity to temporal changes in illumination spectra. Here, we aimed to determine the minimum detectable velocity of chromaticity change of daylight metamers in an immersive environment. The main stimulus was a continuous, monotonic change in global illumination chromaticity along the daylight locus in warmer (toward lower correlated color temperatures [CCTs]) or cooler directions, away from an adapting base light (CCT: 13,000 K, 6500 K, 4160 K, or 2000 K). All lights were generated by spectrally tunable overhead lamps as smoothest-possible metamers of the desired chromaticities. Mean detection thresholds (for 22 participants) for a fixed duration of 10 seconds ranged from 15 to 2 CIELUV ΔE units, depending significantly on base light CCT and with a significant interaction between CCT and direction of change. Cool changes become less noticeable for progressively warmer base lights and vice versa. For the two extreme base lights, sensitivity to changes toward neutral is significantly lower than for the opposite direction. The results suggest a “neutral bias” in illumination change discriminability, and that typical temporal changes in daylight chromaticity are likely to be below threshold detectability, at least where there are no concomitant overall illuminance changes. These factors may contribute to perceptual stability of natural scenes and color constancy.
Collapse
Affiliation(s)
- Ruben Pastilha
- Neuroscience, Institute of Biosciences, Newcastle University, Newcastle upon Tyne, UK.,
| | - Gaurav Gupta
- Neuroscience, Institute of Biosciences, Newcastle University, Newcastle upon Tyne, UK.,
| | - Naomi Gross
- Neuroscience, Institute of Biosciences, Newcastle University, Newcastle upon Tyne, UK.,
| | - Anya Hurlbert
- Neuroscience, Institute of Biosciences, Newcastle University, Newcastle upon Tyne, UK.,
| |
Collapse
|
17
|
Gomez-Villa A, Martín A, Vazquez-Corral J, Bertalmío M, Malo J. Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications. Vision Res 2020; 176:156-174. [PMID: 32896717 DOI: 10.1016/j.visres.2020.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022]
Abstract
The study of visual illusions has proven to be a very useful approach in vision science. In this work we start by showing that, while convolutional neural networks (CNNs) trained for low-level visual tasks in natural images may be deceived by brightness and color illusions, some network illusions can be inconsistent with the perception of humans. Next, we analyze where these similarities and differences may come from. On one hand, the proposed linear eigenanalysis explains the overall similarities: in simple CNNs trained for tasks like denoising or deblurring, the linear version of the network has center-surround receptive fields, and global transfer functions are very similar to the human achromatic and chromatic contrast sensitivity functions in human-like opponent color spaces. These similarities are consistent with the long-standing hypothesis that considers low-level visual illusions as a by-product of the optimization to natural environments. Specifically, here human-like features emerge from error minimization. On the other hand, the observed differences must be due to the behavior of the human visual system not explained by the linear approximation. However, our study also shows that more 'flexible' network architectures, with more layers and a higher degree of nonlinearity, may actually have a worse capability of reproducing visual illusions. This implies, in line with other works in the vision science literature, a word of caution on using CNNs to study human vision: on top of the intrinsic limitations of the L + NL formulation of artificial networks to model vision, the nonlinear behavior of flexible architectures may easily be markedly different from that of the visual system.
Collapse
Affiliation(s)
- A Gomez-Villa
- Dept. Inf. Comm. Tech., Universitat Pompeu Fabra, Barcelona, Spain.
| | - A Martín
- Dept. Inf. Comm. Tech., Universitat Pompeu Fabra, Barcelona, Spain.
| | - J Vazquez-Corral
- Dept. Inf. Comm. Tech., Universitat Pompeu Fabra, Barcelona, Spain.
| | - M Bertalmío
- Dept. Inf. Comm. Tech., Universitat Pompeu Fabra, Barcelona, Spain.
| | - J Malo
- Image Proc., Lab, Universitat de València, València, Spain.
| |
Collapse
|
18
|
Kong X, Wei M, Murdoch MJ, Vogels I, Heynderickx I. Assessing the temporal uniformity of CIELAB hue angle. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:521-528. [PMID: 32400524 DOI: 10.1364/josaa.384393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
In recent work [J. Opt. Soc. Am. A36, 1022 (2019)JOAOD60740-323210.1364/JOSAA.36.001022], we found that $\Delta {E^*_\textit{ab}}/{\rm s}$ΔEab∗/s in CIELAB is not suitable for describing the perceived speed of temporal color changes in full-room illumination. Two hue transitions with the same physical speed of change, in terms of $\Delta {E^*_\textit{ab}}/{\rm s}$ΔEab∗/s, were not perceived to change at the same speed. This is not really surprising, since CIELAB was not designed to characterize the perception of temporal color transitions in illumination. In this study, we further investigate the temporal uniformity of CIELAB. The stimuli were presented in a square of 4.3° visual angle surrounded by a 4000 K adapting field, similar to the viewing condition for which CIELAB was designed (i.e., where color stimuli are presented on-axis surrounded by a static adaptation field). The human observers viewed pairs of temporal color transitions which were presented sequentially, and were asked to select the one that appeared to change faster. The results confirmed that under these conditions CIELAB was also not temporally uniform. We present preliminary attempts to improve the temporal uniformity for both CIELAB and cone-excitation spaces (i.e., LMS and DKL (Derrington-Krauskopf-Lennie [J. Physiol.357, 241 (1984)JPHYA70022-375110.1113/jphysiol.1984.sp015499]).
Collapse
|
19
|
Webster MA. The Verriest Lecture: Adventures in blue and yellow. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:V1-V14. [PMID: 32400510 PMCID: PMC7233477 DOI: 10.1364/josaa.383625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 06/11/2023]
Abstract
Conventional models of color vision assume that blue and yellow (along with red and green) are the fundamental building blocks of color appearance, yet how these hues are represented in the brain and whether and why they might be special are questions that remain shrouded in mystery. Many studies have explored the visual encoding of color categories, from the statistics of the environment to neural processing to perceptual experience. Blue and yellow are tied to salient features of the natural color world, and these features have likely shaped several important aspects of color vision. However, it remains less certain that these dimensions are encoded as primary or "unique" in the visual representation of color. There are also striking differences between blue and yellow percepts that may reflect high-level inferences about the world, specifically about the colors of light and surfaces. Moreover, while the stimuli labeled as blue or yellow or other basic categories show a remarkable degree of constancy within the observer, they all vary independently of one another across observers. This pattern of variation again suggests that blue and yellow and red and green are not a primary or unitary dimension of color appearance, and instead suggests a representation in which different hues reflect qualitatively different categories rather than quantitative differences within an underlying low-dimensional "color space."
Collapse
|
20
|
Kingdom FAA, Touma S, Jennings BJ. Negative afterimages facilitate the detection of real images. Vision Res 2020; 170:25-34. [PMID: 32220671 DOI: 10.1016/j.visres.2020.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/18/2022]
Abstract
Negative, or complementary afterimages are experienced following brief adaptation to chromatic or achromatic stimuli, and are believed to be formed in the post-receptoral layers of the retinae. Afterimages can be cancelled by the addition of real images, suggesting that afterimages and real images are processed by similar mechanisms. However given their retinal origin, afterimage signals represented at the cortical level might have different spatio-temporal properties from their real images counterparts. To test this we determined whether afterimages reduce the contrast threshold of added real images, i.e. produce the classic "dipper" function characteristic of contrast discrimination, a behavior believed to be cortically mediated. Stimuli were chromatic and achromatic disks on a grey background. Observers adapted for 1.0 s to two side-by-side disks of a particular color. Following stimulus offset, a test disk added to one side was ramped downwards for 1.5 s to approximately match the temporal characteristic of the afterimage, and the observer was required to indicate the side containing the test disk. The test hue/brightness was either the same as that of the afterimage or a different hue/brightness. The independent variable was the contrast of the adaptor. A dipper followed by masking was observed in most conditions in which the afterimage and test colors had the same hue or brightness. We conclude that afterimages are represented similarly to their real image counterparts at the cortical level.
Collapse
Affiliation(s)
- Frederick A A Kingdom
- McGill Vision Research, Department of Ophthalmology and Vision Sciences, Montreal General Hospital, 1650 Cedar Ave., Rm L11.112, Montreal, Quebec H3G 1A4, Canada
| | - Samir Touma
- McGill Vision Research, Department of Ophthalmology and Vision Sciences, Montreal General Hospital, 1650 Cedar Ave., Rm L11.112, Montreal, Quebec H3G 1A4, Canada
| | - Ben J Jennings
- Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| |
Collapse
|
21
|
|
22
|
The multivariate adaptive design for efficient estimation of the time course of perceptual adaptation. Behav Res Methods 2019; 52:1073-1090. [PMID: 31676968 DOI: 10.3758/s13428-019-01301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In experiments on behavioral adaptation, hundreds or even thousands of trials per subject are often required in order to accurately recover the many psychometric functions that characterize adaptation's time course. More efficient methods for measuring perceptual changes over time would be beneficial to such efforts. In this article, we propose two methods to adaptively select the optimal stimuli sequentially in an experiment on adaptation: These are the minimum entropy (ME) method and the match probability (MP) method. The ME method minimizes the uncertainty about the joint posterior distribution of the function parameters at each trial and is mathematically equivalent to Zhao, Lesmes, and Lu's (2019) method, which efficiently measures time courses of perceptual change by maximizing information gain. The MP method selects the next stimulus that makes the value of the psychometric function closest to .5-that is, where the probability of choosing either one of the two options for each stimulus is closest to .5. We extended Zhao et al.'s (2019) work by evaluating the ME method in a new domain (contrast adaptation) with two simulation studies that compared it to MP and two other methods (i.e., traditional staircase and random methods), and also explored the optimal block length. ME outperformed the other three methods in general, and using fewer longer blocks generally produced better parameter recovery than using more shorter blocks.
Collapse
|
23
|
Abstract
Previous research has shown that the typical or memory color of an object is perceived in images of that object, even when the image is achromatic. We performed an experiment to investigate whether the implied color in greyscale images could influence the perceived color of subsequent, simple stimuli. We used a standard top-up adaptation technique along with a roving-pedestal, two-alternative spatial forced-choice method for measuring perceptual bias without contamination from any response or decision biases. Adaptors were achromatic images of natural objects that are normally seen with diagnostic color. We found that, in some circumstances, greyscale adapting images had a biasing effect, shifting the achromatic point toward the implied color, in comparison with phase-scrambled images. We interpret this effect as evidence of adaptation in chromatic signaling mechanisms that receive top-down input from knowledge of object color. This implied color adaptation effect was particularly strong from images of bananas, which are popular stimuli in memory color experiments. We also consider the effect in a color constancy context, in which the implied color is used by the visual system to estimate an illuminant, but find our results inconsistent with this explanation.
Collapse
Affiliation(s)
- R. J. Lee
- School of Psychology, University of Lincoln, Lincoln, UK
| | - G. Mather
- School of Psychology, University of Lincoln, Lincoln, UK
| |
Collapse
|
24
|
Ennis RJ, Zaidi Q. Geometrical structure of perceptual color space: Mental representations and adaptation invariance. J Vis 2019; 19:1. [PMID: 31573606 PMCID: PMC6779095 DOI: 10.1167/19.12.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/13/2019] [Indexed: 11/24/2022] Open
Abstract
Similarity between percepts and concepts is used to accomplish many everyday tasks, e.g., object identification; so this similarity is widely used to construct geometrical spaces that represent stimulus qualities, but the intrinsic validity of the geometry, i.e., whether similarity operations support a particular geometry, is almost never tested critically. We introduce an experimental approach for equating relative similarities by setting perceived midpoints between pairs of stimuli. Midpoint settings are used with Varignon's Theorem to test the intrinsic geometry of a representation space, and its mapping to a physical space of stimuli. For perceptual color space, we demonstrate that geometrical structure depends on the mental representation used in judging similarity: An affine geometry was valid when observers used an opponent-color mental representation. Similarities based on a conceptual space of complementary colors thus power a geometric coordinate system. An affine geometry implies that similarity can be judged within straight lines and across parallel lines, and its neural coding could involve ratios of responses. We show that this perceptual space is invariant to changes in illumination color, providing a formal justification to generalize color constancy results measured for color categories, to all of color space. The midpoint measurements deviate significantly from midpoints in the extensively used "uniform" color spaces CIELAB and CIELUV, showing that these spaces do not provide adequate metric representation of perceived colors. Our paradigm can thus test for intrinsic geometrical assumptions underlying the representation space for many perceptual modalities, and for the extrinsic perceptual geometry of the space of physical stimuli.
Collapse
Affiliation(s)
- Robert J Ennis
- Justus-Liebig Universität, Allgemeine Psychologie Abteilung, Gießen, Deutschland
| | - Qasim Zaidi
- State University of New York, Graduate Center for Vision Research, New York, NY, USA
| |
Collapse
|
25
|
Cohen-Duwek H, Spitzer H. A Model for a Filling-in Process Triggered by Edges Predicts "Conflicting" Afterimage Effects. Front Neurosci 2018; 12:559. [PMID: 30174580 PMCID: PMC6107801 DOI: 10.3389/fnins.2018.00559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022] Open
Abstract
The goal of our research was to develop a compound computational model that predicts the "opposite" effects of the alternating aftereffects stimuli, such as the "color dove illusion" (Barkan and Spitzer, 2017), and the "filling in the afterimage after the image" (van Lier et al., 2009). The model is based on a filling-in mechanism, through a diffusion equation where the color and intensity of the perceived surface are obtained through a diffusion process of color from the stimulus edges. The model solves the diffusion equation with boundary conditions that takes the locations of the chromatic edges of the chromatic inducer (chromatic stimulus) and the achromatic remaining contours into account. These contours (edges) trigger the diffusion process. The same calculations are done for both types of afterimage effects, with the only difference related to the location of the remaining contour. While a gradient toward the inducing color produces a perception of the complementary color, an opposite gradient yields the perception of the same color as that of the chromatic inducer. Furthermore, we show that the same computational model can also predict new alternating aftereffects stimuli, such as the spiral stimulus, and the averaging of colors in alternating afterimage stimuli described by Anstis et al. (2012). The suggested model is able to predict most of the additional properties related to the "conflicting" phenomena that have been recently described in the literature, and thus supports the idea that a shared visual mechanism is responsible for both the positive and the negative effects.
Collapse
Affiliation(s)
- Hadar Cohen-Duwek
- Vision Research Laboratory, School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
26
|
Abstract
It has been suggested that attenuated adaptation to visual stimuli in autism is the result of atypical perceptual priors (e.g., Pellicano and Burr in Trends Cogn Sci 16(10):504-510, 2012. doi: 10.1016/j.tics.2012.08.009 ). This study investigated adaptation to color in autistic adults, measuring both strength of afterimage and the influence of top-down knowledge. We found no difference in color afterimage strength between autistic and typical adults. Effects of top-down knowledge on afterimage intensity shown by Lupyan (Acta Psychol 161:117-130, 2015. doi: 10.1016/j.actpsy.2015.08.006 ) were not replicated for either group. This study finds intact color adaptation in autistic adults. This is in contrast to findings of attenuated adaptation to faces and numerosity in autistic children. Future research should investigate the possibility of developmental differences in adaptation and further examine top-down effects on adaptation.
Collapse
Affiliation(s)
- John Maule
- The Sussex Colour Group, School of Psychology, University of Sussex, Pevensey II 5B7, Brighton, BN1 9QH UK
| | - Kirstie Stanworth
- The Sussex Colour Group, School of Psychology, University of Sussex, Pevensey II 5B7, Brighton, BN1 9QH UK
| | - Elizabeth Pellicano
- Centre for Research in Autism and Education (CRAE), UCL Institute of Education, University College London, London, UK
| | - Anna Franklin
- The Sussex Colour Group, School of Psychology, University of Sussex, Pevensey II 5B7, Brighton, BN1 9QH UK
| |
Collapse
|
27
|
Hong SW, Tong F. Neural representation of form-contingent color filling-in in the early visual cortex. J Vis 2017; 17:10. [PMID: 29136409 PMCID: PMC6097584 DOI: 10.1167/17.13.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1–V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.
Collapse
Affiliation(s)
- Sang Wook Hong
- Department of Psychology and Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Frank Tong
- Psychology Department and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Gallotto S, Sack AT, Schuhmann T, de Graaf TA. Oscillatory Correlates of Visual Consciousness. Front Psychol 2017; 8:1147. [PMID: 28736543 PMCID: PMC5500655 DOI: 10.3389/fpsyg.2017.01147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences).
Collapse
Affiliation(s)
- Stefano Gallotto
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands.,Maastricht Brain Imaging CentreMaastricht, Netherlands
| |
Collapse
|
29
|
Zeki S, Cheadle S, Pepper J, Mylonas D. The Constancy of Colored After-Images. Front Hum Neurosci 2017; 11:229. [PMID: 28539878 PMCID: PMC5423953 DOI: 10.3389/fnhum.2017.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
We undertook psychophysical experiments to determine whether the color of the after-image produced by viewing a colored patch which is part of a complex multi-colored scene depends on the wavelength-energy composition of the light reflected from that patch. Our results show that it does not. The after-image, just like the color itself, depends on the ratio of light of different wavebands reflected from it and its surrounds. Hence, traditional accounts of after-images as being the result of retinal adaptation or the perceptual result of physiological opponency, are inadequate. We propose instead that the color of after-images is generated after colors themselves are generated in the visual brain.
Collapse
Affiliation(s)
- Semir Zeki
- Laboratory of Neurobiology, University College LondonLondon, UK
| | - Samuel Cheadle
- Laboratory of Neurobiology, University College LondonLondon, UK
| | - Joshua Pepper
- Laboratory of Neurobiology, University College LondonLondon, UK
| | | |
Collapse
|
30
|
Li H, Liu X, Andolina IM, Li X, Lu Y, Spillmann L, Wang W. Asymmetries of Dark and Bright Negative Afterimages Are Paralleled by Subcortical ON and OFF Poststimulus Responses. J Neurosci 2017; 37:1984-1996. [PMID: 28077727 PMCID: PMC6705684 DOI: 10.1523/jneurosci.2021-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 01/01/2023] Open
Abstract
Humans are more sensitive to luminance decrements than increments, as evidenced by lower thresholds and shorter latencies for dark stimuli. This asymmetry is consistent with results of neurophysiological recordings in dorsal lateral geniculate nucleus (dLGN) and primary visual cortex (V1) of cat and monkey. Specifically, V1 population responses demonstrate that darks elicit higher levels of activation than brights, and the latency of OFF responses in dLGN and V1 is shorter than that of ON responses. The removal of a dark or bright disc often generates the perception of a negative afterimage, and here we ask whether there also exist asymmetries for negative afterimages elicited by dark and bright discs. If so, do the poststimulus responses of subcortical ON and OFF cells parallel such afterimage asymmetries? To test these hypotheses, we performed psychophysical experiments in humans and single-cell/S-potential recordings in cat dLGN. Psychophysically, we found that bright afterimages elicited by luminance decrements are stronger and last longer than dark afterimages elicited by luminance increments of equal sizes. Neurophysiologically, we found that ON cells responded to the removal of a dark disc with higher firing rates that were maintained for longer than OFF cells to the removal of a bright disc. The ON and OFF cell asymmetry was most pronounced at long stimulus durations in the dLGN. We conclude that subcortical response strength differences between ON and OFF channels parallel the asymmetries between bright and dark negative afterimages, further supporting a subcortical origin of bright and dark afterimage perception.SIGNIFICANCE STATEMENT Afterimages are physiological aftereffects following stimulation of the eye, the study of which helps us to understand how our visual brain generates visual perception in the absence of physical stimuli. We report, for the first time to our knowledge, asymmetries between bright and dark negative afterimages elicited by luminance decrements and increments, respectively. Bright afterimages are stronger and last longer than dark afterimages. Subcortical neuronal recordings of poststimulus responses of ON and OFF cells reveal similar asymmetries with respect to response strength and duration. Our results suggest that subcortical differences between ON and OFF channels help explain intensity and duration asymmetries between bright and dark afterimages, supporting the notion of a subcortical origin of bright and dark afterimages.
Collapse
Affiliation(s)
- Hui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Xu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Ian M Andolina
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,
| | - Xiaohong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiliang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lothar Spillmann
- Department of Neurology, University of Freiburg, 79085 Freiburg, Germany
| | - Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
31
|
Dong B, Holm L, Bao M. Cortical mechanisms for afterimage formation: evidence from interocular grouping. Sci Rep 2017; 7:41101. [PMID: 28112230 PMCID: PMC5253736 DOI: 10.1038/srep41101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Whether the retinal process alone or retinal and cortical processes jointly determine afterimage (AI) formation has long been debated. Based on the retinal rebound responses, recent work proposes that afterimage signals are exclusively generated in the retina, although later modified by cortical mechanisms. We tested this notion with the method of "indirect proof". Each eye was presented with a 2-by-2 checkerboard of horizontal and vertical grating patches. Each corresponding patch of the two checkerboards was perpendicular to each other, which produces binocular rivalry, and can generate percepts ranging from complete interocular grouping to either monocular pattern. The monocular percepts became more frequent with higher contrast. Due to adaptation, the visual system is less sensitive during the AIs than during the inductions with AI-similar contrast. If the retina is the only origin of AIs, comparable contrast appearance would require stronger retinal signals in the AIs than in the inductions, thus leading to more frequent monocular percepts in the AIs than in the inductions. Surprisingly, subjects saw the fully coherent stripes significantly more often in AIs. Our results thus contradict the retinal generation notion, and suggest that in addition to the retina, cortex is directly involved in the generation of AI signals.
Collapse
Affiliation(s)
- Bo Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Linus Holm
- Department of Psychology, Umeå University, S-901 87 Umeå, Sweden
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, P.R. China
| |
Collapse
|
32
|
Jerath R, Cearley SM, Barnes VA, Nixon-Shapiro E. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis. Med Hypotheses 2016; 96:20-29. [PMID: 27959269 DOI: 10.1016/j.mehy.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. SUMMARY This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory.
Collapse
|
33
|
Prete G, Laeng B, Tommasi L. Modulating adaptation to emotional faces by spatial frequency filtering. PSYCHOLOGICAL RESEARCH 2016; 82:310-323. [DOI: 10.1007/s00426-016-0830-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
|
34
|
Abstract
Sensory systems continuously mold themselves to the widely varying contexts in which they must operate. Studies of these adaptations have played a long and central role in vision science. In part this is because the specific adaptations remain a powerful tool for dissecting vision, by exposing the mechanisms that are adapting. That is, "if it adapts, it's there." Many insights about vision have come from using adaptation in this way, as a method. A second important trend has been the realization that the processes of adaptation are themselves essential to how vision works, and thus are likely to operate at all levels. That is, "if it's there, it adapts." This has focused interest on the mechanisms of adaptation as the target rather than the probe. Together both approaches have led to an emerging insight of adaptation as a fundamental and ubiquitous coding strategy impacting all aspects of how we see.
Collapse
|
35
|
Laparra V, Malo J. Visual aftereffects and sensory nonlinearities from a single statistical framework. Front Hum Neurosci 2015; 9:557. [PMID: 26528165 PMCID: PMC4602147 DOI: 10.3389/fnhum.2015.00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
When adapted to a particular scenery our senses may fool us: colors are misinterpreted, certain spatial patterns seem to fade out, and static objects appear to move in reverse. A mere empirical description of the mechanisms tuned to color, texture, and motion may tell us where these visual illusions come from. However, such empirical models of gain control do not explain why these mechanisms work in this apparently dysfunctional manner. Current normative explanations of aftereffects based on scene statistics derive gain changes by (1) invoking decorrelation and linear manifold matching/equalization, or (2) using nonlinear divisive normalization obtained from parametric scene models. These principled approaches have different drawbacks: the first is not compatible with the known saturation nonlinearities in the sensors and it cannot fully accomplish information maximization due to its linear nature. In the second, gain change is almost determined a priori by the assumed parametric image model linked to divisive normalization. In this study we show that both the response changes that lead to aftereffects and the nonlinear behavior can be simultaneously derived from a single statistical framework: the Sequential Principal Curves Analysis (SPCA). As opposed to mechanistic models, SPCA is not intended to describe how physiological sensors work, but it is focused on explaining why they behave as they do. Nonparametric SPCA has two key advantages as a normative model of adaptation: (i) it is better than linear techniques as it is a flexible equalization that can be tuned for more sensible criteria other than plain decorrelation (either full information maximization or error minimization); and (ii) it makes no a priori functional assumption regarding the nonlinearity, so the saturations emerge directly from the scene data and the goal (and not from the assumed function). It turns out that the optimal responses derived from these more sensible criteria and SPCA are consistent with dysfunctional behaviors such as aftereffects.
Collapse
Affiliation(s)
| | - Jesús Malo
- Image Processing Lab, Universitat de ValènciaValència, Spain
| |
Collapse
|
36
|
Lupyan G. Object knowledge changes visual appearance: semantic effects on color afterimages. Acta Psychol (Amst) 2015; 161:117-30. [PMID: 26386775 DOI: 10.1016/j.actpsy.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022] Open
Abstract
According to predictive coding models of perception, what we see is determined jointly by the current input and the priors established by previous experience, expectations, and other contextual factors. The same input can thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly when color input is unreliable. Participants were tested on a version of the 'Spanish Castle Illusion' in which viewing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes containing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The differences between images with diagnostic and arbitrary colors disappeared when the association between the image and color priors was weakened by, e.g., presenting the image upside-down, consistent with the prediction that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowledge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as shown by the final study which uses conventional images rather than afterimages. As input certainty is increased, unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding models.
Collapse
|
37
|
Jerath R, Crawford MW, Barnes VA. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience. Front Psychol 2015; 6:1204. [PMID: 26379573 PMCID: PMC4550793 DOI: 10.3389/fpsyg.2015.01204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022] Open
Abstract
The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.
Collapse
Affiliation(s)
| | | | - Vernon A Barnes
- Department of Pediatrics, Georgia Prevention Institute, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
38
|
Stoelzel CR, Huff JM, Bereshpolova Y, Zhuang J, Hei X, Alonso JM, Swadlow HA. Hour-long adaptation in the awake early visual system. J Neurophysiol 2015; 114:1172-82. [PMID: 26108950 DOI: 10.1152/jn.00116.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022] Open
Abstract
Sensory adaptation serves to adjust awake brains to changing environments on different time scales. However, adaptation has been studied traditionally under anesthesia and for short time periods. Here, we demonstrate in awake rabbits a novel type of sensory adaptation that persists for >1 h and acts on visual thalamocortical neurons and their synapses in the input layers of the visual cortex. Following prolonged visual stimulation (10-30 min), cells in the dorsal lateral geniculate nucleus (LGN) show a severe and prolonged reduction in spontaneous firing rate. This effect is bidirectional, and prolonged visually induced response suppression is followed by a prolonged increase in spontaneous activity. The reduction in thalamic spontaneous activity following prolonged visual activation is accompanied by increases in 1) response reliability, 2) signal detectability, and 3) the ratio of visual signal/spontaneous activity. In addition, following such prolonged activation of an LGN neuron, the monosynaptic currents generated by thalamic impulses in layer 4 of the primary visual cortex are enhanced. These results demonstrate that in awake brains, prolonged sensory stimulation can have a profound, long-lasting effect on the information conveyed by thalamocortical inputs to the visual cortex.
Collapse
Affiliation(s)
- Carl R Stoelzel
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Joseph M Huff
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Yulia Bereshpolova
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Jun Zhuang
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Xiaojuan Hei
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Jose-Manuel Alonso
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and Department of Biological Sciences, State University of New York, New York, New York
| | - Harvey A Swadlow
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and Department of Biological Sciences, State University of New York, New York, New York
| |
Collapse
|
39
|
Dul M, Ennis R, Radner S, Lee B, Zaidi Q. Retinal adaptation abnormalities in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2015; 56:1329-34. [PMID: 25613950 DOI: 10.1167/iovs.14-15725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Dynamic color and brightness adaptation are crucial for visual functioning. The effects of glaucoma on retinal ganglion cells (RGCs) could compromise these functions. We have previously used slow dynamic changes of light at moderate intensities to measure the speed and magnitude of subtractive adaptation in RGCs. We used the same procedure to test if RGC abnormalities cause slower and weaker adaptation for patients with glaucoma when compared to age-similar controls. We assessed adaptation deficits in specific classes of RGCs by testing along the three cardinal color axes that isolate konio, parvo, and magno RGCs. METHODS For one eye each of 10 primary open-angle glaucoma patients and their age-similar controls, we measured the speed and magnitude of adapting to 1/32 Hz color modulations along the three cardinal axes, at central fixation and 8° superior, inferior, nasal, and temporal to fixation. RESULTS In all 15 comparisons (5 locations × 3 color axes), average adaptation was slower and weaker for glaucoma patients than for controls. Adaptation developed slower at central targets than at 8° eccentricities for controls, but not for patients. Adaptation speed and magnitude differed between affected and control eyes even at retinal locations showing no visual field loss with clinical perimetry. CONCLUSIONS Neural adaptation is weaker in glaucoma patients for all three classes of RGCs. Since adaptation abnormalities are manifested even at retinal locations not exhibiting a visual field loss, this novel form of assessment may offer a functional insight into glaucoma and an early diagnosis tool.
Collapse
Affiliation(s)
- Mitchell Dul
- Department of Biological & Visual Sciences and Graduate Center for Vision Research, State University of New York College of Optometry, New York, New York, United States
| | - Robert Ennis
- Department of Biological & Visual Sciences and Graduate Center for Vision Research, State University of New York College of Optometry, New York, New York, United States
| | - Shira Radner
- Department of Biological & Visual Sciences and Graduate Center for Vision Research, State University of New York College of Optometry, New York, New York, United States
| | - Barry Lee
- Department of Biological & Visual Sciences and Graduate Center for Vision Research, State University of New York College of Optometry, New York, New York, United States
| | - Qasim Zaidi
- Department of Biological & Visual Sciences and Graduate Center for Vision Research, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
40
|
Bachy R, Zaidi Q. Troxler fading, eye movements, and retinal ganglion cell properties. Iperception 2014; 5:611-2. [PMID: 25926969 PMCID: PMC4411984 DOI: 10.1068/i0679sas] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/03/2014] [Indexed: 11/23/2022] Open
Abstract
We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.
Collapse
Affiliation(s)
- Romain Bachy
- Graduate Center for Vision Research, SUNY College of Optometry, New York, USA; e-mail:
| | - Qasim Zaidi
- Graduate Center for Vision Research, SUNY College of Optometry, New York, USA; e-mail:
| |
Collapse
|
41
|
Bachy R, Zaidi Q. Factors governing the speed of color adaptation in foveal versus peripheral vision. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2014; 31:A220-A225. [PMID: 24695173 DOI: 10.1364/josaa.31.00a220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Troxler showed that fixated stimuli fade faster in peripheral than in foveal vision. We used a time-varying procedure, to show that peripheral adaptation is faster and more pronounced than foveal adaptation for the three cardinal color modulations that isolate different classes of retinal ganglion cells. We then tested the hypothesis that fixational eye movements control the magnitude and speed of adaptation, by simulating them with intermittent flashes, and attenuating their effects with blurred borders. Psychophysical and electrophysiological results confirmed the eye movement-based hypothesis. By comparing effects across classes of ganglion cells, we found that the effects of eye movements are mediated not only by the increase in size of receptive fields with eccentricity, but also by the sensitivity of different ganglion cells to sharp borders and transient changes in the stimulus. Finally, using the same paradigm with retinal ganglion cells, we show that adaptation parameters do not vary for the three classes of ganglion cells for eccentricities from 2° to 12°, in the absence of eye movement.
Collapse
|
42
|
Manzotti R, Pepperell R. Denying the content–vehicle distinction: a response to ‘The New Mind Revisited’. AI & SOCIETY 2013. [DOI: 10.1007/s00146-013-0455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Hazenberg SJ, van Lier R. Afterimage watercolors: an exploration of contour-based afterimage filling-in. Front Psychol 2013; 4:707. [PMID: 24115940 PMCID: PMC3792352 DOI: 10.3389/fpsyg.2013.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
We investigated filling-in of colored afterimages and compared them with filling-in of “real” colors in the watercolor illusion. We used shapes comprising two thin adjacent undulating outlines of which the inner or the outer outline was chromatic, while the other was achromatic. The outlines could be presented simultaneously, inducing the original watercolor effect, or in an alternating fashion, inducing colored afterimages of the chromatic outlines. In Experiment 1, using only alternating outlines, these afterimages triggered filling-in, revealing an “afterimage watercolor” effect. Depending on whether the inner or the outer outline was chromatic, filling-in of a complementary or a similarly colored afterimage was perceived. In Experiment 2, simultaneous and alternating presentations were compared. Additionally, gray and black achromatic contours were tested, having an increased luminance contrast with the background for the black contours. Compared to “real” color filling-in, afterimage filling-in was more easily affected by different luminance settings. More in particular, afterimage filling-in was diminished when high-contrast contours were used. In the discussion we use additional demonstrations in which we further explore the “watercolor afterimage.” All in all, comparisons between both types of illusions show similarities and differences with regard to color filling-in. Caution, however, is warranted in attributing these effects to different underlying processing differences.
Collapse
Affiliation(s)
- Simon J Hazenberg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | | |
Collapse
|
44
|
Reavis EA, Kohler PJ, Caplovitz GP, Wheatley TP, Tse PU. Effects of attention on visual experience during monocular rivalry. Vision Res 2013; 83:76-81. [PMID: 23499978 DOI: 10.1016/j.visres.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
There is a long-running debate over the extent to which volitional attention can modulate the appearance of visual stimuli. Here we use monocular rivalry between afterimages to explore the effects of attention on the contents of visual experience. In three experiments, we demonstrate that attended afterimages are seen for longer periods, on average, than unattended afterimages. This occurs both when a feature of the afterimage is attended directly and when a frame surrounding the afterimage is attended. The results of these experiments show that volitional attention can dramatically influence the contents of visual experience.
Collapse
Affiliation(s)
- Eric A Reavis
- Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Sensory systems constantly adapt their responses to match the current environment. These adjustments occur at many levels of the system and increasingly appear to calibrate even for highly abstract perceptual representations of the stimulus. The similar effects of adaptation across very different stimulus domains point to common design principles but also continue to raise questions about the purpose of adaptation.
Collapse
|