1
|
Dawson LE, Sekar A, Fulford AD, Lambert RI, Burgess HS, Ribeiro PS. The deubiquitylating enzyme Fat facets promotes Fat signalling and restricts tissue growth. Nat Commun 2025; 16:1938. [PMID: 39994229 PMCID: PMC11850632 DOI: 10.1038/s41467-025-57164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Tissue growth is regulated by many signals, including polarity cues. The Hippo signalling pathway restricts tissue growth and receives inputs from the planar cell polarity-controlling Fat signalling pathway. The atypical cadherin Fat restricts growth via several mechanisms that ultimately control the activity of the pro-growth transcriptional co-activator Yorkie. Fat signalling activates the Yorkie inhibitory kinase Warts, and modulates the function of the FERM protein Expanded, which promotes Hippo signalling and also directly inhibits Yorkie. Although several Fat pathway activity modulators are known to be involved in ubiquitylation, the role of this post-translational modification in the pathway remains unclear. Moreover, no deubiquitylating enzymes have been described in this pathway. Here, using in vivo RNAi screening, we identify the deubiquitylating enzyme Fat facets as a positive regulator of Fat signalling with roles in tissue growth control. Fat facets interacts genetically and physically with Fat signalling components and regulates Yorkie target gene expression. Thus, we uncover a role for reversible ubiquitylation in the control of Fat signalling and tissue growth regulation.
Collapse
Affiliation(s)
- Lauren E Dawson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London, UK
| | - Aashika Sekar
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel I Lambert
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Hannah S Burgess
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
2
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Singh D, Ramaswamy S, Jolly MK, Rizvi MS. Emergence of planar cell polarity from the interplay of local interactions and global gradients. eLife 2024; 13:e84053. [PMID: 39450855 PMCID: PMC11602187 DOI: 10.7554/elife.84053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into 'global' and 'local' modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.
Collapse
Affiliation(s)
- Divyoj Singh
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBengaloreIndia
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of TechnologyHyderabadIndia
| |
Collapse
|
5
|
Strutt H, Meshram D, Manning E, Madathil ACK, Strutt D. Fat-Dachsous planar polarity function requires two distinct heterophilic cadherin-cadherin binding interactions. Cell Rep 2024; 43:114722. [PMID: 39302834 PMCID: PMC11497213 DOI: 10.1016/j.celrep.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Fat and Dachsous are evolutionarily conserved atypical cadherins that regulate polarized cell behaviors. In the Drosophila wing, they interact heterophilically between neighboring cells, localize asymmetrically to opposite cell ends, and control wing shape by regulating oriented cell rearrangements and divisions. Fat and Dachsous have 34 and 27 cadherin repeats, respectively, and previous work has identified trans interactions between their first four cadherin repeats. Here, we identify a second heterophilic binding site in their C-terminal cadherin repeats and show the conservation of this binding site in human Fat4 and Dachsous1. We provide evidence that both N- and C-terminal binding sites regulate the stability of Fat-Dachsous binding interactions and show that the N-terminal binding sites are partly dispensable for Fat-Dachsous function in vivo. Finally, we provide in vivo confirmation that the N-terminal repeats interact in an anti-parallel manner. We propose that multiple binding sites promote the clustering of Fat and Dachsous into a lattice-like array.
Collapse
Affiliation(s)
- Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Dipak Meshram
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
7
|
Bu T, Wang L, Wu X, Gao S, Li X, Yun D, Yang X, Li L, Cheng CY, Sun F. The Planar Cell Polarity Protein Fat1 in Sertoli Cell Function. Endocrinology 2024; 165:bqae041. [PMID: 38553880 DOI: 10.1210/endocr/bqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/30/2024]
Abstract
Fat (FAT atypical cadherin) and Dchs (Dachsous cadherin-related protein) in adjacent Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interfaces create an important intercellular bridge whose adhesive function is in turn supported by Fjx1, a nonreceptor Ser/Thr protein kinase. This concept is derived from earlier studies of Drosophila, which has been confirmed in this and earlier reports as well. Herein, we use the approach of knockdown of Fat1 by RNAi using primary cultures of Sertoli cells that mimicked the blood-testis barrier (BTB) in vivo, and a series of coherent experiments including functional assays to monitor the Sertoli cell tight junction (TJ) permeability barrier and a functional in vitro TJ integrity assay to assess the role of Fat1 in the testis. It was shown that planar cell polarity (PCP) protein Fat1 affected Sertoli cell function through its modulation of actin and microtubule cytoskeletal function, altering their polymerization activity through the Fat1/Fjx1 complex. Furthermore, Fat1 is intimately associated with β-catenin and α-N-catenin, as well as with Prickle 1 of the Vangl1/Prickle 1 complex, another PCP core protein to support intercellular interactions to confer PCP. In summary, these findings support the notion that the Fat:Dchs and the Vangl2:Fzd PCP intercellular bridges are tightly associated with basal ES/TJ structural proteins to stabilize PCP function at the Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interface to sustain spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Linxi Li
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuen Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
8
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
9
|
Xu Y, Cheng Y, Chen AT, Bao Z. A compound PCP scheme underlies sequential rosettes-based cell intercalation. Development 2023; 150:dev201493. [PMID: 36975724 PMCID: PMC10263146 DOI: 10.1242/dev.201493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The formation of sequential rosettes is a type of collective cell behavior recently discovered in the Caenorhabditis elegans embryo that mediates directional cell migration through sequential formation and resolution of multicellular rosettes involving the migrating cell and its neighboring cells along the way. Here, we show that a planar cell polarity (PCP)-based polarity scheme regulates sequential rosettes, which is distinct from the known mode of PCP regulation in multicellular rosettes during the process of convergent extension. Specifically, non-muscle myosin (NMY) localization and edge contraction are perpendicular to that of Van Gogh as opposed to colocalizing with Van Gogh. Further analyses suggest a two-component polarity scheme: one being the canonical PCP pathway with MIG-1/Frizzled and VANG-1/Van Gogh localized to the vertical edges, the other being MIG-1/Frizzled and NMY-2 localized to the midline/contracting edges. The NMY-2 localization and contraction of the midline edges also required LAT-1/Latrophilin, an adhesion G protein-coupled receptor that has not been shown to regulate multicellular rosettes. Our results establish a distinct mode of PCP-mediated cell intercalation and shed light on the versatile nature of the PCP pathway.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yunsheng Cheng
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Allison T. Chen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
10
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
11
|
Brittle A, Warrington SJ, Strutt H, Manning E, Tan SE, Strutt D. Distinct mechanisms of planar polarization by the core and Fat-Dachsous planar polarity pathways in the Drosophila wing. Cell Rep 2022; 40:111419. [PMID: 36170824 PMCID: PMC9631118 DOI: 10.1016/j.celrep.2022.111419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within a tissue plane, and in animals can be determined by the “core” or Fat-Dachsous pathways. Current models for planar polarity establishment involve two components: tissue-level “global” cues that determine the overall axis of polarity and cell-level feedback-mediated cellular polarity amplification. Here, we investigate the contributions of global cues versus cellular feedback amplification in the core and Fat-Dachsous pathways during Drosophila pupal wing development. We present evidence that these pathways generate planar polarity via distinct mechanisms. Core pathway function is consistent with strong feedback capable of self-organizing cell polarity, which can then be aligned with the tissue axis via weak or transient global cues. Conversely, generation of cell polarity by the Ft-Ds pathway depends on strong global cues in the form of graded patterns of gene expression, which can then be amplified by weak feedback mechanisms. The core and Fat-Dachsous planar polarity pathways function via distinct mechanisms The core can self-organize planar polarity and be oriented by weak upstream cues Fat-Dachsous are oriented by strong gradient cues but show poor self-organization
Collapse
Affiliation(s)
- Amy Brittle
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Helen Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Su Ee Tan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
12
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
13
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
15
|
Tan SE, Tan W, Fisher K, Strutt D. QuantifyPolarity, a new tool-kit for measuring planar polarized protein distributions and cell properties in developing tissues. Development 2021; 148:272072. [PMID: 34351416 PMCID: PMC8451067 DOI: 10.1242/dev.198952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
The coordination of cells or structures within the plane of a tissue is known as planar polarization. It is often governed by the asymmetric distribution of planar polarity proteins within cells. A number of quantitative methods have been developed to provide a readout of planar polarized protein distributions. However, previous planar polarity quantification methods can be affected by variation in cell geometry. Hence, we developed a novel planar polarity quantification method based on Principal Component Analysis (PCA) that is shape insensitive. Here, we compare this method with other state-of-the-art methods on simulated models and biological datasets. We found that the PCA method performs robustly in quantifying planar polarity independently of variation in cell geometry and other image conditions. We designed a user-friendly graphical user interface called QuantifyPolarity, equipped with three polarity methods for automated quantification of polarity. QuantifyPolarity also provides tools to quantify cell morphology and packing geometry, allowing the relationship of these characteristics to planar polarization to be investigated. This tool enables experimentalists with no prior computational expertise to perform high-throughput cell polarity and shape analysis automatically and efficiently. Summary: We present a novel planar polarity quantification method based on Principal Component Analysis that performs robustly in quantifying planar polarity independently of variation in cell geometry and other image properties.
Collapse
Affiliation(s)
- Su Ee Tan
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Weijie Tan
- School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
| | - Katherine Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
16
|
Zhu H. Elucidate growth control mechanisms using reconstructed spatiotemporal distributions of signaling events. Comput Struct Biotechnol J 2021; 19:3618-3627. [PMID: 34257840 PMCID: PMC8249872 DOI: 10.1016/j.csbj.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
A fundamental biological question is how diverse and complex signaling and patterning is controlled correctly to generate distinct tissues, organs, and body plans, but incorrectly in diseased cells and tissues. Signaling pathways important for growth control have been identified, but to identify the mechanisms their transient and context-dependent interactions encode is more difficult. Currently computational systems biology aims to infer the control mechanisms by investigating quantitative changes of gene expression and protein concentrations, but this inference is difficult in nature. We propose it is desirable to explicitly simulate events and orders of gene regulation and protein interactions, which better elucidate control mechanisms, and report a method and tool with three examples. The Drosophila wing model includes Wnt, PCP, and Hippo pathways and mechanical force, incorporates well-confirmed experimental findings, and generates novel results. The other two examples illustrate the building of three-dimensional and large-scale models. These examples support that reconstructed spatiotemporal distributions of key signaling events help elucidate growth control mechanisms. As biologists pay increasing attention to disordered signaling in diseased cells, to develop new modeling methods and tools for conducting new computational studies is important.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou 510515, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
18
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
19
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
20
|
Pietra S, Ng K, Lawrence PA, Casal J. Planar cell polarity in the larval epidermis of Drosophila and the role of microtubules. Open Biol 2020; 10:200290. [PMID: 33295841 PMCID: PMC7776564 DOI: 10.1098/rsob.200290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.
Collapse
Affiliation(s)
- Stefano Pietra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - KangBo Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
21
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
22
|
Cho B, Song S, Axelrod JD. Prickle isoforms determine handedness of helical morphogenesis. eLife 2020; 9:51456. [PMID: 31934858 PMCID: PMC7004564 DOI: 10.7554/elife.51456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Subcellular asymmetry directed by the planar cell polarity (PCP) signaling pathway orients numerous morphogenetic events in both invertebrates and vertebrates. Here, we describe a morphogenetic movement in which the intertwined socket and shaft cells of the Drosophila anterior wing margin mechanosensory bristles undergo PCP-directed apical rotation, inducing twisting that results in a helical structure of defined chirality. We show that the Frizzled/Vang PCP signaling module coordinates polarity among and between bristles and surrounding cells to direct this rotation. Furthermore, we show that dynamic interplay between two isoforms of the Prickle protein determines right- or left-handed bristle morphogenesis. We provide evidence that, Frizzled/Vang signaling couples to the Fat/Dachsous PCP directional signal in opposite directions depending on whether Pkpk or Pksple predominates. Dynamic interplay between Pk isoforms is likely to be an important determinant of PCP outcomes in diverse contexts. Similar mechanisms may orient other lateralizing morphogenetic processes.
Collapse
Affiliation(s)
- Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
23
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Mangione F, Martín-Blanco E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Rep 2019; 25:2836-2850.e4. [PMID: 30517870 DOI: 10.1016/j.celrep.2018.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The achievement of the final form of an individual requires not only the control of cell size and differentiation but also integrative directional cues to instruct cell movements, positions, and orientations. In Drosophila, the adult epidermis of the abdomen is created de novo by histoblasts. As these expand and fuse, they uniformly orient along the anteroposterior axis. We found that the Dachsous/Fat/Four-jointed (Ds/Ft/Fj) pathway is key for their alignment. The refinement of the tissue-wide expression of the atypical cadherins Ds and Ft result in their polarization and directional adhesiveness. Mechanistically, the axially oriented changes in histoblasts respond to the redesign of the epithelial field. We suggest that the role of Ds/Ft/Fj in long-range oriented cell alignment is a general function and that the regulation of the expression of its components will be crucial in other morphogenetic models or during tissue repair.
Collapse
Affiliation(s)
- Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
25
|
He S, Grasis JA, Nicotra ML, Juliano CE, Schnitzler CE. Cnidofest 2018: the future is bright for cnidarian research. EvoDevo 2019; 10:20. [PMID: 31508195 PMCID: PMC6724248 DOI: 10.1186/s13227-019-0134-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110 USA
| | - Juris A. Grasis
- School of Natural Sciences, University of California, Merced, CA 95343 USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
26
|
Fisher KH, Strutt D. A theoretical framework for planar polarity establishment through interpretation of graded cues by molecular bridges. Development 2019; 146:146/3/dev168955. [PMID: 30709912 PMCID: PMC6382004 DOI: 10.1242/dev.168955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Planar polarity is a widespread phenomenon found in many tissues, allowing cells to coordinate morphogenetic movements and function. A common feature of animal planar polarity systems is the formation of molecular bridges between cells, which become polarised along a tissue axis. We propose that these bridges provide a general mechanism by which cells interpret different forms of tissue gradients to coordinate directional information. We illustrate this using a generalised and consistent modelling framework, providing a conceptual basis for understanding how different mechanisms of gradient function can generate planar polarity. We make testable predictions of how different gradient mechanisms can influence polarity direction. Summary: This Hypothesis uses a theoretical framework to explore how molecular bridges provide a general mechanism to interpret different forms of tissue gradients to establish planar polarity.
Collapse
Affiliation(s)
- Katherine H Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
27
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
28
|
Abstract
Visualization of in vivo protein levels and localization is essential to analysis and elucidation of Hippo signaling mechanisms and its roles in diverse tissues. This is best done by imaging proteins using fluorescent labels. Fluorescent labeling of a protein can be achieved by direct conjugation to an intrinsically fluorescent protein, like GFP, or by use of antibodies conjugated to fluorescent dyes. Immunofluorescence imaging in Drosophila typically begins with dissection and fixation of a sample tissue, followed by a series of washes and incubations with primary antibodies, directed against proteins of interest, and dye-labeled secondary antibodies, directed against the primary antibodies. This may be followed by fluorescent dyes that label cellular components, such as DNA-labeling dyes to mark nuclei. After staining and washing is completed, samples are placed in a mounting media, transferred to a microscope slide, and imaged on a confocal microscope.
Collapse
|
29
|
Lawrence PA, Casal J. Planar cell polarity: two genetic systems use one mechanism to read gradients. Development 2018; 145:145/23/dev168229. [DOI: 10.1242/dev.168229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Our aim in this short Primer is to explain the principles of planar cell polarity (PCP) in animal development. The literature in this small field is complex and specialized, but we have extracted a simple and central story from it. We explain our hypothesis that polarity, initially cued by the direction of slope of a multicellular gradient, is interpreted at the cellular level so that each cell becomes molecularly polarised. The mechanism involves a comparison between a cell and its neighbours. To achieve this comparison there are (at least) two disparate and independent molecular systems, each depending on molecular bridges that span between neighbouring cells. Even though the two systems are made up of different molecules, we argue that both systems function in a logically equivalent way.
Collapse
Affiliation(s)
- Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
30
|
Casal J, Ibáñez-Jiménez B, Lawrence PA. Planar cell polarity: the prickle gene acts independently on both the Ds/Ft and the Stan/Fz systems. Development 2018; 145:dev.168112. [PMID: 30154173 PMCID: PMC6176928 DOI: 10.1242/dev.168112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022]
Abstract
Epithelial cells are polarised within the plane of the epithelium, forming oriented structures that have a coordinated and consistent polarity (planar cell polarity, PCP). In Drosophila, at least two separate molecular systems generate and interpret intercellular polarity signals: Dachsous/Fat, and the ‘core’ or Starry night/Frizzled system. Here, we study the prickle gene and its protein products Prickle and Spiny leg. Much research on PCP has focused on the asymmetric localisation of core proteins in the cell and as a result prickle was placed in the heart of the Starry night/Frizzled system. We investigate whether this view is correct and how the prickle gene relates to the two systems. We find that prickle can affect, separately, both systems; however, neither Prickle nor Spiny leg are essential components of the Dachsous/Fat or the Starry night/Frizzled system, nor do they act as a functional link between the two systems. Summary:Drosophilaprickle can affect, separately, both the Ds/Ft and the Stan/Fz PCP systems; however, Pk and Sple are not essential for either and do not act as a functional link between the two systems.
Collapse
Affiliation(s)
- José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
31
|
Gou J, Lin L, Othmer HG. A Model for the Hippo Pathway in the Drosophila Wing Disc. Biophys J 2018; 115:737-747. [PMID: 30041810 PMCID: PMC6103738 DOI: 10.1016/j.bpj.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Although significant progress has been made toward understanding morphogen-mediated patterning in development, control of the size and shape of tissues via local and global signaling is poorly understood. In particular, little is known about how cell-cell interactions are involved in the control of tissue size. The Hippo pathway in the Drosophila wing disc involves cell-cell interactions via cadherins, which lead to modulation of Yorkie, a cotranscriptional factor that affects control of the cell cycle and growth, and studies involving over- and underexpression of components of this pathway reveal conditions that lead to tissue over- or undergrowth. Here, we develop a mathematical model of the Hippo pathway that can qualitatively explain these observations, made in both whole-disc mutants and mutant-clone experiments. We find that a number of nonintuitive experimental results can be explained by subtle changes in the balances between inputs to the Hippo pathway and suggest some predictions that can be tested experimentally. We also show that certain components of the pathway are polarized at the single-cell level, which replicates observations of planar cell polarity. Because the signal transduction and growth control pathways are highly conserved between Drosophila and mammalian systems, the model we formulate can be used as a framework to guide future experimental work on the Hippo pathway in both Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Lin Lin
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
32
|
Hoffmann KB, Voss-Böhme A, Rink JC, Brusch L. A dynamically diluted alignment model reveals the impact of cell turnover on the plasticity of tissue polarity patterns. J R Soc Interface 2018; 14:rsif.2017.0466. [PMID: 28978744 DOI: 10.1098/rsif.2017.0466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022] Open
Abstract
The polarization of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganization in response to an opposing instructive cue, which we here consider using the example of experimentally inducible body axis inversions in planarian flatworms. We define a dynamically diluted alignment model linking three processes: entrainment of cell polarity by a global signal, local cell-cell coupling aligning polarity among neighbours, and cell turnover replacing polarized cells by initially unpolarized cells. We show that a persistent global orienting signal determines the final mean polarity orientation in this stochastic model. Combining numerical and analytical approaches, we find that neighbour coupling retards polarity pattern reorganization, whereas cell turnover accelerates it. We derive a formula for an effective neighbour coupling strength integrating both effects and find that the time of polarity reorganization depends linearly on this effective parameter and no abrupt transitions are observed. This allows us to determine neighbour coupling strengths from experimental observations. Our model is related to a dynamic 8-Potts model with annealed site-dilution and makes testable predictions regarding the polarization of dynamic systems, such as the planarian epithelium.
Collapse
Affiliation(s)
- Karl B Hoffmann
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anja Voss-Böhme
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.,University of Applied Sciences Dresden, Dresden, Germany
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany .,Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
33
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
34
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
35
|
Dobens LL, Shipman A, Axelrod JD. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity. Fly (Austin) 2017; 12:23-33. [PMID: 29189094 DOI: 10.1080/19336934.2017.1409927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.
Collapse
Affiliation(s)
- Leonard L Dobens
- a Division of Molecular Biology and Biochemistry, School of Biological Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Anna Shipman
- a Division of Molecular Biology and Biochemistry, School of Biological Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Jeffrey D Axelrod
- b Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
36
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
37
|
Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Wortman JC, Nahmad M, Zhang PC, Lander AD, Yu CC. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol 2017; 13:e1005610. [PMID: 28671940 PMCID: PMC5515495 DOI: 10.1371/journal.pcbi.1005610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/18/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj. In the tissues of a developing organism, specialized proteins can control cell growth and give cells a sense of direction, e.g., which way is the head or the tail, by having their concentration vary throughout the tissue. In cells of the developing fruit fly wing, a protein called Dachs localizes on the side of the cell closest to the center of the tissue, indicating a directionality. The localization of Dachs is determined by the spatial distribution, around the periphery of a cell, of intercellular bonds of the proteins Fat and Dachsous between adjacent cells. Here we asked how this cell directionality is affected when cells divide and when the concentration of Dachsous changes over time. We use a computational model to show that as the circular step-up region of the Dachsous concentration profile sweeps radially outward, like rings radiating outward from where a pebble was dropped in a pond, it leaves polarized cells in its wake. Our model also shows how cells can naturally recover their directionality after cell division.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Marcos Nahmad
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Peng Cheng Zhang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 2017; 18:375-388. [PMID: 28293032 DOI: 10.1038/nrm.2017.11] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
41
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Matakatsu H, Blair SS, Fehon RG. The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 2016; 216:265-277. [PMID: 28031421 PMCID: PMC5223609 DOI: 10.1083/jcb.201609094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
The palmitoyl transferase Approximated regulates signaling by the protocadherin Fat to control tissue growth upstream of the Hippo pathway in Drosophila. Matakatsu et al. show that palmitoylation of the intracellular domain of Fat by Approximated negatively regulates Fat and its ability to restrict growth. The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
43
|
Misra JR, Irvine KD. Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 2016; 39:254-266. [PMID: 27746048 DOI: 10.1016/j.devcel.2016.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA.
| |
Collapse
|
44
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
45
|
Aw WY, Devenport D. Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 2016; 44:110-116. [PMID: 27576155 DOI: 10.1016/j.ceb.2016.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
Many tissues develop coordinated patterns of cell polarity that align with respect to the tissue axes. This phenomenon refers to planar cell polarity (PCP) and is controlled by multiple conserved PCP modules. A key feature of PCP proteins is their asymmetric localization within the tissue plane, whose orientation is guided by global directional cues. Here, we highlight current models and recent findings on the role of tissue-level gradients, local organizer signals, and mechanical forces in establishing the global patterns of PCP.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Vrabioiu AM, Struhl G. Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Dev Cell 2016; 35:737-49. [PMID: 26702832 DOI: 10.1016/j.devcel.2015.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
Nuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity. Specifically, we show that activity of the Drosophila NDR kinase Warts in the developing wing depends on its transition from an inactive, "closed" conformation to a potentially active, "open" conformation mediated by Mats, a conserved Mps1-binder (Mob) protein. Further, we show that signaling interactions between the protocadherins Fat and Dachsous, organized by the morphogens Wingless and Decapentaplegic, suppress Warts by acting via the atypical myosin Dachs to inhibit or reverse this transition. The regulation of Warts conformation by Mats, Fat/Dachsous signaling, and Dachs appears independent of Warts phosphorylation by Hippo kinase, establishing a precedent for the control of NDR kinases, and hence growth, by distinct allosteric and phosphorylation mechanisms.
Collapse
Affiliation(s)
- Alina M Vrabioiu
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
47
|
Dchs1-Fat4 regulation of polarized cell behaviours during skeletal morphogenesis. Nat Commun 2016; 7:11469. [PMID: 27145737 PMCID: PMC4858749 DOI: 10.1038/ncomms11469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2016] [Indexed: 01/12/2023] Open
Abstract
Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1–Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1–Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure. How the shape of the sternum is regulated is unclear. Here, the authors identify the Dchs1-Fat4-planar cell polarity pathway as controlling cell orientation and cell intercalation of mesenchymal cells that form skeletal condensations for the mouse sternum, which defines the relative dimensions of the sternum.
Collapse
|
48
|
Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T. Localized JNK signaling regulates organ size during development. eLife 2016; 5. [PMID: 26974344 PMCID: PMC4848088 DOI: 10.7554/elife.11491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/12/2016] [Indexed: 11/17/2022] Open
Abstract
A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI:http://dx.doi.org/10.7554/eLife.11491.001 A key challenge in biology is to understand what determines size. As an animal grows, signals are produced that control the size of its organs. Many of the signaling pathways that regulate size during normal animal development also contribute to the formation of tumors. Therefore, it is important to find out exactly how the signaling molecules that regulate size are linked to those that regulate tumor growth. A protein called JNK activates a signaling pathway that triggers tumor growth. JNK signaling also stimulates cells to multiply in tissues that need repair, but it is not known whether it also regulates the size of organs during animal development. Here, Willsey et al. investigate whether JNK is active in the developing wings of fruit flies, which are commonly used as models of animal development. The experiments show that JNK is active in a stripe across the developing wing and is required for the wing to grow to its proper size. A master signal protein called Hedgehog is responsible for establishing this stripe of JNK activity. Unexpectedly, rather than acting through its usual signaling pathway, JNK activates the Hippo pathway in the wing to control organ size during development. Willsey et al.’s findings highlight potential new targets for cancer therapies. A future challenge will be to find out whether small patches of JNK signaling are found in the developing organs of other animals, and whether they can help explain how size changes between species. DOI:http://dx.doi.org/10.7554/eLife.11491.002
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Xiaoyan Zheng
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - José Carlos Pastor-Pareja
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - A Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Philip A Beachy
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaïche Y. Modulation of junction tension by tumor-suppressors and proto-oncogenes regulates cell-cell contacts. Development 2016; 143:623-34. [DOI: 10.1242/dev.127993] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
Tumor-suppressor and proto-oncogenes play critical roles in tissue proliferation. Furthermore, deregulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in somatic clones shape correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical elasticity. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor-suppressor and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, Fat (Ft) and Dachsous (Ds) tumor-suppressors regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the time evolution of ft mutant cells and clones, we show that ft clones reduce their cell-cell contact with surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposite changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tensions is modulated by the activation of Yorkie, Myc and Ras yielding similar contact reductions with wt cells. Together our data highlight mechanical roles for proto-oncogene and tumor-suppressor pathways in cell-cell interactions.
Collapse
Affiliation(s)
- Floris Bosveld
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Rivière
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Isabelle Bonnet
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - François Graner
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|