1
|
Bhattacharya I, Nalinan LK, Anusree KV, Saleel A, Khamamkar A, Dey S. Evolving Lessons on Metazoan Primordial Germ Cells in Diversity and Development. Mol Reprod Dev 2025; 92:e70027. [PMID: 40349219 PMCID: PMC12066098 DOI: 10.1002/mrd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Germ cells are pivotal for the continuation of biological species. The metazoan germline develops from primordial germ cells (PGCs) that undergo multiple rounds of mitotic divisions. The PGCs are specified by either maternal inheritance of asymmetrically polarized cytoplasmic mRNAs/proteins (found in roundworms, flies, fishes, frogs, and fowl) or via direct induction of epiblast cells from adjacent extraembryonic ectoderm in mammals. In all vertebrates, PGCs remain uncommitted to meiosis and migrate to colonize the developing gonadal ridge before sex determination. Multiple RNA-binding proteins (e.g., Vasa, Dnd, Dazl, etc.) play crucial roles in PGC identity, expansion, survival, and migration. Postsex determination in mouse embryos, Gata4, expressing nascent gonads, induces Dazl expression in newly arriving germ cells that supports retinoic acid-mediated induction of meiotic onset. This article briefly discusses the developmental events regulating the PGC specification and commitment in metazoans. We also highlight the recent progress towards the in vitro generation of functional PGC-like cells in rodents and humans.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Lakshmi K. Nalinan
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - K. V. Anusree
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Ahmed Saleel
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Aditi Khamamkar
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Souvik Dey
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Matsuoka Y, Nakamura T, Watanabe T, Barnett AA, Tomonari S, Ylla G, Whittle CA, Noji S, Mito T, Extavour CG. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. Development 2025; 152:dev199746. [PMID: 39514640 PMCID: PMC11829760 DOI: 10.1242/dev.199746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/05/2024] [Indexed: 11/16/2024]
Abstract
Studies of traditional model organisms such as the fruit fly Drosophila melanogaster have contributed immensely to our understanding of the genetic basis of developmental processes. However, the generalizability of these findings cannot be confirmed without functional genetic analyses in additional organisms. Direct genome editing using targeted nucleases has the potential to transform hitherto poorly understood organisms into viable laboratory organisms for functional genetic study. To this end, we present a method to induce targeted genome knockout and knock-in of desired sequences in an insect that serves as an informative contrast to Drosophila, the cricket Gryllus bimaculatus. The efficiency of germline transmission of induced mutations is comparable with that reported for other well-studied laboratory organisms, and knock-ins targeting introns yield viable, fertile animals in which knock-in events are directly detectable by visualization of a fluorescent marker in the expression pattern of the targeted gene. Combined with the recently assembled and annotated genome of this cricket, this knock-in/knockout method increases the viability of G. bimaculatus as a tractable system for functional genetics in a basally branching insect.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Taro Nakamura
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Takahito Watanabe
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Ishii-cho, Myozai-gun, Tokushima 779-3233, Japan
| | - Austen A. Barnett
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Guillem Ylla
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Carrie A. Whittle
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sumihare Noji
- Tokushima University, 2-14 Shinkura-cho, Tokushima City 770-8501, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Kemph A, Kharel K, Tindell SJ, Arkov AL, Lynch JA. Novel structure and composition of the unusually large germline determinant of the wasp Nasonia vitripennis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621563. [PMID: 39554026 PMCID: PMC11566029 DOI: 10.1101/2024.11.01.621563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Specialized, maternally derived ribonucleoprotein (RNP) granules play an important role in specifying the primordial germ cells in many animal species. Typically, these germ granules are small (~100 nm to a few microns in diameter) and numerous; in contrast, a single, extremely large granule called the oosome plays the role of germline determinant in the wasp Nasonia vitripennis. The organizational basis underlying the form and function of this unusually large membraneless RNP granule remains an open question. Here we use a combination of super-resolution and transmission electron microscopy to investigate the composition and morphology of the oosome. We show that the oosome has properties of a viscous liquid or elastic solid. The most prominent feature of the oosome is a branching mesh-like network of high abundance mRNAs that pervades the entire structure. Homologs of the core polar granule proteins Vasa and Oskar do not appear to nucleate this network, but rather are distributed adjacently as separate puncta. Low abundance RNAs appear to cluster in puncta that similarly do not overlap with the protein puncta. Several membrane-bound organelles, including lipid droplets and rough ER-like vesicles, are incorporated within the oosome, whereas mitochondria are nearly entirely excluded. Our findings show that the remarkably large size of the oosome is reflected in a complex sub-granular organization and suggest that the oosome is a powerful model for probing interactions between membraneless and membrane-bound organelles, structural features that contribute to granule size, and the evolution of germ plasm in insects.
Collapse
Affiliation(s)
- Allie Kemph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Kabita Kharel
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Samuel J. Tindell
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY 42071
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
4
|
Cullen G, Gilligan JB, Guhlin JG, Dearden PK. Germline progenitors and oocyte production in the honeybee queen ovary. Genetics 2023; 225:iyad138. [PMID: 37487025 PMCID: PMC10471204 DOI: 10.1093/genetics/iyad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Understanding the reproduction of honeybee queens is crucial to support populations of this economically important insect. Here we examine the structure of the honeybee ovary to determine the nature of the germline progenitors in the ovary. Using a panel of marker genes that mark somatic or germline tissue in other insects we determine which cells in the honeybee ovary are somatic and which germline. We examine patterns of cell division and demonstrate that, unlike Drosophila, there is no evidence of single germline stem cells that provide the germline in honeybees. Germline progenitors are clustered in groups of 8 cells, joined by a polyfusome, and collections of these, in each ovariole, appear to maintain the germline during reproduction. We also show that these 8-cell clusters can divide and that their division occurs such that the numbers of germline progenitors are relatively constant over the reproductive life of queen honeybees. This information helps us to understand the diversity of structures in insect reproduction, and provide information to better support honeybee reproduction.
Collapse
Affiliation(s)
- Georgia Cullen
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joshua B Gilligan
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joseph G Guhlin
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| |
Collapse
|
5
|
Kulkarni A, Ewen-Campen B, Terao K, Matsumoto Y, Li Y, Watanabe T, Kao JA, Parhad SS, Ylla G, Mizunami M, Extavour CG. oskar acts with the transcription factor Creb to regulate long-term memory in crickets. Proc Natl Acad Sci U S A 2023; 120:e2218506120. [PMID: 37192168 PMCID: PMC10214185 DOI: 10.1073/pnas.2218506120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Kanta Terao
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | | | - Yaolong Li
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Takayuki Watanabe
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Center for Integrative Evolutionary Science, School of Advanced Sciences, Sokendai-Hayama, Kanagawa240-0193, Japan
| | - Jonchee A. Kao
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Swapnil S. Parhad
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA01655
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
6
|
Kemph A, Lynch JA. Evolution of germ plasm assembly and function among the insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100883. [PMID: 35123121 PMCID: PMC9133133 DOI: 10.1016/j.cois.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.
Collapse
|
7
|
Blondel L, Besse S, Rivard EL, Ylla G, Extavour CG. Evolution of a cytoplasmic determinant: evidence for the biochemical basis of functional evolution of the novel germ line regulator oskar. Mol Biol Evol 2021; 38:5491-5513. [PMID: 34550378 PMCID: PMC8662646 DOI: 10.1093/molbev/msab284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germ line specification is essential in sexually reproducing organisms. Despite their critical role, the evolutionary history of the genes that specify animal germ cells is heterogeneous and dynamic. In many insects, the gene oskar is required for the specification of the germ line. However, the germ line role of oskar is thought to be a derived role resulting from co-option from an ancestral somatic role. To address how evolutionary changes in protein sequence could have led to changes in the function of Oskar protein that enabled it to regulate germ line specification, we searched for oskar orthologs in 1,565 publicly available insect genomic and transcriptomic data sets. The earliest-diverging lineage in which we identified an oskar ortholog was the order Zygentoma (silverfish and firebrats), suggesting that oskar originated before the origin of winged insects. We noted some order-specific trends in oskar sequence evolution, including whole gene duplications, clade-specific losses, and rapid divergence. An alignment of all known 379 Oskar sequences revealed new highly conserved residues as candidates that promote dimerization of the LOTUS domain. Moreover, we identified regions of the OSK domain with conserved predicted RNA binding potential. Furthermore, we show that despite a low overall amino acid conservation, the LOTUS domain shows higher conservation of predicted secondary structure than the OSK domain. Finally, we suggest new key amino acids in the LOTUS domain that may be involved in the previously reported Oskar−Vasa physical interaction that is required for its germ line role.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Savandara Besse
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Emily L Rivard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
8
|
Nakao H. Early embryonic development of Bombyx. Dev Genes Evol 2021; 231:95-107. [PMID: 34296338 DOI: 10.1007/s00427-021-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Decades have passed since the early molecular embryogenesis of Drosophila melanogaster was outlined. During this period, the molecular mechanisms underlying early embryonic development in other insects, particularly the flour beetle, Tribolium castaneum, have been described in more detail. The information clearly demonstrated that Drosophila embryogenesis is not representative of other insects and has highly distinctive characteristics. At the same time, this new data has been gradually clarifying ancestral operating mechanisms. The silk moth, Bombyx mori, is a lepidopteran insect and, as a representative of the order, has many unique characteristics found in early embryonic development that have not been identified in other insect groups. Herein, some of these characteristics are introduced and discussed in the context of recent information obtained from other insects.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
9
|
Filanti B, Piccinini G, Bettini S, Lazzari M, Franceschini V, Maurizii MG, Milani L. Early germline differentiation in bivalves: TDRD7 as a candidate investigational unit for Ruditapes philippinarum germ granule assembly. Histochem Cell Biol 2021; 156:19-34. [PMID: 33770286 PMCID: PMC8277629 DOI: 10.1007/s00418-021-01983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 01/23/2023]
Abstract
The germline is a key feature of sexual animals and the ways in which it separates from the soma differ widely across Metazoa. However, at least at some point during germline differentiation, some cytoplasmic supramolecular structures (collectively called germ plasm-related structures) are present and involved in its specification and/or differentiation. The factors involved in the assembly of these granular structures are various and non-ubiquitous among animals, even if some functional patterns and the presence of certain domains appear to be shared among some. For instance, the LOTUS domain is shared by Oskar, the Holometabola germ plasm master regulator, and some Tudor-family proteins assessed as being involved in the proper assembly of germ granules of different animals. Here, we looked for the presence of LOTUS-containing proteins in the transcriptome of Ruditapes philippinarum (Bivalvia). Such species is of particular interest because it displays annual renewal of gonads, sided by the renewal of germline differentiation pathways. Moreover, previous works have identified in its early germ cells cytoplasmic granules containing germline determinants. We selected the orthologue of TDRD7 as a candidate involved in the early steps of germline differentiation through bioinformatic predictions and immunohistological patterning (immunohistochemistry and immunofluorescence). We observed the expression of the protein in putative precursors of germline cells, upstream to the germline marker Vasa. This, added to the fact that orthologues of this protein are involved in the assembly of germ granules in mouse, zebrafish, and fly, makes it a worthy study unit for investigations on the formation of such structures in bivalves.
Collapse
Affiliation(s)
- Beatrice Filanti
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Coelho VL, de Brito TF, de Abreu Brito IA, Cardoso MA, Berni MA, Araujo HMM, Sammeth M, Pane A. Analysis of ovarian transcriptomes reveals thousands of novel genes in the insect vector Rhodnius prolixus. Sci Rep 2021; 11:1918. [PMID: 33479356 PMCID: PMC7820597 DOI: 10.1038/s41598-021-81387-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Rhodnius prolixus is a Triatominae insect species and a primary vector of Chagas disease. The genome of R. prolixus has been recently sequenced and partially assembled, but few transcriptome analyses have been performed to date. In this study, we describe the stage-specific transcriptomes obtained from previtellogenic stages of oogenesis and from mature eggs. By analyzing ~ 228 million paired-end RNA-Seq reads, we significantly improved the current genome annotations for 9206 genes. We provide extended 5' and 3' UTRs, complete Open Reading Frames, and alternative transcript variants. Strikingly, using a combination of genome-guided and de novo transcriptome assembly we found more than two thousand novel genes, thus increasing the number of genes in R. prolixus from 15,738 to 17,864. We used the improved transcriptome to investigate stage-specific gene expression profiles during R. prolixus oogenesis. Our data reveal that 11,127 genes are expressed in the early previtellogenic stage of oogenesis and their transcripts are deposited in the developing egg including key factors regulating germline development, genome integrity, and the maternal-zygotic transition. In addition, GO term analyses show that transcripts encoding components of the steroid hormone receptor pathway, cytoskeleton, and intracellular signaling are abundant in the mature eggs, where they likely control early embryonic development upon fertilization. Our results significantly improve the R. prolixus genome and transcriptome and provide novel insight into oogenesis and early embryogenesis in this medically relevant insect.
Collapse
Affiliation(s)
- Vitor Lima Coelho
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Maira Arruda Cardoso
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Antonio Berni
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Maria Marcolla Araujo
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Michael Sammeth
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Applied Sciences, Institute of Bioanalysis, Coburg University, Coburg, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Blondel L, Jones TEM, Extavour CG. Bacterial contribution to genesis of the novel germ line determinant oskar. eLife 2020; 9:e45539. [PMID: 32091394 PMCID: PMC7250577 DOI: 10.7554/elife.45539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
New cellular functions and developmental processes can evolve by modifying existing genes or creating novel genes. Novel genes can arise not only via duplication or mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here we show that HGT likely contributed to the creation of a novel gene indispensable for reproduction in some insects. Long considered a novel gene with unknown origin, oskar has evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect Oskar sequences suggests that oskar arose de novo via fusion of eukaryotic and prokaryotic sequences. This work shows that highly unusual gene origin processes can give rise to novel genes that may facilitate evolution of novel developmental mechanisms.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tamsin EM Jones
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
13
|
Guglielmi G. The biologist using insect eggs to overturn evolutionary doctrine. Nature 2019; 571:24-26. [PMID: 31270490 DOI: 10.1038/d41586-019-02040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.
Collapse
Affiliation(s)
- Daniel H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States.
| |
Collapse
|
15
|
Whittle CA, Extavour CG. Contrasting patterns of molecular evolution in metazoan germ line genes. BMC Evol Biol 2019; 19:53. [PMID: 30744572 PMCID: PMC6371493 DOI: 10.1186/s12862-019-1363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Germ lines are the cell lineages that give rise to the sperm and eggs in animals. The germ lines first arise from primordial germ cells (PGCs) during embryogenesis: these form from either a presumed derived mode of preformed germ plasm (inheritance) or from an ancestral mechanism of inductive cell-cell signalling (induction). Numerous genes involved in germ line specification and development have been identified and functionally studied. However, little is known about the molecular evolutionary dynamics of germ line genes in metazoan model systems. RESULTS Here, we studied the molecular evolution of germ line genes within three metazoan model systems. These include the genus Drosophila (N=34 genes, inheritance), the fellow insect Apis (N=30, induction), and their more distant relative Caenorhabditis (N=23, inheritance). Using multiple species and established phylogenies in each genus, we report that germ line genes exhibited marked variation in the constraint on protein sequence divergence (dN/dS) and codon usage bias (CUB) within each genus. Importantly, we found that de novo lineage-specific inheritance (LSI) genes in Drosophila (osk, pgc) and in Caenorhabditis (pie-1, pgl-1), which are essential to germ plasm functions under the derived inheritance mode, displayed rapid protein sequence divergence relative to the other germ line genes within each respective genus. We show this may reflect the evolution of specialized germ plasm functions and/or low pleiotropy of LSI genes, features not shared with other germ line genes. In addition, we observed that the relative ranking of dN/dS and of CUB between genera were each more strongly correlated between Drosophila and Caenorhabditis, from different phyla, than between Drosophila and its insect relative Apis, suggesting taxonomic differences in how germ line genes have evolved. CONCLUSIONS Taken together, the present results advance our understanding of the evolution of animal germ line genes within three well-known metazoan models. Further, the findings provide insights to the molecular evolution of germ line genes with respect to LSI status, pleiotropy, adaptive evolution as well as PGC-specification mode.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
16
|
Bilinski SM, Jaglarz MK, Tworzydlo W. Organelle assemblages implicated in the transfer of oocyte components to the embryo: an insect perspective. CURRENT OPINION IN INSECT SCIENCE 2019; 31:1-7. [PMID: 31109662 DOI: 10.1016/j.cois.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Besides reserve materials (yolk spheres, lipid droplets), ribosomes and various mRNA species, insect oocytes contain large easily morphologically recognizable organelle assemblages: the Balbiani body and the oosome (pole plasm). These assemblages are implicated in the transfer of oocyte components (mitochondria, polar granules) to the embryo that is to offspring. Here, we review present knowledge of morphology, morphogenesis, molecular composition and function/s of these assemblages. We discuss also the morphogenesis and presumed function of unconventional organelle assemblages, dormant stacks of endoplasmic reticulum, recently described in the oocytes and early embryos of a viviparous dermapteran, Hemimerus talpoides.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
17
|
Kulkarni A, Extavour CG. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results Probl Cell Differ 2019; 68:183-216. [PMID: 31598857 DOI: 10.1007/978-3-030-23459-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proc Natl Acad Sci U S A 2018; 114:5784-5791. [PMID: 28584112 DOI: 10.1073/pnas.1610600114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.
Collapse
|
19
|
Evolutionary coincidence of adaptive changes in exuperantia and the emergence of bicoid in Cyclorrhapha (Diptera). Dev Genes Evol 2017; 227:355-365. [PMID: 28894941 PMCID: PMC5597691 DOI: 10.1007/s00427-017-0594-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/20/2017] [Indexed: 11/15/2022]
Abstract
The great radiation in the infraorder Cyclorrhapha involved several morphological and molecular changes, including important changes in anterior egg development. During Drosophila oogenesis, exuperantia (exu) is critical for localizing bicoid (bcd) messenger RNA (mRNA) to the anterior region of the oocyte. Because it is phylogenetically older than bcd, which is exclusive to Cyclorrhapha, we hypothesize that exu has undergone adaptive changes to enable this new function. Although exu has been well studied in Drosophila, there is no functional or transcriptional information about it in any other Diptera. Here, we investigate exu in the South American fruit fly Anastrepha fraterculus, a Cyclorrhapha of great agricultural importance that have lost bcd, aiming to understand the evolution of exu in this infraorder. We assessed its pattern of gene expression in A. fraterculus by analyzing transcriptomes from cephalic and reproductive tissues. A combination of next-generation data with classical sequencing procedures enabled identification of the structure of exu and its alternative transcripts in this species. In addition to the sex-specific isoforms described for Drosophila, we found that not only exu is expressed in heads, but this is mediated by two transcripts with a specific 5′UTR exon—likely a result from usage of a third promoter. Furthermore, we tested the hypothesis that exu is evolving under positive selection in Cyclorrhapha after divergence from lower Diptera. We found evidence of positive selection at two important exu domains, EXO-like and SAM-like, both involved with mRNA binding during bcd mRNA localization in Drosophila, which could reflect its cooptation for the new function of bcd mRNA localization in Cyclorrhapha.
Collapse
|
20
|
Bilinski SM, Jaglarz MK, Tworzydlo W. The Pole (Germ) Plasm in Insect Oocytes. Results Probl Cell Differ 2017; 63:103-126. [PMID: 28779315 DOI: 10.1007/978-3-319-60855-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
21
|
Kulkarni A, Extavour CG. Convergent evolution of germ granule nucleators: A hypothesis. Stem Cell Res 2017; 24:188-194. [PMID: 28801028 DOI: 10.1016/j.scr.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/18/2017] [Accepted: 07/15/2017] [Indexed: 11/26/2022] Open
Abstract
Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Dev Cell 2017; 39:560-571. [PMID: 27923120 DOI: 10.1016/j.devcel.2016.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Beate Herrmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Julia Sauerwald
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Justina Sanny
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Markus Grosch
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Škugor A, Tveiten H, Johnsen H, Andersen Ø. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl. BMC Evol Biol 2016; 16:232. [PMID: 27784263 PMCID: PMC5080839 DOI: 10.1186/s12862-016-0809-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coincides with changes in germline determination strategies, while the presence of buc in mammals suggests functions not associated with germline formation. RESULTS To clarify the evolutionary history of buc we searched for the gene in genomes available from various chordates. No buc sequence was found in lamprey and chordate invertebrates, while the gene was identified in a conserved syntenic region in elephant shark, spotted gar, teleosts, Comoran coelacanth and most tetrapods. Rodents have probably lost the buc gene, while a premature translation stop was found in primates and in Mexican axolotl lacking germ plasm. In contrast, several buc and buc-like (bucL) paralogs were identified in the teleosts examined, including zebrafish, and the tetraploid genome of Atlantic salmon harbors seven buc and bucL genes. Maternal salmon buc1a, buc2a and buc2b mRNAs were abundant in unfertilized eggs together with dnd and vasa mRNAs. Immunostained salmon Buc1a was restricted to cleavage furrows in 4-cell stage embryos similar to a fluorescent zebrafish Buc construct injected in salmon embryos. Salmon Buc1a and Buc2a localized together with DnD, Vasa and Dazl within the Balbiani body of early oocytes. CONCLUSIONS Buc probably originated more than 400 million years ago and might have played an ancestral role in assembling germ plasm. Functional redundancy or subfunctionalization of salmon Buc paralogs in germline formation is suggested by the maternally inherited mRNAs of three salmon buc genes, the localized Buc1a in the cleavage furrows and the distribution of Buc1a and Buc2a in the Balbiani body during oogenesis. The extra-ovarian expression of salmon buc genes and the presence of a second zebrafish bucL gene suggest additional functions not related to germ cell specification.
Collapse
Affiliation(s)
- Adrijana Škugor
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway
| | | | | | - Øivind Andersen
- Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1430, Ås, Norway. .,Nofima, PO Box 5010, N-1430, Ås, Norway.
| |
Collapse
|
24
|
Crother BI, White ME, Johnson AD. Diversification and Germ-Line Determination Revisited: Linking Developmental Mechanism with Species Richness. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
25
|
Abstract
Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance, and protection of germ cells is well established, and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging.
Collapse
Affiliation(s)
- Ruth Lehmann
- Howard Hughes Medical Institute (HHMI), Department of Cell Biology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
26
|
Quan H, Lynch JA. The evolution of insect germline specification strategies. CURRENT OPINION IN INSECT SCIENCE 2016; 13:99-105. [PMID: 27088076 PMCID: PMC4827259 DOI: 10.1016/j.cois.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The establishment of the germline is essential for sexually reproducing organisms. In animals, there are two major strategies to specify the germline: maternal provision and zygotic induction. The molecular basis of the maternal provision mode has been well characterized in several model organisms (fly, frog, fish, and nematode), while that of the zygotic induction mode has mainly been studied in mammalian models such as the mouse. Shifts in germline determination modes occur unexpectedly frequently and many such shifts have occurred several times among insects. Given their general tractability and rapidly increasing genomic and genetic tools applicable to many species, the insects present a uniquely powerful model system for understanding major transitions in reproductive strategies, and developmental processes in general.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Biological Sciences, University of Illinois at Chicago, United States
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
27
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
28
|
Carter JM, Gibbs M, Breuker CJ. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria. PLoS One 2015; 10:e0144471. [PMID: 26633019 PMCID: PMC4669120 DOI: 10.1371/journal.pone.0144471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Yue JX, Li KL, Yu JK. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data. Mar Genomics 2015; 24 Pt 2:147-57. [DOI: 10.1016/j.margen.2015.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
|
30
|
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015; 112:14936-41. [PMID: 26627243 DOI: 10.1073/pnas.1506226112] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Collapse
|
31
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
32
|
Abstract
With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.
Collapse
Affiliation(s)
- S Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
33
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
34
|
Jeske M, Bordi M, Glatt S, Müller S, Rybin V, Müller CW, Ephrussi A. The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities. Cell Rep 2015; 12:587-98. [PMID: 26190108 DOI: 10.1016/j.celrep.2015.06.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/25/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function.
Collapse
Affiliation(s)
- Mandy Jeske
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matteo Bordi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sebastian Glatt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sandra Müller
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vladimir Rybin
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
35
|
Donoughe S, Extavour CG. Embryonic development of the cricket Gryllus bimaculatus. Dev Biol 2015; 411:140-56. [PMID: 25907229 DOI: 10.1016/j.ydbio.2015.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States
| | - Cassandra G Extavour
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States; Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States.
| |
Collapse
|
36
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|
37
|
Dosch R. Next generation mothers: Maternal control of germline development in zebrafish. Crit Rev Biochem Mol Biol 2014; 50:54-68. [DOI: 10.3109/10409238.2014.985816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 2014; 402:276-90. [PMID: 25257304 DOI: 10.1016/j.ydbio.2014.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Yue Meng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA.
| |
Collapse
|
39
|
BMP signaling is required for the generation of primordial germ cells in an insect. Proc Natl Acad Sci U S A 2014; 111:4133-8. [PMID: 24591634 DOI: 10.1073/pnas.1400525111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two modes of germ cell formation are known in animals. Specification through maternally inherited germ plasm occurs in many well-characterized model organisms, but most animals lack germ plasm by morphological and functional criteria. The only known alternative mechanism is induction, experimentally described only in mice, which specify germ cells through bone morphogenetic protein (BMP) signal-mediated induction of a subpopulation of mesodermal cells. Until this report, no experimental evidence of an inductive germ cell signal for specification has been available outside of vertebrates. Here we provide functional genetic experimental evidence consistent with a role for BMP signaling in germ cell formation in a basally branching insect. We show that primordial germ cells of the cricket Gryllus bimaculatus transduce BMP signals and require BMP pathway activity for their formation. Moreover, increased BMP activity leads to ectopic and supernumerary germ cells. Given the commonality of BMP signaling in mouse and cricket germ cell induction, we suggest that BMP-based germ cell formation may be a shared ancestral mechanism in animals.
Collapse
|
40
|
Ahuja A, Extavour CG. Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila. Dev Genes Evol 2014; 224:65-77. [PMID: 24407548 DOI: 10.1007/s00427-013-0463-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023]
Abstract
In several metazoans including flies of the genus Drosophila, germ line specification occurs through the inheritance of maternally deposited cytoplasmic determinants, collectively called germ plasm. The novel insect gene oskar is at the top of the Drosophila germ line specification pathway, and also plays an important role in posterior patterning. A novel N-terminal domain of oskar (the Long Oskar domain) evolved in Drosophilids, but the role of this domain in oskar functional evolution is unknown. Trans-species transgenesis experiments have shown that oskar orthologs from different Drosophila species have functionally diverged, but the underlying selective pressures and molecular changes have not been investigated. As a first step toward understanding how Oskar function could have evolved, we applied molecular evolution analysis to oskar sequences from the completely sequenced genomes of 16 Drosophila species from the Sophophora subgenus, Drosophila virilis and Drosophila immigrans. We show that overall, this gene is subject to purifying selection, but that individual predicted structural and functional domains are subject to heterogeneous selection pressures. Specifically, two domains, the Drosophila-specific Long Osk domain and the region that interacts with the germ plasm protein Lasp, are evolving at a faster rate than other regions of oskar. Further, we provide evidence that positive selection may have acted on specific sites within these two domains on the D. virilis branch. Our domain-based analysis suggests that changes in the Long Osk and Lasp-binding domains are strong candidates for the molecular basis of functional divergence between the Oskar proteins of D. melanogaster and D. virilis. This molecular evolutionary analysis thus represents an important step towards understanding the role of an evolutionarily and developmentally critical gene in germ plasm evolution and assembly.
Collapse
Affiliation(s)
- Abha Ahuja
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA,
| | | |
Collapse
|
41
|
Affiliation(s)
- Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gupta T, Extavour CG. Identification of a putative germ plasm in the amphipod Parhyale hawaiensis. EvoDevo 2013; 4:34. [PMID: 24314239 PMCID: PMC3878990 DOI: 10.1186/2041-9139-4-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
43
|
Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar. J Neurosci 2013; 33:14791-800. [PMID: 24027279 DOI: 10.1523/jneurosci.5864-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.
Collapse
|
44
|
Chang CC, Hsiao YM, Huang TY, Cook CE, Shigenobu S, Chang TH. Noncanonical expression of caudal during early embryogenesis in the pea aphid Acyrthosiphon pisum: maternal cad-driven posterior development is not conserved. INSECT MOLECULAR BIOLOGY 2013; 22:442-455. [PMID: 23683148 DOI: 10.1111/imb.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previously we identified anterior localization of hunchback (Aphb) mRNA in oocytes and early embryos of the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, suggesting that the breaking of anterior asymmetry in the oocytes leads to the formation of the anterior axis in embryos. In order to study posterior development in the asexual pea aphid, we cloned and analysed the developmental expression of caudal (Apcad), a posterior gene highly conserved in many animal phyla. We found that transcripts of Apcad were not detected in germaria, oocytes and embryos prior to the formation of the blastoderm in the asexual (viviparous) pea aphid. This unusual expression pattern differs from that of the existing insect models, including long- and short-germ insects, where maternal cad mRNA is passed to the early embryos and forms a posterior-anterior gradient. The first detectable Apcad expression occurred in the newly formed primordial germ cells and their adjacent blastodermal cells during late blastulation. From gastrulation onward, and as in other insects, Apcad mRNA is restricted to the posteriormost region of the germ band. Similarly, in the sexual (oviparous) oocytes we were able to identify anterior localization of Aphb mRNA but posterior localization of Apcad was not detected. This suggests that cad-driven posterior development is not conserved during early embryogenesis in asexual and sexual pea aphids.
Collapse
Affiliation(s)
- C-C Chang
- Laboratory for Genetics and Development, Department of Entomology/Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The oskar gene is critical for germ plasm formation and reproduction in higher insects. A recent study reports that oskar has more ancient roots than previously thought, indicating it was co-opted for its reproductive role in higher insects.
Collapse
Affiliation(s)
- Ehab Abouheif
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
46
|
Carter JM, Baker SC, Pink R, Carter DRF, Collins A, Tomlin J, Gibbs M, Breuker CJ. Unscrambling butterfly oogenesis. BMC Genomics 2013; 14:283. [PMID: 23622113 PMCID: PMC3654919 DOI: 10.1186/1471-2164-14-283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Butterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ewen-Campen B, Donoughe S, Clarke DN, Extavour CG. Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr Biol 2013; 23:835-42. [PMID: 23623552 DOI: 10.1016/j.cub.2013.03.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/03/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Primordial germ cell (PGC) specification is a universal process across animals, but the molecular mechanisms specifying PGCs are remarkably diverse. In Drosophila, PGCs are specified by maternally provided, asymmetrically localized cytoplasmic factors (germ plasm). In contrast, historical literature on most other arthropods reports that PGCs arise from mesoderm during midembryogenesis, suggesting that an arthropod last common ancestor may have specified PGCs via zygotic mechanisms. However, there has been no direct experimental evidence to date for germ plasm-independent arthropod PGC specification. RESULTS Here we show that in a basally branching insect, the cricket Gryllus bimaculatus, conserved germ plasm molecules are ubiquitously, rather than asymmetrically, localized during oogenesis and early embryogenesis. Molecular and cytological analyses suggest that Gryllus PGCs arise from abdominal mesoderm during segmentation, and twist RNAi embryos that lack mesoderm fail to form PGCs. Using RNA interference we show that vasa and piwi are not required maternally or zygotically for PGC formation but rather are required for primary spermatogonial divisions in adult males. CONCLUSIONS These observations suggest that Gryllus lacks a maternally inherited germ plasm, in contrast with many holometabolous insects, including Drosophila. The mesodermal origin of Gryllus PGCs and absence of instructive roles for vasa and piwi in PGC formation are reminiscent of mouse PGC specification and suggest that zygotic cell signaling may direct PGC specification in Gryllus and other Hemimetabola.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
48
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
49
|
Lasko P. The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:810-6. [PMID: 23587717 DOI: 10.1016/j.bbagrm.2013.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 01/19/2023]
Abstract
DEAD-box helicases related to the Drosophila protein Vasa (also known as Ddx4) are found throughout the animal kingdom. They have been linked to numerous processes in gametogenesis, germ cell specification, and stem cell biology, and alterations in Vasa expression are associated with malignancy of tumor cells and with some human male infertility syndromes. Experimental results indicating how Vasa contributes to all these different cellular and developmental processes are discussed, using examples from planarians, Caenorhabditis elegans, Drosophila, sea urchin, zebrafish, Xenopus, mouse, and human. Molecular, cellular, and developmental functions of Vasa and its orthologs are reviewed in this article. Evidence linking Vasa to translational regulation, to biogenesis of small RNAs, and to chromosome condensation is examined. Finally, potential overlapping functions between Vasa and related DEAD-box helicases (Belle, or Ddx3, and DEADSouth, or Ddx25) are explored. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|