1
|
Schneider K, Arandjelovic S. Apoptotic cell clearance components in inflammatory arthritis. Immunol Rev 2023; 319:142-150. [PMID: 37507355 PMCID: PMC10615714 DOI: 10.1111/imr.13256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints that affects ~1% of the human population. Joint swelling and bone erosion, hallmarks of RA, contribute to disability and, sometimes, loss of life. Mechanistically, disease is driven by immune dysregulation characterized by circulating autoantibodies, inflammatory mediators, tissue degradative enzymes, and metabolic dysfunction of resident stromal and recruited immune cells. Cell death by apoptosis has been therapeutically explored in animal models of RA due to the comparisons drawn between synovial hyperplasia and paucity of apoptosis in RA with the malignant transformation of cancer cells. Several efforts to induce cell death have shown benefits in reducing the development and/or severity of the disease. Apoptotic cells are cleared by phagocytes in a process known as efferocytosis, which differs from microbial phagocytosis in its "immuno-silent," or anti-inflammatory, nature. Failures in efferocytosis have been linked to autoimmune disease, whereas administration of apoptotic cells in RA models effectively inhibits inflammatory indices, likely though efferocytosis-mediated resolution-promoting mechanisms. However, the nature of signaling pathways elicited and the molecular identity of clearance mediators in RA are understudied. Furthermore, canonical efferocytosis machinery elements also play important non-canonical functions in homeostasis and pathology. Here, we discuss the roles of efferocytosis machinery components in models of RA and discuss their potential involvement in disease pathophysiology.
Collapse
Affiliation(s)
- Kevin Schneider
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| | - Sanja Arandjelovic
- University of Virginia, Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Wen B, Li S, Ruan L, Yang Y, Chen Z, Zhang B, Yang X, Jie H, Li S, Zeng Z, Liu S. Engulfment and cell motility protein 1 fosters reprogramming of tumor-associated macrophages in colorectal cancer. Cancer Sci 2022; 114:410-422. [PMID: 36310143 PMCID: PMC9899619 DOI: 10.1111/cas.15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Functional reprogramming of tumor-associated macrophages (TAMs) is crucial to their potent tumor-supportive capacity. However, the molecular mechanism behind the reprogramming process remains poorly understood. Here, we identify engulfment and cell motility protein 1 (ELMO1) as a crucial player for TAM reprogramming in colorectal cancer (CRC). The expression of ELMO1 in stromal but not epithelial tumor cells was positively associated with advanced clinical stage and poor disease-free survival in CRC. An increase in ELMO1 expression was specifically found in TAMs, but not in other multiple nonmalignant stromal cells. Gain- and loss-of-function assays indicated ELMO1 reprogrammed macrophages to a TAM-like phenotype through Rac1 activation. In turn, ELMO1-reprogrammed macrophages were shown to not only facilitate the malignant behaviors of CRC cells but exhibited potent phagocytosis of tumor cells. Taken together, our work underscores the importance of ELMO1 in determining functional reprogramming of TAMs and could provide new insights on potential therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Bo Wen
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Sheng Li
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Lei Ruan
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yanping Yang
- Department of PathologyCentral Hospital of ShaoyangShaoyangChina
| | - Zilin Chen
- Department of Medical OncologyCentral Hospital of ShaoyangShaoyangChina
| | - Bin Zhang
- Department of Gastrointestinal SurgeryCentral Hospital of ShaoyangShaoyangChina
| | - Xin Yang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haiqing Jie
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shujuan Li
- Department of PharmacyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhou, HenanChina
| | - Ziwei Zeng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,University Clinic MannheimMedical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Sisi Liu
- Department of PathologyCentral Hospital of ShaoyangShaoyangChina
| |
Collapse
|
3
|
den Hartog G, Butcher LD, Ablack AL, Pace LA, Ablack JNG, Xiong R, Das S, Stappenbeck TS, Eckmann L, Ernst PB, Crowe SE. Apurinic/Apyrimidinic Endonuclease 1 Restricts the Internalization of Bacteria Into Human Intestinal Epithelial Cells Through the Inhibition of Rac1. Front Immunol 2021; 11:553994. [PMID: 33603730 PMCID: PMC7884313 DOI: 10.3389/fimmu.2020.553994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pathogenic intestinal bacteria lead to significant disease in humans. Here we investigated the role of the multifunctional protein, Apurinic/apyrimidinic endonuclease 1 (APE1), in regulating the internalization of bacteria into the intestinal epithelium. Intestinal tumor-cell lines and primary human epithelial cells were infected with Salmonella enterica serovar Typhimurium or adherent-invasive Escherichia coli. The effects of APE1 inhibition on bacterial internalization, the regulation of Rho GTPase Rac1 as well as the epithelial cell barrier function were assessed. Increased numbers of bacteria were present in APE1-deficient colonic tumor cell lines and primary epithelial cells. Activation of Rac1 was augmented following infection but negatively regulated by APE1. Pharmacological inhibition of Rac1 reversed the increase in intracellular bacteria in APE1-deficient cells whereas overexpression of constitutively active Rac1 augmented the numbers in APE1-competent cells. Enhanced numbers of intracellular bacteria resulted in the loss of barrier function and a delay in its recovery. Our data demonstrate that APE1 inhibits the internalization of invasive bacteria into human intestinal epithelial cells through its ability to negatively regulate Rac1. This activity also protects epithelial cell barrier function.
Collapse
Affiliation(s)
- Gerco den Hartog
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Lindsay D Butcher
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Amber L Ablack
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Laura A Pace
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Jailal N G Ablack
- Department of Medicine, Division of Rheumatology, University of California San Diego, La Jolla, CA, United States
| | - Richard Xiong
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Soumita Das
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | | | - Lars Eckmann
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, United States.,Center for Mucosal Immunology, Allergy and Vaccine Development, Department of Pathology, University of California San Diego, La Jolla, CA, United States.,Department of Immunology, Chiba University, Chiba, Japan
| | - Sheila E Crowe
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States.,Division of ImmunoBiology, Washington University, St. Louis, MO, United States
| |
Collapse
|
4
|
Chan WWR, Li W, Chang RCC, Lau KF. ARF6-Rac1 signaling-mediated neurite outgrowth is potentiated by the neuronal adaptor FE65 through orchestrating ARF6 and ELMO1. FASEB J 2020; 34:16397-16413. [PMID: 33047393 DOI: 10.1096/fj.202001703r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a member of the Rho family of GTPases that functions as a molecular switch to regulate many important cellular events including actin cytoskeleton remodeling during neurite outgrowth. Engulfment and cell motility 1 (ELMO1)-dedicator of cytokinesis 1 (DOCK180) is a bipartite guanine nucleotide exchange factor (GEF) complex that has been reported to activate Rac1 on the plasma membrane (PM). Emerging evidence suggests that the small GTPase ADP ribosylation factor 6 (ARF6) activates Rac1 via the ELMO1/DOCK180 complex. However, the exact mechanism by which ARF6 triggers ELMO1/DOCK180-mediated Rac1 signaling remains unclear. Here, we report that the neuronal scaffold protein FE65 serves as a functional link between ARF6 and ELMO1, allowing the formation of a multimeric signaling complex. Interfering with formation of this complex by transfecting either FE65-binding-defective mutants or FE65 siRNA attenuates both ARF6-ELMO1-mediated Rac1 activation and neurite elongation. Notably, the PM trafficking of ELMO1 is markedly decreased in cells with suppressed expression of either FE65 or ARF6. Likewise, this process is attenuated in the FE65-binding-defective mutants transfected cells. Moreover, overexpression of FE65 increases the amount of ELMO1 in the recycling endosome, an organelle responsible for returning proteins to the PM, whereas knockout of FE65 shows opposite effect. Together, our data indicates that FE65 potentiates ARF6-Rac1 signaling by orchestrating ARF6 and ELMO1 to promote the PM trafficking of ELMO1 via the endosomal recycling pathway, and thus, promotes Rac1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wen Li
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Zheng XB, Liu HS, Zhang LJ, Liu XH, Zhong XL, Zhou C, Hu T, Wu XR, Hu JC, Lian L, Deng QL, Chen YF, Ke J, He XW, Wu XJ, He XS, Lan P. Engulfment and Cell Motility Protein 1 Protects Against DSS-induced Colonic Injury in Mice via Rac1 Activation. J Crohns Colitis 2019; 13:100-114. [PMID: 30219846 DOI: 10.1093/ecco-jcc/jjy133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Mucosal healing is an emerging therapeutic goal that could result in clinical remission of inflammatory bowel disease [IBD]. We sought to determine the role of engulfment and cell motility protein 1 [ELMO1] in wound healing in vitro and in vivo and to investigate the underlying pathways. METHODS RNA transcriptome sequencing was performed to detect the expression profiles of mRNA between inflamed tissues and corresponding non-inflamed tissues of IBD patients, followed by Gene Expression Omnibus [GEO] datasets and western blot analysis. The effects of ELMO1 overexpression or knockdown on cell migration and proliferation were determined. The dependence of these effects on Rac1 was assessed using a Rac1 inhibitor [NSC23766] and a Rac1 pull-down assay. We identified the underlying pathways involved by Gene Ontology [GO] analysis. A dextran sulphate sodium [DSS]-induced colitis model was established to evaluate the role of ELMO1 in colonic mucosal healing. RESULTS ELMO1 was upregulated in inflamed tissues compared with corresponding non-inflamed tissues. ELMO1 overexpression increased cell migration in a Rac1-dependent manner. Depletion of ELMO1, or NSC23766 administration, abolished this effect. GO analysis revealed that ELMO1 overexpression preferentially affected pathways involved in cytoskeletal regulation and wound healing, which was demonstrated by enhanced F-actin staining and increased numbers of extending lamellipodia in cells overexpressing ELMO1. In DSS-induced colitis, systemic delivery of pSin-EF2-ELMO1-Pur attenuated colonic inflammation and promoted recovery from colonic injury. The protective effect of ELMO1 was dependent on Rac1 activation. CONCLUSIONS ELMO1 protects against DSS-induced colonic injury in mice through its effect on epithelial migration via Rac1 activation.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Long-Juan Zhang
- Laboratory of Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuan-Hui Liu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Li Zhong
- Joint Cardiac Surgery Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chi Zhou
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Cong Hu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Lian
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi-Ling Deng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Ke
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Wen He
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Sierecki E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery. Semin Cell Dev Biol 2018; 99:20-30. [PMID: 30278226 DOI: 10.1016/j.semcdb.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
At the core of gene regulation, a complex network of dynamic interactions between proteins, DNA and RNA has to be integrated in order to generate a binary biological output. Large protein complexes, called adaptors, transfer information from the transcription factors to the transcription machinery [1,2]. Here we focus on Mediator, one of the largest adaptor proteins in humans [3]. Assembled from 30 different subunits, this system provides extraordinary illustrations for the various roles played by protein-protein interactions. Recruitment of new subunits during evolution is an adaptive mechanism to the growing complexity of the organism. Integration of information happens at multiple scales, with allosteric effects at the level of individual subunits resulting in large conformational changes. Mediator is also rich in disordered regions that increase the potential for interactions by presenting a malleable surface to its environment. Potentially, 3000 transcription factors can interact with Mediator and so understanding the molecular mechanisms that support the processing of this overload of information is one of the great challenges in molecular biology.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, Faculty of Medecine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Li W, Tam KMV, Chan WWR, Koon AC, Ngo JCK, Chan HYE, Lau KF. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1. J Biol Chem 2018; 293:7674-7688. [PMID: 29615491 DOI: 10.1074/jbc.ra117.000505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.
Collapse
Affiliation(s)
- Wen Li
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Ka Ming Vincent Tam
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Wai Wa Ray Chan
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Alex Chun Koon
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Jacky Chi Ki Ngo
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Ho Yin Edwin Chan
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Kwok-Fai Lau
- From the School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| |
Collapse
|
8
|
Kumar V, Waseem M, Dwivedi N, Maji S, Kumar A, Thakur JK. KIX domain of AtMed15a, a Mediator subunit of Arabidopsis, is required for its interaction with different proteins. PLANT SIGNALING & BEHAVIOR 2018; 13:e1428514. [PMID: 29341856 PMCID: PMC5846557 DOI: 10.1080/15592324.2018.1428514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 05/28/2023]
Abstract
Med15 is an important subunit of Mediator Tail module and is characterized by a KIX domain present towards amino terminal. In yeast and metazoans, Med15 KIX domain has been found to interact with various transcription factors regulating several processes including carbohydrate metabolism, lipogenesis, stress response and multidrug resistance. Mechanism of Med15 functioning in Arabidopsis is largely unknown. In this study, interactome of KIX domain of Arabidopsis Med15, AtMed15a, was characterized. We found 45 proteins that interact with AtMed15a KIX domain, including 11 transcription factors, 3 single strand nucleic acid-binding proteins and 1 splicing factor. The third helix of the KIX domain was found to be involved in most of the interactions. Mapping of the regions participating in the interactions revealed that the activation domain of a transcription factor, UKTF1 interacted with AtMed15a KIX domain. Thus, our results suggest that in Arabidopsis, activation domain of transcription factors target KIX domain of AtMed15a for their transcriptional responses.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Mohd Waseem
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Sourobh Maji
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Angad Kumar
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Jitendra K. Thakur
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
9
|
Elliott MR, Koster KM, Murphy PS. Efferocytosis Signaling in the Regulation of Macrophage Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1387-1394. [PMID: 28167649 PMCID: PMC5301545 DOI: 10.4049/jimmunol.1601520] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Since the pioneering work of Elie Metchnikoff and the discovery of cellular immunity, the phagocytic clearance of cellular debris has been considered an integral component of resolving inflammation and restoring function of damaged and infected tissues. We now know that the phagocytic clearance of dying cells (efferocytosis), particularly by macrophages and other immune phagocytes, has profound consequences on innate and adaptive immune responses in inflamed tissues. These immunomodulatory effects result from an array of molecular signaling events between macrophages, dying cells, and other tissue-resident cells. In recent years, many of these molecular pathways have been identified and studied in the context of tissue inflammation, helping us better understand the relationship between efferocytosis and inflammation. We review specific types of efferocytosis-related signals that can impact macrophage immune responses and discuss their relevance to inflammation-related diseases.
Collapse
Affiliation(s)
- Michael R Elliott
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kyle M Koster
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Patrick S Murphy
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
10
|
Das S, Sarkar A, Choudhury SS, Owen KA, Derr-Castillo VL, Fox S, Eckmann L, Elliott MR, Casanova JE, Ernst PB. ELMO1 has an essential role in the internalization of Salmonella Typhimurium into enteric macrophages that impacts disease outcome. Cell Mol Gastroenterol Hepatol 2015; 1:311-324. [PMID: 26878033 PMCID: PMC4747049 DOI: 10.1016/j.jcmgh.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUNDS AND AIMS 4-6 million people die of enteric infections each year. After invading intestinal epithelial cells, enteric bacteria encounter phagocytes. However, little is known about how phagocytes internalize the bacteria to generate host responses. Previously, we have shown that BAI1 (Brain Angiogenesis Inhibitor 1) binds and internalizes Gram-negative bacteria through an ELMO1 (Engulfment and cell Motility protein 1)/Rac1-dependent mechanism. Here we delineate the role of ELMO1 in host inflammatory responses following enteric infection. METHODS ELMO1-depleted murine macrophage cell lines, intestinal macrophages and ELMO1 deficient mice (total or myeloid-cell specific) was infected with Salmonella enterica serovar Typhimurium. The bacterial load, inflammatory cytokines and histopathology was evaluated in the ileum, cecum and spleen. The ELMO1 dependent host cytokines were detected by a cytokine array. ELMO1 mediated Rac1 activity was measured by pulldown assay. RESULTS The cytokine array showed reduced release of pro-inflammatory cytokines, including TNF-α and MCP-1, by ELMO1-depleted macrophages. Inhibition of ELMO1 expression in macrophages decreased Rac1 activation (~6 fold) and reduced internalization of Salmonella. ELMO1-dependent internalization was indispensable for TNF-α and MCP-1. Simultaneous inhibition of ELMO1 and Rac function virtually abrogated TNF-α responses to infection. Further, activation of NF-κB, ERK1/2 and p38 MAP kinases were impaired in ELMO1-depleted cells. Strikingly, bacterial internalization by intestinal macrophages was completely dependent on ELMO1. Salmonella infection of ELMO1-deficient mice resulted in a 90% reduction in bacterial burden and attenuated inflammatory responses in the ileum, spleen and cecum. CONCLUSION These findings suggest a novel role for ELMO1 in facilitating intracellular bacterial sensing and the induction of inflammatory responses following infection with Salmonella.
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego, San Diego, California
| | - Arup Sarkar
- Trident School of Biotech Sciences, Trident Academy of Creative Technology, Odisha, India
| | | | - Katherine A. Owen
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | | | - Sarah Fox
- Department of Pathology, University of California San Diego, San Diego, California
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, San Diego, California
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Peter B. Ernst
- Department of Pathology, University of California San Diego, San Diego, California,Correspondence Address correspondence to: Peter B. Ernst, DVM, PhD, University of California San Diego, Division of Comparative Pathology and Medicine, Department of Pathology, MC 0063, San Diego, California 92093-0063. fax: 858.246.0523.
| |
Collapse
|
11
|
Lee J, Park B, Kim G, Kim K, Pak J, Kim K, Ye MB, Park SG, Park D. Arhgef16, a novel Elmo1 binding partner, promotes clearance of apoptotic cells via RhoG-dependent Rac1 activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2438-47. [PMID: 25063526 DOI: 10.1016/j.bbamcr.2014.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
Elmo is an evolutionarily conserved mammalian ortholog of Caenorhabditis elegans CED-12 with proposed roles during the removal of apoptotic cells, cell migration, neurite outgrowth, and myoblast fusion (Katoh and Negishi (2003) [1], Park and Tosello (2007) [2], Grimsley et al. (2004) [3], Hamoud et al. (2014) [4]). Elmo mediates these cellular processes by interacting with various proteins located in the plasma membrane, cytoplasm and nucleus, and by modulating their activities although it has no intrinsic catalytic activity (Park and Tosello (2007) [2], Hamoud et al. (2014) [4], Li et al. (2013) [5], Margaron, Fradet and Cote (2013) [6], and Mauldin et al. (2013)[7]). Because there are a limited number of proteins known to interact with Elmo, we performed a yeast two-hybrid screen using Elmo1 as bait to identify Elmo1-interacting proteins and to evaluate their mode of regulation. Arhgef16 was one of the proteins identified through the screen and subsequent analyses revealed that Arhgef16 interacted with Elmo1 in mammalian cells as well. Expression of Arhgef16 in phagocytes promoted engulfment of apoptotic cells, and engulfment mediated by Arhgef16 increased synergistically in the presence of Elmo1 but was abrogated in the absence of Elmo1. In addition, Arhgef16-mediated removal of apoptotic cells was dependent on RhoG, but independent of Dock1. Taken together, this study suggests that the newly identified Elmo1-interacting protein, Arhgef16, functions synergistically with Elmo1 to promote clearance of apoptotic cells in a RhoG-dependent and Dock1-independent manner.
Collapse
Affiliation(s)
- Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Boyeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Gayoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kwangwoo Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jeongjun Pak
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Michael B Ye
- School of Liberal Arts and Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
12
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|