1
|
Wiemer J, Leimeister F, Gamer M, Pauli P. The ventromedial prefrontal cortex in response to threat omission is associated with subsequent explicit safety memory. Sci Rep 2024; 14:7378. [PMID: 38548770 PMCID: PMC10979006 DOI: 10.1038/s41598-024-57432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
In order to memorize and discriminate threatening and safe stimuli, the processing of the actual absence of threat seems crucial. Here, we measured brain activity with fMRI in response to both threat conditioned stimuli and their outcomes by combining threat learning with a subsequent memory paradigm. Participants (N = 38) repeatedly saw a variety of faces, half of which (CS+) were associated with an aversive unconditioned stimulus (US) and half of which were not (CS-). When an association was later remembered, the hippocampus had been more active (than when forgotten). However, the ventromedial prefrontal cortex predicted subsequent memory specifically during safe associations (CS- and US omission responses) and the left dorsolateral prefrontal cortex during outcomes in general (US and US omissions). In exploratory analyses of the theoretically important US omission, we found extended involvement of the medial prefrontal cortex and an enhanced functional connectivity to visual and somatosensory cortices, suggesting a possible function in sustaining sensory information for an integration with semantic memory. Activity in visual and somatosensory cortices together with the inferior frontal gyrus also predicted memory performance one week after learning. The findings imply the importance of a close interplay between prefrontal and sensory areas during the processing of safe outcomes-or 'nothing'-to establish declarative safety memory.
Collapse
Affiliation(s)
- Julian Wiemer
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.
| | - Franziska Leimeister
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Matthias Gamer
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Koyama Y, Yamamoto T, Hirayama JI, Jimura K, Sadato N, Chikazoe J. Cognitive Dynamics Estimation: A whole-brain spatial regression paradigm for extracting the temporal dynamics of cognitive processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.543130. [PMID: 37425727 PMCID: PMC10326986 DOI: 10.1101/2023.06.12.543130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Functional MRI (fMRI) has been instrumental in understanding how cognitive processes are spatially mapped in the brain, yielding insights about brain regions and functions. However, in case the orthogonality of behavioral or stimulus timing is not guaranteed, the estimated brain maps fail to dissociate each cognitive process, and the resultant maps become unstable. Also, the brain mapping exercise can not provide temporal information on the cognitive process. Here we propose a qualitatively different approach to fMRI analysis, named Cognitive Dynamics Estimation (CDE), that estimates how multiple cognitive processes change over time even when behavior or stimulus logs are unavailable. This method transposes the conventional brain mapping; the brain activity pattern at each time point is subject to regression analysis with data-driven maps of cognitive processes as regressors, resulting in the time series of cognitive processes. The estimated time series captured the fluctuation of intensity and timing of cognitive processes on a trial-by-trial basis, which conventional analysis could not capture. Notably, the estimated time series predicted participants' cognitive ability to perform each psychological task. As an addition to our fMRI analytic toolkit, these results suggest the potential for CDE to elucidate underexplored cognitive phenomena, especially in the temporal domain.
Collapse
Affiliation(s)
- Yutaro Koyama
- Department of Psychiatry, University of Wisconsin-Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Tetsuya Yamamoto
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Jun-Ichiro Hirayama
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki, 305-8568, Japan
| | - Koji Jimura
- Department of Informatics, Gunma University, Maebashi 371-8510
| | - Norihiro Sadato
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junichi Chikazoe
- Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Araya, Inc., Tokyo, 107-6024, Japan
| |
Collapse
|
3
|
Zaidi AD, Birbaumer N, Fetz E, Logothetis N, Sitaram R. The hemodynamic initial-dip consists of both volumetric and oxymetric changes reflecting localized spiking activity. Front Neurosci 2023; 17:1170401. [PMID: 37304038 PMCID: PMC10248142 DOI: 10.3389/fnins.2023.1170401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
The initial-dip is a transient decrease frequently observed in functional neuroimaging signals, immediately after stimulus onset, believed to originate from a rise in deoxy-hemoglobin (HbR) caused by local neural activity. It has been shown to be more spatially specific than the hemodynamic response, and is believed to represent focal neuronal activity. However, despite being observed in various neuroimaging modalities (such as fMRI, fNIRS, etc), its origins are disputed, and its precise neuronal correlates are unknown. Here we show that the initial-dip is dominated by a decrease in total-hemoglobin (HbT). We also find a biphasic response in deoxy-Hb (HbR), with an early decrease and later rebound. Both the HbT-dip and HbR-rebound were strongly correlated to highly localized spiking activity. However, HbT decreases were always large enough to counter the spiking-induced increase in HbR. We find that the HbT-dip counters spiking induced HbR increases, imposing an upper-limit to HbR concentration in the capillaries. Building on our results, we explore the possibility of active venule dilation (purging) as a possible mechanism for the HbT dip.
Collapse
Affiliation(s)
- Ali Danish Zaidi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Niels Birbaumer
- Center for Imaging Sciences, Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom
| | - Eberhard Fetz
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nikos Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Section of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry and Section of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
4
|
Aksenov DP, Doubovikov ED, Serdyukova NA, Gascoigne DA, Linsenmeier RA, Drobyshevsky A. Brain tissue oxygen dynamics while mimicking the functional deficiency of interneurons. Front Cell Neurosci 2022; 16:983298. [PMID: 36339824 PMCID: PMC9630360 DOI: 10.3389/fncel.2022.983298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
The dynamic interaction between excitatory and inhibitory activity in the brain is known as excitatory-inhibitory balance (EIB). A significant shift in EIB toward excitation has been observed in numerous pathological states and diseases, such as autism or epilepsy, where interneurons may be dysfunctional. The consequences of this on neurovascular interactions remains to be elucidated. Specifically, it is not known if there is an elevated metabolic consumption of oxygen due to increased excitatory activity. To investigate this, we administered microinjections of picrotoxin, a gamma aminobutyric acid (GABA) antagonist, to the rabbit cortex in the awake state to mimic the functional deficiency of GABAergic interneurons. This caused an observable shift in EIB toward excitation without the induction of seizures. We used chronically implanted electrodes to measure both neuronal activity and brain tissue oxygen concentrations (PO2) simultaneously and in the same location. Using a high-frequency recording rate for PO2, we were able to detect two important phenomena, (1) the shift in EIB led to a change in the power spectra of PO2 fluctuations, such that higher frequencies (8-15 cycles per minute) were suppressed and (2) there were brief periods (dips with a duration of less than 100 ms associated with neuronal bursts) when PO2 dropped below 10 mmHg, which we defined as the threshold for hypoxia. The dips were followed by an overshoot, which indicates either a rapid vascular response or decrease in oxygen consumption. Our results point to the essential role of interneurons in brain tissue oxygen regulation in the resting state.
Collapse
Affiliation(s)
- Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,*Correspondence: Daniil P. Aksenov,
| | - Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States,Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
5
|
Abstract
Sensory stimulation generates a robust decrease in oxygen concentration (pO2 initial dip) in brain tissue of anesthetized cats and rodents. This dip reports local activation of neurons much better than the delayed pO2 increase associated with functional hyperemia. Here, we reinvestigated the issue in animals that recovered from acute surgery using two-photon lifetime microscopy. Targeting a distinct neuronal network that is the site of strong activation and energy consumption, we show that in anesthetized animals the pO2 initial dip is present but extremely small in juxtasynaptic capillaries. In awake animals, it is no longer detectable in vessels or in the neuropil. This demonstrates that in healthy animals, neurovascular coupling is too fast and efficient to reveal a pO2 initial dip. An ongoing controversy in brain metabolism is whether increases in neural activity cause a local and rapid decrease in oxygen concentration (i.e., the “initial dip”) preceding functional hyperemia. This initial dip has been suggested to cause a transient increase in vascular deoxyhemoglobin with several imaging techniques and stimulation paradigms, but not consistently. Here, we investigate contributors to this initial dip in a distinct neuronal network, an olfactory bulb (OB) glomerulus most sensitive to a specific odorant (ethyl tiglate [ET]) and a site of strong activation and energy consumption upon ET stimulation. Combining two-photon fluorescence and phosphorescence lifetime microscopy, and calcium, blood flow, and pO2 measurements, we characterized this initial dip in pO2 in mice chronically implanted with a glass cranial window, during both awake and anesthetized conditions. In anesthetized mice, a transient dip in vascular pO2 was detected in this glomerulus when functional hyperemia was slightly delayed, but its amplitude was minute (0.3 SD of resting baseline). This vascular pO2 dip was not observed in other glomeruli responding nonspecifically to ET, and it was poorly influenced by resting pO2. In awake mice, the dip in pO2 was absent in capillaries as well as, surprisingly, in the neuropil. These high-resolution pO2 measurements demonstrate that in awake mice recovered from brain surgery, neurovascular coupling was too fast and efficient to reveal an initial dip in pO2.
Collapse
|
6
|
Rennig J, Beauchamp MS. Intelligibility of audiovisual sentences drives multivoxel response patterns in human superior temporal cortex. Neuroimage 2022; 247:118796. [PMID: 34906712 PMCID: PMC8819942 DOI: 10.1016/j.neuroimage.2021.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Regions of the human posterior superior temporal gyrus and sulcus (pSTG/S) respond to the visual mouth movements that constitute visual speech and the auditory vocalizations that constitute auditory speech, and neural responses in pSTG/S may underlie the perceptual benefit of visual speech for the comprehension of noisy auditory speech. We examined this possibility through the lens of multivoxel pattern responses in pSTG/S. BOLD fMRI data was collected from 22 participants presented with speech consisting of English sentences presented in five different formats: visual-only; auditory with and without added auditory noise; and audiovisual with and without auditory noise. Participants reported the intelligibility of each sentence with a button press and trials were sorted post-hoc into those that were more or less intelligible. Response patterns were measured in regions of the pSTG/S identified with an independent localizer. Noisy audiovisual sentences with very similar physical properties evoked very different response patterns depending on their intelligibility. When a noisy audiovisual sentence was reported as intelligible, the pattern was nearly identical to that elicited by clear audiovisual sentences. In contrast, an unintelligible noisy audiovisual sentence evoked a pattern like that of visual-only sentences. This effect was less pronounced for noisy auditory-only sentences, which evoked similar response patterns regardless of intelligibility. The successful integration of visual and auditory speech produces a characteristic neural signature in pSTG/S, highlighting the importance of this region in generating the perceptual benefit of visual speech.
Collapse
Affiliation(s)
- Johannes Rennig
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michael S Beauchamp
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Richards Medical Research Building, A607, 3700 Hamilton Walk, Philadelphia, PA 19104-6016, United States.
| |
Collapse
|
7
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Dowdle LT, Ghose G, Chen CCC, Ugurbil K, Yacoub E, Vizioli L. Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI. Prog Neurobiol 2021; 207:102171. [PMID: 34492308 DOI: 10.1016/j.pneurobio.2021.102171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Functional magnetic resonance imaging (fMRI), a non-invasive and widely used human neuroimaging method, is most known for its spatial precision. However, there is a growing interest in its temporal sensitivity. This is despite the temporal blurring of neuronal events by the blood oxygen level dependent (BOLD) signal, the peak of which lags neuronal firing by 4-6 seconds. Given this, the goal of this review is to answer a seemingly simple question - "What are the benefits of increased temporal sampling for fMRI?". To answer this, we have combined fMRI data collected at multiple temporal scales, from 323 to 1000 milliseconds, with a review of both historical and contemporary temporal literature. After a brief discussion of technological developments that have rekindled interest in temporal research, we next consider the potential statistical and methodological benefits. Most importantly, we explore how fast fMRI can uncover previously unobserved neuro-temporal dynamics - effects that are entirely missed when sampling at conventional 1 to 2 second rates. With the intrinsic link between space and time in fMRI, this temporal renaissance also delivers improvements in spatial precision. Far from producing only statistical gains, the array of benefits suggest that the continued temporal work is worth the effort.
Collapse
Affiliation(s)
- Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States.
| | - Geoffrey Ghose
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States
| | - Clark C C Chen
- Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Luca Vizioli
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States.
| |
Collapse
|
9
|
Dragojević T, Vidal Rosas EE, Hollmann JL, Culver JP, Justicia C, Durduran T. High-density speckle contrast optical tomography of cerebral blood flow response to functional stimuli in the rodent brain. NEUROPHOTONICS 2019; 6:045001. [PMID: 31620545 PMCID: PMC6782685 DOI: 10.1117/1.nph.6.4.045001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 05/20/2023]
Abstract
Noninvasive, three-dimensional, and longitudinal imaging of cerebral blood flow (CBF) in small animal models and ultimately in humans has implications for fundamental research and clinical applications. It enables the study of phenomena such as brain development and learning and the effects of pathologies, with a clear vision for translation to humans. Speckle contrast optical tomography (SCOT) is an emerging optical method that aims to achieve this goal by directly measuring three-dimensional blood flow maps in deep tissue with a relatively inexpensive and simple system. High-density SCOT is developed to follow CBF changes in response to somatosensory cortex stimulation. Measurements are carried out through the intact skull on the rat brain. SCOT is able to follow individual trials in each brain hemisphere, where signal averaging resulted in comparable, cortical images to those of functional magnetic resonance images in spatial extent, location, and depth. Sham stimuli are utilized to demonstrate that the observed response is indeed due to local changes in the brain induced by forepaw stimulation. In developing and demonstrating the method, algorithms and analysis methods are developed. The results pave the way for longitudinal, nondestructive imaging in preclinical rodent models that can readily be translated to the human brain.
Collapse
Affiliation(s)
- Tanja Dragojević
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Address all correspondence to Tanja Dragojević, E-mail:
| | - Ernesto E. Vidal Rosas
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joseph L. Hollmann
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joseph P. Culver
- Washington University, School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Department of Physics, St. Louis, Missouri, United States
| | - Carles Justicia
- Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Department of Brain Ischemia and Neurodegeneration, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Àrea de Neurociències, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
10
|
Vieira JB, Pierzchajlo SR, Mitchell DGV. Neural correlates of social and non-social personal space intrusions: Role of defensive and peripersonal space systems in interpersonal distance regulation. Soc Neurosci 2019; 15:36-51. [PMID: 31151372 DOI: 10.1080/17470919.2019.1626763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Personal space regulation ensures the maintenance of a margin of safety between the individual and the surrounding world. However, little is known about the specific neural mechanisms implicated in regulating the distance from conspecifics versus non-social stimuli. Here, we investigated the neural correlates of personal space intrusions by social versus non-social stimuli. Thirty volunteers underwent fMRI scanning while viewing approaching or withdrawing faces (Social) and insects/arachnids (Non-social). Preferred distance to the stimuli was assessed behaviourally in a computerized task, and in real life. Results showed that approaching social and non-social stimuli of varying threat levels elicited activation of frontoparietal regions previously linked to peripersonal space, as well as of the midbrain periaqueductal gray, suggesting the engagement of defensive mechanisms by personal space intrusions. However, functional connectivity patterns of the midbrain differed for social and non-social stimuli, with enhanced coupling with the premotor cortex to approaching social stimuli. Additionally, connectivity strength between the midbrain and the premotor cortex was associated with preferred interpersonal distance. These findings highlight a common defensive architecture implicated in personal space regulation to social and non-social stimuli, and the specific neural mechanisms involved in regulating the distance from conspecifics.
Collapse
Affiliation(s)
- Joana B Vieira
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Stephen R Pierzchajlo
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Derek G V Mitchell
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Psychology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Zafar A, Hong KS. Neuronal Activation Detection Using Vector Phase Analysis with Dual Threshold Circles: A Functional Near-Infrared Spectroscopy Study. Int J Neural Syst 2018; 28:1850031. [PMID: 30045647 DOI: 10.1142/s0129065718500314] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, a new vector phase diagram differentiating the initial decreasing phase (i.e. initial dip) and the delayed hemodynamic response (HR) phase of oxy-hemoglobin changes ( Δ HbO) of functional near-infrared spectroscopy (fNIRS) is developed. The vector phase diagram displays the trajectories of Δ HbO and deoxy-hemoglobin changes ( Δ HbR), as orthogonal components, in the Δ HbO- Δ HbR polar coordinates. To determine the occurrence of an initial dip, dual threshold circles (an inner circle from the resting state, an outer circle from the peak values of the initial dip and the main HR) are incorporated into the phase diagram for making decisions. The proposed scheme is then applied to a brain-computer interface scheme, and its performance is evaluated in classifying two finger tapping tasks (right-hand thumb and little finger) from the left motor cortex. Three gamma functions are used to model the initial dip, the main HR, and the undershoot in generating the designed HR function. In classifying two tapping tasks, the signal mean and signal minimum values during 0-2.5 s, as features of initial dip, are used. The linear discriminant analysis was utilized as a classifier. The experimental results show that the active brain locations of the two tasks were quite distinctive ( p < 0.05 ), and moreover, spatially specific if using the initial dip map at 4 s in comparison to the map of HRs at 14 s. Also, the average classification accuracy was improved from 59% to 74.9% when using the phase diagram of dual threshold circles.
Collapse
Affiliation(s)
- Amad Zafar
- 1 School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Keum-Shik Hong
- 1 School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
13
|
Zafar A, Khan MJ, Park J, Hong KS. Initial-dip Based Quadcopter Control: Application to fNIRS-BCI. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Zafar A, Hong KS. Detection and classification of three-class initial dips from prefrontal cortex. BIOMEDICAL OPTICS EXPRESS 2017; 8:367-383. [PMID: 28101424 PMCID: PMC5231305 DOI: 10.1364/boe.8.000367] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/20/2016] [Accepted: 12/12/2016] [Indexed: 05/03/2023]
Abstract
In this paper, the use of initial dips using functional near-infrared spectroscopy (fNIRS) for brain-computer interface (BCI) is investigated. Features and window sizes for detecting initial dips are also discussed. Three mental tasks including mental arithmetic, mental counting, and puzzle solving are performed in obtaining fNIRS signals from the prefrontal cortex. Vector-based phase analysis method combined with a threshold circle, as a decision criterion, are used to detect the initial dips. Eight healthy subjects participate in experiment. Linear discriminant analysis is used as a classifier. To classify initial dips, five features (signal mean, peak value, signal slope, skewness, and kurtosis) of oxy-hemoglobin (HbO) and four different window sizes (0~1, 0~1.5, 0~2, and 0~2.5 sec) are examined. It is shown that a combination of signal mean and peak value and a time period of 0~2.5 sec provide the best average classification accuracy of 57.5% for three classes. To further validate the result, three-class classification using the conventional hemodynamic response (HR) is also performed, in which two features (signal mean and signal slope) and 2~7 sec window size have yielded the average classification accuracy of 65.9%. This reveals that fNIRS-based BCI using initial dip detection can reduce the command generation time from 7 sec to 2.5 sec while the classification accuracy is a bit sacrificed from 65.9% to 57.5% for three mental tasks. Further improvement can be made by using deoxy hemoglobin signals in coping with the slow HR problem.
Collapse
Affiliation(s)
- Amad Zafar
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, South Korea
| |
Collapse
|
15
|
Hong KS, Naseer N. Reduction of Delay in Detecting Initial Dips from Functional Near-Infrared Spectroscopy Signals Using Vector-Based Phase Analysis. Int J Neural Syst 2016; 26:1650012. [DOI: 10.1142/s012906571650012x] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we present a systematic method to reduce the time lag in detecting initial dips using a vector-based phase diagram and an autoregressive moving average with exogenous signals (ARMAX) model-based [Formula: see text]-step-ahead prediction algorithm. With functional near-infrared spectroscopy (fNIRS), signals related to mental arithmetic and right-hand clenching are acquired from the prefrontal and left primary motor cortices, respectively. The interrelationship between oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin and cerebral oxygen exchange are related to initial dips. Specifically, a threshold value from the resting state hemodynamics is incorporated, as a decision criterion, into the vector-based phase diagram to determine the occurrence of initial dips. To further reduce the time lag, a [Formula: see text]-step-ahead prediction method is applied to predict the occurrence of the dips. A combination of the threshold criterion and the prediction method resulted in the delay time of about 0.9[Formula: see text]s. The results demonstrate that rapid detection of initial dip is possible and therefore can be used for real-time brain–computer interfacing.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Noman Naseer
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
16
|
Gao YR, Greene SE, Drew PJ. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response. Neuroimage 2015; 115:162-76. [PMID: 25953632 PMCID: PMC4470397 DOI: 10.1016/j.neuroimage.2015.04.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatial dynamics of dilation in the cerebral vasculature is essential for deciphering the vascular basis of hemodynamic signals in the brain. We used two-photon microscopy to image neural activity and vascular dynamics in the somatosensory cortex of awake behaving mice during voluntary locomotion. Arterial dilations within the histologically-defined forelimb/hindlimb (FL/HL) representation were larger than arterial dilations in the somatosensory cortex immediately outside the FL/HL representation, demonstrating that the vascular response during natural behaviors was spatially localized. Surprisingly, we found that locomotion drove dilations in surface vessels that were nearly three times the amplitude of intracortical vessel dilations. The smaller dilations of the intracortical arterioles were not due to saturation of dilation. Anatomical imaging revealed that, unlike surface vessels, intracortical vessels were tightly enclosed by brain tissue. A mathematical model showed that mechanical restriction by the brain tissue surrounding intracortical vessels could account for the reduced amplitude of intracortical vessel dilation relative to surface vessels. Thus, under normal conditions, the mechanical properties of the brain may play an important role in sculpting the laminar differences of hemodynamic responses.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Florin E, Watanabe M, Logothetis NK. The role of sub-second neural events in spontaneous brain activity. Curr Opin Neurobiol 2014; 32:24-30. [PMID: 25463561 DOI: 10.1016/j.conb.2014.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 01/05/2023]
Abstract
Human fMRI studies have identified well-reproducible resting-state networks (RSN) from spontaneous recordings. These networks are extracted from correlation metrics across the brain using several minutes of data. However, a majority of electrophysiological events occur at a sub-second time scale and their contribution to RSN generation is likely. According to recent fMRI studies RSNs separate into smaller networks when studied with higher temporal resolution. Moreover, using simultaneous electrophysiology and fMRI recordings it was shown that transient functional networks form around neural events. Therefore, considering neural events as sources of functional networks might improve the understanding of spontaneous brain activity. This endeavor will benefit from technical advances in simultaneous BOLD and electrophysiology recordings, as well as a more principled modeling of neurovascular coupling.
Collapse
Affiliation(s)
- Esther Florin
- Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany; Department of Neurology, University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany.
| | - Masataka Watanabe
- Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany; Centre for Imaging Sciences, Biomedical Imaging Institute, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
18
|
Francis S, Panchuelo RS. Physiological measurements using ultra-high field fMRI: a review. Physiol Meas 2014; 35:R167-85. [PMID: 25118658 DOI: 10.1088/0967-3334/35/9/r167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional MRI (fMRI) has grown to be the neuroimaging technique of choice for investigating brain function. This topical review provides an outline of fMRI methods and applications, with a particular emphasis on the recent advances provided by ultra-high field (UHF) scanners to allow functional mapping with greater sensitivity and improved spatial specificity. A short outline of the origin of the blood oxygenation level dependent (BOLD) contrast is provided, followed by a review of BOLD fMRI methods based on gradient-echo (GE) and spin-echo (SE) contrast. Phase based fMRI measures, as well as perfusion contrast obtained with the technique of arterial spin labelling (ASL), are also discussed. An overview of 7 T based functional neuroimaging is provided, outlining the potential advances to be made and technical challenges to be addressed.
Collapse
Affiliation(s)
- Sue Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
19
|
Siero JCW, Hendrikse J, Hoogduin H, Petridou N, Luijten P, Donahue MJ. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 2014; 73:2283-95. [PMID: 24989338 DOI: 10.1002/mrm.25349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Owing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response in human visual cortex are investigated as a function of cortical depth and stimulus duration at 7 Tesla (T). METHODS Gradient-echo echo-planar-imaging BOLD fMRI with high spatial and temporal resolution was performed in 7 healthy volunteers and measurements of the ID, PSU, and positive BOLD response were made as a function of cortical depth and stimulus duration (0.5-8 s). Exploratory analyses were applied to understand whether functional mapping could be achieved using the ID, rather than positive, BOLD signal characteristics RESULTS The ID was largest in outer cortical layers, consistent with previously reported upstream propagation of vasodilation along the diving arterioles in animals. The positive BOLD signal and PSU showed different relationships across the cortical depth with respect to stimulus duration. CONCLUSION The ID and PSU were measured in humans at 7T and exhibited similar trends to those recently reported in animals. Furthermore, while evidence is provided for the ID being a potentially useful feature for better understanding BOLD signal dynamics, such as laminar neurovascular coupling, functional mapping based on the ID is extremely difficult.
Collapse
Affiliation(s)
- Jeroen C W Siero
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Rudolf Magnus Institute, Department of Neurosurgery and Neurology, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalia Petridou
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Luijten
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Neurology, Vanderbilt School of Medicine, Nashville, Tennessee, USA.,Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|